rf_diskqueue.c revision 1.13.8.3 1 /* $NetBSD: rf_diskqueue.c,v 1.13.8.3 2002/10/10 18:41:48 jdolecek Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /****************************************************************************
30 *
31 * rf_diskqueue.c -- higher-level disk queue code
32 *
33 * the routines here are a generic wrapper around the actual queueing
34 * routines. The code here implements thread scheduling, synchronization,
35 * and locking ops (see below) on top of the lower-level queueing code.
36 *
37 * to support atomic RMW, we implement "locking operations". When a
38 * locking op is dispatched to the lower levels of the driver, the
39 * queue is locked, and no further I/Os are dispatched until the queue
40 * receives & completes a corresponding "unlocking operation". This
41 * code relies on the higher layers to guarantee that a locking op
42 * will always be eventually followed by an unlocking op. The model
43 * is that the higher layers are structured so locking and unlocking
44 * ops occur in pairs, i.e. an unlocking op cannot be generated until
45 * after a locking op reports completion. There is no good way to
46 * check to see that an unlocking op "corresponds" to the op that
47 * currently has the queue locked, so we make no such attempt. Since
48 * by definition there can be only one locking op outstanding on a
49 * disk, this should not be a problem.
50 *
51 * In the kernel, we allow multiple I/Os to be concurrently dispatched
52 * to the disk driver. In order to support locking ops in this
53 * environment, when we decide to do a locking op, we stop dispatching
54 * new I/Os and wait until all dispatched I/Os have completed before
55 * dispatching the locking op.
56 *
57 * Unfortunately, the code is different in the 3 different operating
58 * states (user level, kernel, simulator). In the kernel, I/O is
59 * non-blocking, and we have no disk threads to dispatch for us.
60 * Therefore, we have to dispatch new I/Os to the scsi driver at the
61 * time of enqueue, and also at the time of completion. At user
62 * level, I/O is blocking, and so only the disk threads may dispatch
63 * I/Os. Thus at user level, all we can do at enqueue time is enqueue
64 * and wake up the disk thread to do the dispatch.
65 *
66 ****************************************************************************/
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.13.8.3 2002/10/10 18:41:48 jdolecek Exp $");
70
71 #include <dev/raidframe/raidframevar.h>
72
73 #include "rf_threadstuff.h"
74 #include "rf_raid.h"
75 #include "rf_diskqueue.h"
76 #include "rf_alloclist.h"
77 #include "rf_acctrace.h"
78 #include "rf_etimer.h"
79 #include "rf_general.h"
80 #include "rf_freelist.h"
81 #include "rf_debugprint.h"
82 #include "rf_shutdown.h"
83 #include "rf_cvscan.h"
84 #include "rf_sstf.h"
85 #include "rf_fifo.h"
86 #include "rf_kintf.h"
87
88 static int init_dqd(RF_DiskQueueData_t *);
89 static void clean_dqd(RF_DiskQueueData_t *);
90 static void rf_ShutdownDiskQueueSystem(void *);
91
92 #ifndef RF_DEBUG_DISKQUEUE
93 #define RF_DEBUG_DISKQUEUE 0
94 #endif
95
96 #if RF_DEBUG_DISKQUEUE
97 #define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
98 #define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
99 #define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
100 #else
101 #define Dprintf1(s,a)
102 #define Dprintf2(s,a,b)
103 #define Dprintf3(s,a,b,c)
104 #endif
105
106 /*****************************************************************************
107 *
108 * the disk queue switch defines all the functions used in the
109 * different queueing disciplines queue ID, init routine, enqueue
110 * routine, dequeue routine
111 *
112 ****************************************************************************/
113
114 static RF_DiskQueueSW_t diskqueuesw[] = {
115 {"fifo", /* FIFO */
116 rf_FifoCreate,
117 rf_FifoEnqueue,
118 rf_FifoDequeue,
119 rf_FifoPeek,
120 rf_FifoPromote},
121
122 {"cvscan", /* cvscan */
123 rf_CvscanCreate,
124 rf_CvscanEnqueue,
125 rf_CvscanDequeue,
126 rf_CvscanPeek,
127 rf_CvscanPromote},
128
