rf_diskqueue.c revision 1.13.6.1 1 /* $NetBSD: rf_diskqueue.c,v 1.13.6.1 2001/10/22 20:41:35 nathanw Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /****************************************************************************
30 *
31 * rf_diskqueue.c -- higher-level disk queue code
32 *
33 * the routines here are a generic wrapper around the actual queueing
34 * routines. The code here implements thread scheduling, synchronization,
35 * and locking ops (see below) on top of the lower-level queueing code.
36 *
37 * to support atomic RMW, we implement "locking operations". When a
38 * locking op is dispatched to the lower levels of the driver, the
39 * queue is locked, and no further I/Os are dispatched until the queue
40 * receives & completes a corresponding "unlocking operation". This
41 * code relies on the higher layers to guarantee that a locking op
42 * will always be eventually followed by an unlocking op. The model
43 * is that the higher layers are structured so locking and unlocking
44 * ops occur in pairs, i.e. an unlocking op cannot be generated until
45 * after a locking op reports completion. There is no good way to
46 * check to see that an unlocking op "corresponds" to the op that
47 * currently has the queue locked, so we make no such attempt. Since
48 * by definition there can be only one locking op outstanding on a
49 * disk, this should not be a problem.
50 *
51 * In the kernel, we allow multiple I/Os to be concurrently dispatched
52 * to the disk driver. In order to support locking ops in this
53 * environment, when we decide to do a locking op, we stop dispatching
54 * new I/Os and wait until all dispatched I/Os have completed before
55 * dispatching the locking op.
56 *
57 * Unfortunately, the code is different in the 3 different operating
58 * states (user level, kernel, simulator). In the kernel, I/O is
59 * non-blocking, and we have no disk threads to dispatch for us.
60 * Therefore, we have to dispatch new I/Os to the scsi driver at the
61 * time of enqueue, and also at the time of completion. At user
62 * level, I/O is blocking, and so only the disk threads may dispatch
63 * I/Os. Thus at user level, all we can do at enqueue time is enqueue
64 * and wake up the disk thread to do the dispatch.
65 *
66 ****************************************************************************/
67
68 #include <dev/raidframe/raidframevar.h>
69
70 #include "rf_threadstuff.h"
71 #include "rf_raid.h"
72 #include "rf_diskqueue.h"
73 #include "rf_alloclist.h"
74 #include "rf_acctrace.h"
75 #include "rf_etimer.h"
76 #include "rf_general.h"
77 #include "rf_freelist.h"
78 #include "rf_debugprint.h"
79 #include "rf_shutdown.h"
80 #include "rf_cvscan.h"
81 #include "rf_sstf.h"
82 #include "rf_fifo.h"
83 #include "rf_kintf.h"
84
85 static int init_dqd(RF_DiskQueueData_t *);
86 static void clean_dqd(RF_DiskQueueData_t *);
87 static void rf_ShutdownDiskQueueSystem(void *);
88
89 #define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
90 #define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
91 #define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
92
93 /*****************************************************************************
94 *
95 * the disk queue switch defines all the functions used in the
96 * different queueing disciplines queue ID, init routine, enqueue
97 * routine, dequeue routine
98 *
99 ****************************************************************************/
100
101 static RF_DiskQueueSW_t diskqueuesw[] = {
102 {"fifo", /* FIFO */
103 rf_FifoCreate,
104 rf_FifoEnqueue,
105 rf_FifoDequeue,
106 rf_FifoPeek,
107 rf_FifoPromote},
108
109 {"cvscan", /* cvscan */
110 rf_CvscanCreate,
111 rf_CvscanEnqueue,
112 rf_CvscanDequeue,
113 rf_CvscanPeek,
114 rf_CvscanPromote},
115
116 {"sstf", /* shortest seek time first */
117 rf_SstfCreate,
118 rf_SstfEnqueue,
119 rf_SstfDequeue,
120 rf_SstfPeek,
121 rf_SstfPromote},
122
123 {"scan", /* SCAN (two-way elevator) */
124 rf_ScanCreate,
125 rf_SstfEnqueue,
126 rf_ScanDequeue,
127 rf_ScanPeek,
128 rf_SstfPromote},
129
130 {"cscan", /* CSCAN (one-way elevator) */
131 rf_CscanCreate,
132 rf_SstfEnqueue,
133 rf_CscanDequeue,
134 rf_CscanPeek,
135 rf_SstfPromote},
136
137 };
138 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
139
140 static RF_FreeList_t *rf_dqd_freelist;
141
142 #define RF_MAX_FREE_DQD 256
143 #define RF_DQD_INC 16
144 #define RF_DQD_INITIAL 64
145
146 #include <sys/buf.h>
