Home | History | Annotate | Line # | Download | only in raidframe
rf_diskqueue.c revision 1.14
      1 /*	$NetBSD: rf_diskqueue.c,v 1.14 2001/10/04 15:58:53 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************
     30  *
     31  * rf_diskqueue.c -- higher-level disk queue code
     32  *
     33  * the routines here are a generic wrapper around the actual queueing
     34  * routines.  The code here implements thread scheduling, synchronization,
     35  * and locking ops (see below) on top of the lower-level queueing code.
     36  *
     37  * to support atomic RMW, we implement "locking operations".  When a
     38  * locking op is dispatched to the lower levels of the driver, the
     39  * queue is locked, and no further I/Os are dispatched until the queue
     40  * receives & completes a corresponding "unlocking operation".  This
     41  * code relies on the higher layers to guarantee that a locking op
     42  * will always be eventually followed by an unlocking op.  The model
     43  * is that the higher layers are structured so locking and unlocking
     44  * ops occur in pairs, i.e.  an unlocking op cannot be generated until
     45  * after a locking op reports completion.  There is no good way to
     46  * check to see that an unlocking op "corresponds" to the op that
     47  * currently has the queue locked, so we make no such attempt.  Since
     48  * by definition there can be only one locking op outstanding on a
     49  * disk, this should not be a problem.
     50  *
     51  * In the kernel, we allow multiple I/Os to be concurrently dispatched
     52  * to the disk driver.  In order to support locking ops in this
     53  * environment, when we decide to do a locking op, we stop dispatching
     54  * new I/Os and wait until all dispatched I/Os have completed before
     55  * dispatching the locking op.
     56  *
     57  * Unfortunately, the code is different in the 3 different operating
     58  * states (user level, kernel, simulator).  In the kernel, I/O is
     59  * non-blocking, and we have no disk threads to dispatch for us.
     60  * Therefore, we have to dispatch new I/Os to the scsi driver at the
     61  * time of enqueue, and also at the time of completion.  At user
     62  * level, I/O is blocking, and so only the disk threads may dispatch
     63  * I/Os.  Thus at user level, all we can do at enqueue time is enqueue
     64  * and wake up the disk thread to do the dispatch.
     65  *
     66  ****************************************************************************/
     67 
     68 #include <dev/raidframe/raidframevar.h>
     69 
     70 #include "rf_threadstuff.h"
     71 #include "rf_raid.h"
     72 #include "rf_diskqueue.h"
     73 #include "rf_alloclist.h"
     74 #include "rf_acctrace.h"
     75 #include "rf_etimer.h"
     76 #include "rf_general.h"
     77 #include "rf_freelist.h"
     78 #include "rf_debugprint.h"
     79 #include "rf_shutdown.h"
     80 #include "rf_cvscan.h"
     81 #include "rf_sstf.h"
     82 #include "rf_fifo.h"
     83 #include "rf_kintf.h"
     84 
     85 static int init_dqd(RF_DiskQueueData_t *);
     86 static void clean_dqd(RF_DiskQueueData_t *);
     87 static void rf_ShutdownDiskQueueSystem(void *);
     88 
     89 #define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     90 #define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     91 #define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
     92 
     93 /*****************************************************************************
     94  *
     95  * the disk queue switch defines all the functions used in the
     96  * different queueing disciplines queue ID, init routine, enqueue
     97  * routine, dequeue routine
     98  *
     99  ****************************************************************************/
    100 
    101 static RF_DiskQueueSW_t diskqueuesw[] = {