129 {"sstf", /* shortest seek time first */
130 rf_SstfCreate,
131 rf_SstfEnqueue,
132 rf_SstfDequeue,
133 rf_SstfPeek,
134 rf_SstfPromote},
135
136 {"scan", /* SCAN (two-way elevator) */
137 rf_ScanCreate,
138 rf_SstfEnqueue,
139 rf_ScanDequeue,
140 rf_ScanPeek,
141 rf_SstfPromote},
142
143 {"cscan", /* CSCAN (one-way elevator) */
144 rf_CscanCreate,
145 rf_SstfEnqueue,
146 rf_CscanDequeue,
147 rf_CscanPeek,
148 rf_SstfPromote},
149
150 };
151 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
152
153 static RF_FreeList_t *rf_dqd_freelist;
154
155 #define RF_MAX_FREE_DQD 256
156 #define RF_DQD_INC 16
157 #define RF_DQD_INITIAL 64
158
159 #include <sys/buf.h>
160
161 static int
162 init_dqd(dqd)
163 RF_DiskQueueData_t *dqd;
164 {
165
166 dqd->bp = (struct buf *) malloc(sizeof(struct buf),
167 M_RAIDFRAME, M_NOWAIT);
168 if (dqd->bp == NULL) {
169 return (ENOMEM);
170 }
171 memset(dqd->bp, 0, sizeof(struct buf)); /* if you don't do it, nobody
172 * else will.. */
173 return (0);
174 }
175
176 static void
177 clean_dqd(dqd)
178 RF_DiskQueueData_t *dqd;
179 {
180 free(dqd->bp, M_RAIDFRAME);
181 }
182 /* configures a single disk queue */
183
184 int
185 rf_ConfigureDiskQueue(
186 RF_Raid_t * raidPtr,
187 RF_DiskQueue_t * diskqueue,
188 RF_RowCol_t r, /* row & col -- debug only. BZZT not any
189 * more... */
190 RF_RowCol_t c,
191 RF_DiskQueueSW_t * p,
192 RF_SectorCount_t sectPerDisk,
193 dev_t dev,
194 int maxOutstanding,
195 RF_ShutdownList_t ** listp,
196 RF_AllocListElem_t * clList)
197 {
198 int rc;
199
200 diskqueue->row = r;
201 diskqueue->col = c;
202 diskqueue->qPtr = p;
203 diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
204 diskqueue->dev = dev;
205 diskqueue->numOutstanding = 0;
206 diskqueue->queueLength = 0;
207 diskqueue->maxOutstanding = maxOutstanding;
208 diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
209 diskqueue->nextLockingOp = NULL;
210 diskqueue->numWaiting = 0;
211 diskqueue->flags = 0;
212 diskqueue->raidPtr = raidPtr;
213 diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
214 rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
215 if (rc) {
216 rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
217 return (rc);
218 }
219 rc = rf_create_managed_cond(listp, &diskqueue->cond);
220 if (rc) {
221 rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
222 return (rc);
223 }
224 return (0);
225 }
226
227 static void
228 rf_ShutdownDiskQueueSystem(ignored)
229 void *ignored;
230 {
231 RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
232 }
233
234 int
235 rf_ConfigureDiskQueueSystem(listp)
236 RF_ShutdownList_t **listp;
237 {
238 int rc;
239
240 RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
241 RF_DQD_INC, sizeof(RF_DiskQueueData_t));
242 if (rf_dqd_freelist == NULL)
243 return (ENOMEM);
244 rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
245 if (rc) {
246 rf_print_unable_to_add_shutdown( __FILE__, __LINE__, rc);
247 rf_ShutdownDiskQueueSystem(NULL);
248 return (rc);
249 }
250 RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
251 (RF_DiskQueueData_t *), init_dqd);
252 return (0);
253 }
254
255 int
256 rf_ConfigureDiskQueues(
257 RF_ShutdownList_t ** listp,
258 RF_Raid_t * raidPtr,
259 RF_Config_t * cfgPtr)
260 {
261 RF_DiskQueue_t **diskQueues, *spareQueues;
262 RF_DiskQueueSW_t *p;
263 RF_RowCol_t r, c;
264 int rc, i;
265
266 raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
267
268 for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
269 if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
270 p = &diskqueuesw[i];
271 break;
272 }
273 }
274 if (p == NULL) {
275 RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
276 p = &diskqueuesw[0];
277 }
278 raidPtr->qType = p;
279 RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
280 if (diskQueues == NULL) {
281 return (ENOMEM);
282 }
283 raidPtr->Queues = diskQueues;
284 for (r = 0; r < raidPtr->numRow; r++) {
285 RF_CallocAndAdd(diskQueues[r], raidPtr->numCol +
286 ((r == 0) ? RF_MAXSPARE : 0),
287 sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
288 raidPtr->cleanupList);
289 if (diskQueues[r] == NULL)