147
148 static int
149 init_dqd(dqd)
150 RF_DiskQueueData_t *dqd;
151 {
152
153 dqd->bp = (struct buf *) malloc(sizeof(struct buf),
154 M_RAIDFRAME, M_NOWAIT);
155 if (dqd->bp == NULL) {
156 return (ENOMEM);
157 }
158 memset(dqd->bp, 0, sizeof(struct buf)); /* if you don't do it, nobody
159 * else will.. */
160 return (0);
161 }
162
163 static void
164 clean_dqd(dqd)
165 RF_DiskQueueData_t *dqd;
166 {
167 free(dqd->bp, M_RAIDFRAME);
168 }
169 /* configures a single disk queue */
170
171 int
172 rf_ConfigureDiskQueue(
173 RF_Raid_t * raidPtr,
174 RF_DiskQueue_t * diskqueue,
175 RF_RowCol_t r, /* row & col -- debug only. BZZT not any
176 * more... */
177 RF_RowCol_t c,
178 RF_DiskQueueSW_t * p,
179 RF_SectorCount_t sectPerDisk,
180 dev_t dev,
181 int maxOutstanding,
182 RF_ShutdownList_t ** listp,
183 RF_AllocListElem_t * clList)
184 {
185 int rc;
186
187 diskqueue->row = r;
188 diskqueue->col = c;
189 diskqueue->qPtr = p;
190 diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
191 diskqueue->dev = dev;
192 diskqueue->numOutstanding = 0;
193 diskqueue->queueLength = 0;
194 diskqueue->maxOutstanding = maxOutstanding;
195 diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
196 diskqueue->nextLockingOp = NULL;
197 diskqueue->unlockingOp = NULL;
198 diskqueue->numWaiting = 0;
199 diskqueue->flags = 0;
200 diskqueue->raidPtr = raidPtr;
201 diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
202 rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
203 if (rc) {
204 RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
205 __LINE__, rc);
206 return (rc);
207 }
208 rc = rf_create_managed_cond(listp, &diskqueue->cond);
209 if (rc) {
210 RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
211 __LINE__, rc);
212 return (rc);
213 }
214 return (0);
215 }
216
217 static void
218 rf_ShutdownDiskQueueSystem(ignored)
219 void *ignored;
220 {
221 RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
222 }
223
224 int
225 rf_ConfigureDiskQueueSystem(listp)
226 RF_ShutdownList_t **listp;
227 {
228 int rc;
229
230 RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
231 RF_DQD_INC, sizeof(RF_DiskQueueData_t));
232 if (rf_dqd_freelist == NULL)
233 return (ENOMEM);
234 rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
235 if (rc) {
236 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
237 __FILE__, __LINE__, rc);
238 rf_ShutdownDiskQueueSystem(NULL);
239 return (rc);
240 }
241 RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
242 (RF_DiskQueueData_t *), init_dqd);
243 return (0);
244 }
245
246 int
247 rf_ConfigureDiskQueues(
248 RF_ShutdownList_t ** listp,
249 RF_Raid_t * raidPtr,
250 RF_Config_t * cfgPtr)
251 {
252 RF_DiskQueue_t **diskQueues, *spareQueues;
253 RF_DiskQueueSW_t *p;
254 RF_RowCol_t r, c;
255 int rc, i;
256
257 raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
258
259 for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
260 if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
261 p = &diskqueuesw[i];
262 break;
263 }
264 }
265 if (p == NULL) {
266 RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
267 p = &diskqueuesw[0];
268 }
269 raidPtr->qType = p;
270 RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
271 if (diskQueues == NULL) {
272 return (ENOMEM);
273 }
274 raidPtr->Queues = diskQueues;
275 for (r = 0; r < raidPtr->numRow; r++) {
276 RF_CallocAndAdd(diskQueues[r], raidPtr->numCol +
277 ((r == 0) ? RF_MAXSPARE : 0),
278 sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
279 raidPtr->cleanupList);
280 if (diskQueues[r] == NULL)
281 return (ENOMEM);
282 for (c = 0; c < raidPtr->numCol; c++) {
283 rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[r][c],
284 r, c, p,
285 raidPtr->sectorsPerDisk,
286 raidPtr->Disks[r][c].dev,
287 cfgPtr->maxOutstandingDiskReqs,
288 listp, raidPtr->cleanupList);
289 if (rc)
290 return (rc);
291 }
292 }
293
294 spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
295 for (r = 0; r < raidPtr->numSpare; r++) {
296 rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
297 0, raidPtr->numCol + r, p,
298 raidPtr->sectorsPerDisk,
299 raidPtr->Disks[0][raidPtr->numCol + r].dev,
300 cfgPtr->maxOutstandingDiskReqs, listp,
301 raidPtr->cleanupList);
302 if (rc)
303 return (rc);
304 }
305 return (0);
306 }
307 /* Enqueue a disk I/O
308 *
309 * Unfortunately, we have to do things differently in the different
310 * environments (simulator, user-level, kernel).