    102 	{"fifo",		/* FIFO */
    103 		rf_FifoCreate,
    104 		rf_FifoEnqueue,
    105 		rf_FifoDequeue,
    106 		rf_FifoPeek,
    107 	rf_FifoPromote},
    108 
    109 	{"cvscan",		/* cvscan */
    110 		rf_CvscanCreate,
    111 		rf_CvscanEnqueue,
    112 		rf_CvscanDequeue,
    113 		rf_CvscanPeek,
    114 	rf_CvscanPromote},
    115 
    116 	{"sstf",		/* shortest seek time first */
    117 		rf_SstfCreate,
    118 		rf_SstfEnqueue,
    119 		rf_SstfDequeue,
    120 		rf_SstfPeek,
    121 	rf_SstfPromote},
    122 
    123 	{"scan",		/* SCAN (two-way elevator) */
    124 		rf_ScanCreate,
    125 		rf_SstfEnqueue,
    126 		rf_ScanDequeue,
    127 		rf_ScanPeek,
    128 	rf_SstfPromote},
    129 
    130 	{"cscan",		/* CSCAN (one-way elevator) */
    131 		rf_CscanCreate,
    132 		rf_SstfEnqueue,
    133 		rf_CscanDequeue,
    134 		rf_CscanPeek,
    135 	rf_SstfPromote},
    136 
    137 };
    138 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
    139 
    140 static RF_FreeList_t *rf_dqd_freelist;
    141 
    142 #define RF_MAX_FREE_DQD 256
    143 #define RF_DQD_INC       16
    144 #define RF_DQD_INITIAL   64
    145 
    146 #include <sys/buf.h>
    147 
    148 static int
    149 init_dqd(dqd)
    150 	RF_DiskQueueData_t *dqd;
    151 {
    152 
    153 	dqd->bp = (struct buf *) malloc(sizeof(struct buf),
    154 					M_RAIDFRAME, M_NOWAIT);
    155 	if (dqd->bp == NULL) {
    156 		return (ENOMEM);
    157 	}
    158 	memset(dqd->bp, 0, sizeof(struct buf));	/* if you don't do it, nobody
    159 						 * else will.. */
    160 	return (0);
    161 }
    162 
    163 static void
    164 clean_dqd(dqd)
    165 	RF_DiskQueueData_t *dqd;
    166 {
    167 	free(dqd->bp, M_RAIDFRAME);
    168 }
    169 /* configures a single disk queue */
    170 
    171 int
    172 rf_ConfigureDiskQueue(
    173       RF_Raid_t * raidPtr,
    174       RF_DiskQueue_t * diskqueue,
    175       RF_RowCol_t r,		/* row & col -- debug only.  BZZT not any
    176 				 * more... */
    177       RF_RowCol_t c,
    178       RF_DiskQueueSW_t * p,
    179       RF_SectorCount_t sectPerDisk,
    180       dev_t dev,
    181       int maxOutstanding,
    182       RF_ShutdownList_t ** listp,
    183       RF_AllocListElem_t * clList)
    184 {
    185 	int     rc;
    186 
    187 	diskqueue->row = r;
    188 	diskqueue->col = c;
    189 	diskqueue->qPtr = p;
    190 	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
    191 	diskqueue->dev = dev;
    192 	diskqueue->numOutstanding = 0;
    193 	diskqueue->queueLength = 0;
    194 	diskqueue->maxOutstanding = maxOutstanding;
    195 	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
    196 	diskqueue->nextLockingOp = NULL;
    197 	diskqueue->unlockingOp = NULL;
    198 	diskqueue->numWaiting = 0;
    199 	diskqueue->flags = 0;
    200 	diskqueue->raidPtr = raidPtr;
    201 	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
    202 	rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
    203 	if (rc) {
    204 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
    205 		    __LINE__, rc);
    206 		return (rc);
    207 	}
    208 	rc = rf_create_managed_cond(listp, &diskqueue->cond);
    209 	if (rc) {
    210 		RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
    211 		    __LINE__, rc);
    212 		return (rc);
    213 	}
    214 	return (0);
    215 }
    216 
    217 static void
    218 rf_ShutdownDiskQueueSystem(ignored)
    219 	void   *ignored;
    220 {
    221 	RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
    222 }
    223 
    224 int
    225 rf_ConfigureDiskQueueSystem(listp)
    226 	RF_ShutdownList_t **listp;
    227 {
    228 	int     rc;
    229 
    230 	RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
    231 	    RF_DQD_INC, sizeof(RF_DiskQueueData_t));
    232 	if (rf_dqd_freelist == NULL)
    233 		return (ENOMEM);
    234 	rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