290 return (ENOMEM);
291 for (c = 0; c < raidPtr->numCol; c++) {
292 rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[r][c],
293 r, c, p,
294 raidPtr->sectorsPerDisk,
295 raidPtr->Disks[r][c].dev,
296 cfgPtr->maxOutstandingDiskReqs,
297 listp, raidPtr->cleanupList);
298 if (rc)
299 return (rc);
300 }
301 }
302
303 spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
304 for (r = 0; r < raidPtr->numSpare; r++) {
305 rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
306 0, raidPtr->numCol + r, p,
307 raidPtr->sectorsPerDisk,
308 raidPtr->Disks[0][raidPtr->numCol + r].dev,
309 cfgPtr->maxOutstandingDiskReqs, listp,
310 raidPtr->cleanupList);
311 if (rc)
312 return (rc);
313 }
314 return (0);
315 }
316 /* Enqueue a disk I/O
317 *
318 * Unfortunately, we have to do things differently in the different
319 * environments (simulator, user-level, kernel).
320 * At user level, all I/O is blocking, so we have 1 or more threads/disk
321 * and the thread that enqueues is different from the thread that dequeues.
322 * In the kernel, I/O is non-blocking and so we'd like to have multiple
323 * I/Os outstanding on the physical disks when possible.
324 *
325 * when any request arrives at a queue, we have two choices:
326 * dispatch it to the lower levels
327 * queue it up
328 *
329 * kernel rules for when to do what:
330 * locking request: queue empty => dispatch and lock queue,
331 * else queue it
332 * unlocking req : always dispatch it
333 * normal req : queue empty => dispatch it & set priority
334 * queue not full & priority is ok => dispatch it
335 * else queue it
336 *
337 * user-level rules:
338 * always enqueue. In the special case of an unlocking op, enqueue
339 * in a special way that will cause the unlocking op to be the next
340 * thing dequeued.
341 *
342 * simulator rules:
343 * Do the same as at user level, with the sleeps and wakeups suppressed.
344 */
345 void
346 rf_DiskIOEnqueue(queue, req, pri)
347 RF_DiskQueue_t *queue;
348 RF_DiskQueueData_t *req;
349 int pri;
350 {
351 RF_ETIMER_START(req->qtime);
352 RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
353 req->priority = pri;
354
355 #if RF_DEBUG_DISKQUEUE
356 if (rf_queueDebug && (req->numSector == 0)) {
357 printf("Warning: Enqueueing zero-sector access\n");
358 }
359 #endif
360 /*
361 * kernel
362 */
363 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
364 /* locking request */
365 if (RF_LOCKING_REQ(req)) {
366 if (RF_QUEUE_EMPTY(queue)) {
367 Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
368 RF_LOCK_QUEUE(queue);
369 rf_DispatchKernelIO(queue, req);
370 } else {
371 queue->queueLength++; /* increment count of number
372 * of requests waiting in this
373 * queue */
374 Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
375 req->queue = (void *) queue;
376 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
377 }
378 }
379 /* unlocking request */
380 else
381 if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock
382 * when this I/O completes */
383 Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
384 RF_ASSERT(RF_QUEUE_LOCKED(queue));
385 rf_DispatchKernelIO(queue, req);
386 }
387 /* normal request */
388 else
389 if (RF_OK_TO_DISPATCH(queue, req)) {
390 Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
391 rf_DispatchKernelIO(queue, req);
392 } else {
393 queue->queueLength++; /* increment count of
394 * number of requests
395 * waiting in this queue */
396 Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
397 req->queue = (void *) queue;
398 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
399 }
400 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
401 }
402
403
404 /* get the next set of I/Os started, kernel version only */
405 void
406 rf_DiskIOComplete(queue, req, status)
407 RF_DiskQueue_t *queue;
408 RF_DiskQueueData_t *req;
409 int status;
410 {
411 int done = 0;
412
413 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
414
415 /* unlock the queue: (1) after an unlocking req completes (2) after a
416 * locking req fails */
417 if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