311 * At user level, all I/O is blocking, so we have 1 or more threads/disk
312 * and the thread that enqueues is different from the thread that dequeues.
313 * In the kernel, I/O is non-blocking and so we'd like to have multiple
314 * I/Os outstanding on the physical disks when possible.
315 *
316 * when any request arrives at a queue, we have two choices:
317 * dispatch it to the lower levels
318 * queue it up
319 *
320 * kernel rules for when to do what:
321 * locking request: queue empty => dispatch and lock queue,
322 * else queue it
323 * unlocking req : always dispatch it
324 * normal req : queue empty => dispatch it & set priority
325 * queue not full & priority is ok => dispatch it
326 * else queue it
327 *
328 * user-level rules:
329 * always enqueue. In the special case of an unlocking op, enqueue
330 * in a special way that will cause the unlocking op to be the next
331 * thing dequeued.
332 *
333 * simulator rules:
334 * Do the same as at user level, with the sleeps and wakeups suppressed.
335 */
336 void
337 rf_DiskIOEnqueue(queue, req, pri)
338 RF_DiskQueue_t *queue;
339 RF_DiskQueueData_t *req;
340 int pri;
341 {
342 RF_ETIMER_START(req->qtime);
343 RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
344 req->priority = pri;
345
346 if (rf_queueDebug && (req->numSector == 0)) {
347 printf("Warning: Enqueueing zero-sector access\n");
348 }
349 /*
350 * kernel
351 */
352 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
353 /* locking request */
354 if (RF_LOCKING_REQ(req)) {
355 if (RF_QUEUE_EMPTY(queue)) {
356 Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
357 RF_LOCK_QUEUE(queue);
358 rf_DispatchKernelIO(queue, req);
359 } else {
360 queue->queueLength++; /* increment count of number
361 * of requests waiting in this
362 * queue */
363 Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
364 req->queue = (void *) queue;
365 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
366 }
367 }
368 /* unlocking request */
369 else
370 if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock
371 * when this I/O completes */
372 Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
373 RF_ASSERT(RF_QUEUE_LOCKED(queue));
374 rf_DispatchKernelIO(queue, req);
375 }
376 /* normal request */
377 else
378 if (RF_OK_TO_DISPATCH(queue, req)) {
379 Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
380 rf_DispatchKernelIO(queue, req);
381 } else {
382 queue->queueLength++; /* increment count of
383 * number of requests
384 * waiting in this queue */
385 Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
386 req->queue = (void *) queue;
387 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
388 }
389 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
390 }
391
392
393 /* get the next set of I/Os started, kernel version only */
394 void
395 rf_DiskIOComplete(queue, req, status)
396 RF_DiskQueue_t *queue;
397 RF_DiskQueueData_t *req;
398 int status;
399 {
400 int done = 0;
401
402 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
403
404 /* unlock the queue: (1) after an unlocking req completes (2) after a
405 * locking req fails */
406 if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
407 Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
408 RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
409 RF_UNLOCK_QUEUE(queue);
410 }
411 queue->numOutstanding--;
412 RF_ASSERT(queue->numOutstanding >= 0);
413
414 /* dispatch requests to the disk until we find one that we can't. */
415 /* no reason to continue once we've filled up the queue */
416 /* no reason to even start if the queue is locked */
417
418 while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
419 if (queue->nextLockingOp) {
420 req = queue->nextLockingOp;
421 queue->nextLockingOp = NULL;
422 Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
423 } else {
424 req = (queue->qPtr->Dequeue) (queue->qHdr);
425 if (req != NULL) {
426 Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
427 } else {
428 Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
429 }
430 }
431 if (req) {
432 queue->queueLength--; /* decrement count of number
433 * of requests waiting in this
434 * queue */
435 RF_ASSERT(queue->queueLength >= 0);
436 }
437 if (!req)
438 done = 1;
439 else
440 if (RF_LOCKING_REQ(req)) {
441 if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */
442 Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
443 RF_LOCK_QUEUE(queue);
444 rf_DispatchKernelIO(queue, req);
445 done = 1;
446 } else { /* put it aside to wait for
447 * the queue to drain */
448 Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
449 RF_ASSERT(queue->nextLockingOp == NULL);
450 queue->nextLockingOp = req;
451 done = 1;
452 }
453 } else
454 if (RF_UNLOCKING_REQ(req)) { /* should not happen:
455 * unlocking ops should
456 * not get queued */
457 RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for
458 * the future */
459 Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
460 rf_DispatchKernelIO(queue, req);
461 done = 1;
462 } else
463 if (RF_OK_TO_DISPATCH(queue, req)) {
464 Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
465 rf_DispatchKernelIO(queue, req);
466 } else { /* we can't dispatch it,
467 * so just re-enqueue
468 * it. */
469 /* potential trouble here if
470 * disk queues batch reqs */
471 Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
472 queue->queueLength++;
473 (queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
474 done = 1;
475 }
476 }
477
478 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
479 }
480 /* promotes accesses tagged with the given parityStripeID from low priority
481 * to normal priority. This promotion is optional, meaning that a queue
482 * need not implement it. If there is no promotion routine associated with
483 * a queue, this routine does nothing and returns -1.