    235 	if (rc) {
    236 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
    237 		    __FILE__, __LINE__, rc);
    238 		rf_ShutdownDiskQueueSystem(NULL);
    239 		return (rc);
    240 	}
    241 	RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
    242 	    (RF_DiskQueueData_t *), init_dqd);
    243 	return (0);
    244 }
    245 
    246 int
    247 rf_ConfigureDiskQueues(
    248     RF_ShutdownList_t ** listp,
    249     RF_Raid_t * raidPtr,
    250     RF_Config_t * cfgPtr)
    251 {
    252 	RF_DiskQueue_t **diskQueues, *spareQueues;
    253 	RF_DiskQueueSW_t *p;
    254 	RF_RowCol_t r, c;
    255 	int     rc, i;
    256 
    257 	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
    258 
    259 	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
    260 		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
    261 			p = &diskqueuesw[i];
    262 			break;
    263 		}
    264 	}
    265 	if (p == NULL) {
    266 		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
    267 		p = &diskqueuesw[0];
    268 	}
    269 	raidPtr->qType = p;
    270 	RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
    271 	if (diskQueues == NULL) {
    272 		return (ENOMEM);
    273 	}
    274 	raidPtr->Queues = diskQueues;
    275 	for (r = 0; r < raidPtr->numRow; r++) {
    276 		RF_CallocAndAdd(diskQueues[r], raidPtr->numCol +
    277 				 ((r == 0) ? RF_MAXSPARE : 0),
    278 				sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
    279 				raidPtr->cleanupList);
    280 		if (diskQueues[r] == NULL)
    281 			return (ENOMEM);
    282 		for (c = 0; c < raidPtr->numCol; c++) {
    283 			rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[r][c],
    284 						   r, c, p,
    285 						   raidPtr->sectorsPerDisk,
    286 						   raidPtr->Disks[r][c].dev,
    287 						   cfgPtr->maxOutstandingDiskReqs,
    288 						   listp, raidPtr->cleanupList);
    289 			if (rc)
    290 				return (rc);
    291 		}
    292 	}
    293 
    294 	spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
    295 	for (r = 0; r < raidPtr->numSpare; r++) {
    296 		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
    297 		    0, raidPtr->numCol + r, p,
    298 		    raidPtr->sectorsPerDisk,
    299 		    raidPtr->Disks[0][raidPtr->numCol + r].dev,
    300 		    cfgPtr->maxOutstandingDiskReqs, listp,
    301 		    raidPtr->cleanupList);
    302 		if (rc)
    303 			return (rc);
    304 	}
    305 	return (0);
    306 }
    307 /* Enqueue a disk I/O
    308  *
    309  * Unfortunately, we have to do things differently in the different
    310  * environments (simulator, user-level, kernel).
    311  * At user level, all I/O is blocking, so we have 1 or more threads/disk
    312  * and the thread that enqueues is different from the thread that dequeues.
    313  * In the kernel, I/O is non-blocking and so we'd like to have multiple
    314  * I/Os outstanding on the physical disks when possible.
    315  *
    316  * when any request arrives at a queue, we have two choices:
    317  *    dispatch it to the lower levels
    318  *    queue it up
    319  *
    320  * kernel rules for when to do what:
    321  *    locking request:  queue empty => dispatch and lock queue,
    322  *                      else queue it
    323  *    unlocking req  :  always dispatch it
    324  *    normal req     :  queue empty => dispatch it & set priority
    325  *                      queue not full & priority is ok => dispatch it
    326  *                      else queue it
    327  *
    328  * user-level rules:
    329  *    always enqueue.  In the special case of an unlocking op, enqueue
    330  *    in a special way that will cause the unlocking op to be the next
    331  *    thing dequeued.
    332  *
    333  * simulator rules:
    334  *    Do the same as at user level, with the sleeps and wakeups suppressed.