418 Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
419 RF_ASSERT(RF_QUEUE_LOCKED(queue));
420 RF_UNLOCK_QUEUE(queue);
421 }
422 queue->numOutstanding--;
423 RF_ASSERT(queue->numOutstanding >= 0);
424
425 /* dispatch requests to the disk until we find one that we can't. */
426 /* no reason to continue once we've filled up the queue */
427 /* no reason to even start if the queue is locked */
428
429 while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
430 if (queue->nextLockingOp) {
431 req = queue->nextLockingOp;
432 queue->nextLockingOp = NULL;
433 Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
434 } else {
435 req = (queue->qPtr->Dequeue) (queue->qHdr);
436 if (req != NULL) {
437 Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
438 } else {
439 Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
440 }
441 }
442 if (req) {
443 queue->queueLength--; /* decrement count of number
444 * of requests waiting in this
445 * queue */
446 RF_ASSERT(queue->queueLength >= 0);
447 }
448 if (!req)
449 done = 1;
450 else
451 if (RF_LOCKING_REQ(req)) {
452 if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */
453 Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
454 RF_LOCK_QUEUE(queue);
455 rf_DispatchKernelIO(queue, req);
456 done = 1;
457 } else { /* put it aside to wait for
458 * the queue to drain */
459 Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
460 RF_ASSERT(queue->nextLockingOp == NULL);
461 queue->nextLockingOp = req;
462 done = 1;
463 }
464 } else
465 if (RF_UNLOCKING_REQ(req)) { /* should not happen:
466 * unlocking ops should
467 * not get queued */
468 RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for
469 * the future */
470 Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
471 rf_DispatchKernelIO(queue, req);
472 done = 1;
473 } else
474 if (RF_OK_TO_DISPATCH(queue, req)) {
475 Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
476 rf_DispatchKernelIO(queue, req);
477 } else { /* we can't dispatch it,
478 * so just re-enqueue
479 * it. */
480 /* potential trouble here if
481 * disk queues batch reqs */
482 Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
483 queue->queueLength++;
484 (queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
485 done = 1;
486 }
487 }
488
489 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
490 }
491 /* promotes accesses tagged with the given parityStripeID from low priority
492 * to normal priority. This promotion is optional, meaning that a queue
493 * need not implement it. If there is no promotion routine associated with
494 * a queue, this routine does nothing and returns -1.
495 */
496 int
497 rf_DiskIOPromote(queue, parityStripeID, which_ru)
498 RF_DiskQueue_t *queue;
499 RF_StripeNum_t parityStripeID;
500 RF_ReconUnitNum_t which_ru;
501 {
502 int retval;
503
504 if (!queue->qPtr->Promote)
505 return (-1);
506 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
507 retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
508 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
509 return (retval);
510 }
511
512 RF_DiskQueueData_t *
513 rf_CreateDiskQueueData(
514 RF_IoType_t typ,
515 RF_SectorNum_t ssect,
516 RF_SectorCount_t nsect,
517 caddr_t buf,
518 RF_StripeNum_t parityStripeID,
519 RF_ReconUnitNum_t which_ru,
520 int (*wakeF) (void *, int),
521 void *arg,
522 RF_DiskQueueData_t * next,
523 RF_AccTraceEntry_t * tracerec,
524 void *raidPtr,
525 RF_DiskQueueDataFlags_t flags,
526 void *kb_proc)
527 {
528 RF_DiskQueueData_t *p;
529
530 RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
531
532 p->sectorOffset = ssect + rf_protectedSectors;
533 p->numSector = nsect;
534 p->type = typ;
535 p->buf = buf;
536 p->parityStripeID = parityStripeID;
537 p->which_ru = which_ru;
538 p->CompleteFunc = wakeF;
539 p->argument = arg;
540 p->next = next;
541 p->tracerec = tracerec;
542 p->priority = RF_IO_NORMAL_PRIORITY;
543 p->raidPtr = raidPtr;
544 p->flags = flags;
545 p->b_proc = kb_proc;
546 return (p);
547 }
548
549 void
550 rf_FreeDiskQueueData(p)
551 RF_DiskQueueData_t *p;
552 {
553 RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
554 }
555