484 */
485 int
486 rf_DiskIOPromote(queue, parityStripeID, which_ru)
487 RF_DiskQueue_t *queue;
488 RF_StripeNum_t parityStripeID;
489 RF_ReconUnitNum_t which_ru;
490 {
491 int retval;
492
493 if (!queue->qPtr->Promote)
494 return (-1);
495 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
496 retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
497 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
498 return (retval);
499 }
500
501 RF_DiskQueueData_t *
502 rf_CreateDiskQueueData(
503 RF_IoType_t typ,
504 RF_SectorNum_t ssect,
505 RF_SectorCount_t nsect,
506 caddr_t buf,
507 RF_StripeNum_t parityStripeID,
508 RF_ReconUnitNum_t which_ru,
509 int (*wakeF) (void *, int),
510 void *arg,
511 RF_DiskQueueData_t * next,
512 RF_AccTraceEntry_t * tracerec,
513 void *raidPtr,
514 RF_DiskQueueDataFlags_t flags,
515 void *kb_proc)
516 {
517 RF_DiskQueueData_t *p;
518
519 RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
520
521 p->sectorOffset = ssect + rf_protectedSectors;
522 p->numSector = nsect;
523 p->type = typ;
524 p->buf = buf;
525 p->parityStripeID = parityStripeID;
526 p->which_ru = which_ru;
527 p->CompleteFunc = wakeF;
528 p->argument = arg;
529 p->next = next;
530 p->tracerec = tracerec;
531 p->priority = RF_IO_NORMAL_PRIORITY;
532 p->AuxFunc = NULL;
533 p->buf2 = NULL;
534 p->raidPtr = raidPtr;
535 p->flags = flags;
536 p->b_proc = kb_proc;
537 return (p);
538 }
539
540 RF_DiskQueueData_t *
541 rf_CreateDiskQueueDataFull(
542 RF_IoType_t typ,
543 RF_SectorNum_t ssect,
544 RF_SectorCount_t nsect,
545 caddr_t buf,
546 RF_StripeNum_t parityStripeID,
547 RF_ReconUnitNum_t which_ru,
548 int (*wakeF) (void *, int),
549 void *arg,
550 RF_DiskQueueData_t * next,
551 RF_AccTraceEntry_t * tracerec,
552 int priority,
553 int (*AuxFunc) (void *,...),
554 caddr_t buf2,
555 void *raidPtr,
556 RF_DiskQueueDataFlags_t flags,
557 void *kb_proc)
558 {
559 RF_DiskQueueData_t *p;
560
561 RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
562
563 p->sectorOffset = ssect + rf_protectedSectors;
564 p->numSector = nsect;
565 p->type = typ;
566 p->buf = buf;
567 p->parityStripeID = parityStripeID;
568 p->which_ru = which_ru;
569 p->CompleteFunc = wakeF;
570 p->argument = arg;
571 p->next = next;
572 p->tracerec = tracerec;
573 p->priority = priority;
574 p->AuxFunc = AuxFunc;
575 p->buf2 = buf2;
576 p->raidPtr = raidPtr;
577 p->flags = flags;
578 p->b_proc = kb_proc;
579 return (p);
580 }
581
582 void
583 rf_FreeDiskQueueData(p)
584 RF_DiskQueueData_t *p;
585 {
586 RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
587 }
588