    335  */
    336 void
    337 rf_DiskIOEnqueue(queue, req, pri)
    338 	RF_DiskQueue_t *queue;
    339 	RF_DiskQueueData_t *req;
    340 	int     pri;
    341 {
    342 	RF_ETIMER_START(req->qtime);
    343 	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
    344 	req->priority = pri;
    345 
    346 	if (rf_queueDebug && (req->numSector == 0)) {
    347 		printf("Warning: Enqueueing zero-sector access\n");
    348 	}
    349 	/*
    350          * kernel
    351          */
    352 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    353 	/* locking request */
    354 	if (RF_LOCKING_REQ(req)) {
    355 		if (RF_QUEUE_EMPTY(queue)) {
    356 			Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
    357 			RF_LOCK_QUEUE(queue);
    358 			rf_DispatchKernelIO(queue, req);
    359 		} else {
    360 			queue->queueLength++;	/* increment count of number
    361 						 * of requests waiting in this
    362 						 * queue */
    363 			Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
    364 			req->queue = (void *) queue;
    365 			(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    366 		}
    367 	}
    368 	/* unlocking request */
    369 	else
    370 		if (RF_UNLOCKING_REQ(req)) {	/* we'll do the actual unlock
    371 						 * when this I/O completes */
    372 			Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
    373 			RF_ASSERT(RF_QUEUE_LOCKED(queue));
    374 			rf_DispatchKernelIO(queue, req);
    375 		}
    376 	/* normal request */
    377 		else
    378 			if (RF_OK_TO_DISPATCH(queue, req)) {
    379 				Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
    380 				rf_DispatchKernelIO(queue, req);
    381 			} else {
    382 				queue->queueLength++;	/* increment count of
    383 							 * number of requests
    384 							 * waiting in this queue */
    385 				Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
    386 				req->queue = (void *) queue;
    387 				(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    388 			}
    389 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    390 }
    391 
    392 
    393 /* get the next set of I/Os started, kernel version only */
    394 void
    395 rf_DiskIOComplete(queue, req, status)
    396 	RF_DiskQueue_t *queue;
    397 	RF_DiskQueueData_t *req;
    398 	int     status;
    399 {
    400 	int     done = 0;
    401 
    402 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    403 
    404 	/* unlock the queue: (1) after an unlocking req completes (2) after a
    405 	 * locking req fails */
    406 	if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
    407 		Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
    408 		RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
    409 		RF_UNLOCK_QUEUE(queue);
    410 	}
    411 	queue->numOutstanding--;
    412 	RF_ASSERT(queue->numOutstanding >= 0);
    413 
    414 	/* dispatch requests to the disk until we find one that we can't. */
    415 	/* no reason to continue once we've filled up the queue */
    416 	/* no reason to even start if the queue is locked */
    417 
    418 	while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
    419 		if (queue->nextLockingOp) {
    420 			req = queue->nextLockingOp;
    421 			queue->nextLockingOp = NULL;
    422 			Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
    423 		} else {
    424 			req = (queue->qPtr->Dequeue) (queue->qHdr);
    425 			if (req != NULL) {
    426 				Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
    427 			} else {
    428 				Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
    429 			}
    430 		}
    431 		if (req) {
    432 			queue->queueLength--;	/* decrement count of number
    433 						 * of requests waiting in this
    434 						 * queue */
    435 			RF_ASSERT(queue->queueLength >= 0);
    436 		}
    437 		if (!req)
    438 			done = 1;
    439 		else
    440 			if (RF_LOCKING_REQ(req)) {
    441 				if (RF_QUEUE_EMPTY(queue)) {	/* dispatch it */
    442 					Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
    443 					RF_LOCK_QUEUE(queue);
    444 					rf_DispatchKernelIO(queue, req);
    445 					done = 1;
    446 				} else {	/* put it aside to wait for
    447 						 * the queue to drain */
    448 					Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
    449 					RF_ASSERT(queue->nextLockingOp == NULL);
    450 					queue->nextLockingOp = req;
    451 					done = 1;
    452 				}
    453 			} else
    454 				if (RF_UNLOCKING_REQ(req)) {	/* should not happen:
    455 								 * unlocking ops should
    456 								 * not get queued */
    457 					RF_ASSERT(RF_QUEUE_LOCKED(queue));	/* support it anyway for
    458 										 * the future */
    459 					Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
    460 					rf_DispatchKernelIO(queue, req);
    461 					done = 1;
    462 				} else
    463 					if (RF_OK_TO_DISPATCH(queue, req)) {
    464 						Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
    465 						rf_DispatchKernelIO(queue, req);
    466 					} else {	/* we can't dispatch it,
    467 							 * so just re-enqueue
    468 							 * it.  */
    469 						/* potential trouble here if
    470 						 * disk queues batch reqs */
    471 						Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
    472 						queue->queueLength++;
    473 						(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
    474 						done = 1;
    475 					}
    476 	}
    477 
    478 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    479 }
    480 /* promotes accesses tagged with the given parityStripeID from low priority
    481  * to normal priority.  This promotion is optional, meaning that a queue
    482  * need not implement it.  If there is no promotion routine associated with
    483  * a queue, this routine does nothing and returns -1.
    484  */
    485 int
    486 rf_DiskIOPromote(queue, parityStripeID, which_ru)
    487 	RF_DiskQueue_t *queue;
    488 	RF_StripeNum_t parityStripeID;
    489 	RF_ReconUnitNum_t which_ru;
    490 {
    491 	int     retval;
    492 
    493 	if (!queue->qPtr->Promote)
    494 		return (-1);
    495 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    496 	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
    497 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    498 	return (retval);
    499 }
    500 
    501 RF_DiskQueueData_t *
    502 rf_CreateDiskQueueData(
    503     RF_IoType_t typ,
    504     RF_SectorNum_t ssect,
    505     RF_SectorCount_t nsect,
    506     caddr_t buf,
    507     RF_StripeNum_t parityStripeID,
    508     RF_ReconUnitNum_t which_ru,
    509     int (*wakeF) (void *, int),
    510     void *arg,
    511     RF_DiskQueueData_t * next,
    512     RF_AccTraceEntry_t * tracerec,
    513     void *raidPtr,
    514     RF_DiskQueueDataFlags_t flags,
    515     void *kb_proc)
    516 {
    517 	RF_DiskQueueData_t *p;
    518 
    519 	RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
    520 
    521 	p->sectorOffset = ssect + rf_protectedSectors;
    522 	p->numSector = nsect;
    523 	p->type = typ;
    524 	p->buf = buf;
    525 	p->parityStripeID = parityStripeID;
    526 	p->which_ru = which_ru;
    527 	p->CompleteFunc = wakeF;
    528 	p->argument = arg;
    529 	p->next = next;
    530 	p->tracerec = tracerec;
    531 	p->priority = RF_IO_NORMAL_PRIORITY;
    532 	p->AuxFunc = NULL;
    533 	p->buf2 = NULL;
    534 	p->raidPtr = raidPtr;
    535 	p->flags = flags;
    536 	p->b_proc = kb_proc;
    537 	return (p);
    538 }
    539 
    540 RF_DiskQueueData_t *
    541 rf_CreateDiskQueueDataFull(
    542     RF_IoType_t typ,
    543     RF_SectorNum_t ssect,
    544     RF_SectorCount_t nsect,
    545     caddr_t buf,
    546     RF_StripeNum_t parityStripeID,
    547     RF_ReconUnitNum_t which_ru,
    548     int (*wakeF) (void *, int),
    549     void *arg,
    550     RF_DiskQueueData_t * next,
    551     RF_AccTraceEntry_t * tracerec,
    552     int priority,
    553     int (*AuxFunc) (void *,...),
    554     caddr_t buf2,
    555     void *raidPtr,
    556     RF_DiskQueueDataFlags_t flags,
    557     void *kb_proc)
    558 {
    559 	RF_DiskQueueData_t *p;
    560 
    561 	RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
    562 
    563 	p->sectorOffset = ssect + rf_protectedSectors;
    564 	p->numSector = nsect;
    565 	p->type = typ;
    566 	p->buf = buf;
    567 	p->parityStripeID = parityStripeID;
    568 	p->which_ru = which_ru;
    569 	p->CompleteFunc = wakeF;
    570 	p->argument = arg;
    571 	p->next = next;
    572 	p->tracerec = tracerec;
    573 	p->priority = priority;
    574 	p->AuxFunc = AuxFunc;
    575 	p->buf2 = buf2;
    576 	p->raidPtr = raidPtr;
    577 	p->flags = flags;
    578 	p->b_proc = kb_proc;
    579 	return (p);
    580 }
    581 
    582 void
    583 rf_FreeDiskQueueData(p)
    584 	RF_DiskQueueData_t *p;
    585 {
    586 	RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
    587 }
    588