Home | History | Annotate | Line # | Download | only in raidframe
rf_diskqueue.c revision 1.21
      1 /*	$NetBSD: rf_diskqueue.c,v 1.21 2002/09/17 02:55:12 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************
     30  *
     31  * rf_diskqueue.c -- higher-level disk queue code
     32  *
     33  * the routines here are a generic wrapper around the actual queueing
     34  * routines.  The code here implements thread scheduling, synchronization,
     35  * and locking ops (see below) on top of the lower-level queueing code.
     36  *
     37  * to support atomic RMW, we implement "locking operations".  When a
     38  * locking op is dispatched to the lower levels of the driver, the
     39  * queue is locked, and no further I/Os are dispatched until the queue
     40  * receives & completes a corresponding "unlocking operation".  This
     41  * code relies on the higher layers to guarantee that a locking op
     42  * will always be eventually followed by an unlocking op.  The model
     43  * is that the higher layers are structured so locking and unlocking
     44  * ops occur in pairs, i.e.  an unlocking op cannot be generated until
     45  * after a locking op reports completion.  There is no good way to
     46  * check to see that an unlocking op "corresponds" to the op that
     47  * currently has the queue locked, so we make no such attempt.  Since
     48  * by definition there can be only one locking op outstanding on a
     49  * disk, this should not be a problem.
     50  *
     51  * In the kernel, we allow multiple I/Os to be concurrently dispatched
     52  * to the disk driver.  In order to support locking ops in this
     53  * environment, when we decide to do a locking op, we stop dispatching
     54  * new I/Os and wait until all dispatched I/Os have completed before
     55  * dispatching the locking op.
     56  *
     57  * Unfortunately, the code is different in the 3 different operating
     58  * states (user level, kernel, simulator).  In the kernel, I/O is
     59  * non-blocking, and we have no disk threads to dispatch for us.
     60  * Therefore, we have to dispatch new I/Os to the scsi driver at the
     61  * time of enqueue, and also at the time of completion.  At user
     62  * level, I/O is blocking, and so only the disk threads may dispatch
     63  * I/Os.  Thus at user level, all we can do at enqueue time is enqueue
     64  * and wake up the disk thread to do the dispatch.
     65  *
     66  ****************************************************************************/
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.21 2002/09/17 02:55:12 oster Exp $");
     70 
     71 #include <dev/raidframe/raidframevar.h>
     72 
     73 #include "rf_threadstuff.h"
     74 #include "rf_raid.h"
     75 #include "rf_diskqueue.h"
     76 #include "rf_alloclist.h"
     77 #include "rf_acctrace.h"
     78 #include "rf_etimer.h"
     79 #include "rf_general.h"
     80 #include "rf_freelist.h"
     81 #include "rf_debugprint.h"
     82 #include "rf_shutdown.h"
     83 #include "rf_cvscan.h"
     84 #include "rf_sstf.h"
     85 #include "rf_fifo.h"
     86 #include "rf_kintf.h"
     87 
     88 static int init_dqd(RF_DiskQueueData_t *);
     89 static void clean_dqd(RF_DiskQueueData_t *);
     90 static void rf_ShutdownDiskQueueSystem(void *);
     91 
     92 #ifndef RF_DEBUG_DISKQUEUE
     93 #define RF_DEBUG_DISKQUEUE 0
     94 #endif
     95 
     96 #if RF_DEBUG_DISKQUEUE
     97 #define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     98 #define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     99 #define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
    100 #else
    101 #define Dprintf1(s,a)
    102 #define Dprintf2(s,a,b)
    103 #define Dprintf3(s,a,b,c)
    104 #endif
    105 
    106 /*****************************************************************************
    107  *
    108  * the disk queue switch defines all the functions used in the
    109  * different queueing disciplines queue ID, init routine, enqueue
    110  * routine, dequeue routine
    111  *
    112  ****************************************************************************/
    113 
    114 static RF_DiskQueueSW_t diskqueuesw[] = {
    115 	{"fifo",		/* FIFO */
    116 		rf_FifoCreate,
    117 		rf_FifoEnqueue,
    118 		rf_FifoDequeue,
    119 		rf_FifoPeek,
    120 	rf_FifoPromote},
    121 
    122 	{"cvscan",		/* cvscan */
    123 		rf_CvscanCreate,
    124 		rf_CvscanEnqueue,
    125 		rf_CvscanDequeue,
    126 		rf_CvscanPeek,
    127 	rf_CvscanPromote},
    128 
    129 	{"sstf",		/* shortest seek time first */
    130 		rf_SstfCreate,
    131 		rf_SstfEnqueue,
    132 		rf_SstfDequeue,
    133 		rf_SstfPeek,
    134 	rf_SstfPromote},
    135 
    136 	{"scan",		/* SCAN (two-way elevator) */
    137 		rf_ScanCreate,
    138 		rf_SstfEnqueue,
    139 		rf_ScanDequeue,
    140 		rf_ScanPeek,
    141 	rf_SstfPromote},
    142 
    143 	{"cscan",		/* CSCAN (one-way elevator) */
    144 		rf_CscanCreate,
    145 		rf_SstfEnqueue,
    146 		rf_CscanDequeue,
    147 		rf_CscanPeek,
    148 	rf_SstfPromote},
    149 
    150 };
    151 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
    152 
    153 static RF_FreeList_t *rf_dqd_freelist;
    154 
    155 #define RF_MAX_FREE_DQD 256
    156 #define RF_DQD_INC       16
    157 #define RF_DQD_INITIAL   64
    158 
    159 #include <sys/buf.h>
    160 
    161 static int
    162 init_dqd(dqd)
    163 	RF_DiskQueueData_t *dqd;
    164 {
    165 
    166 	dqd->bp = (struct buf *) malloc(sizeof(struct buf),
    167 					M_RAIDFRAME, M_NOWAIT);
    168 	if (dqd->bp == NULL) {
    169 		return (ENOMEM);
    170 	}
    171 	memset(dqd->bp, 0, sizeof(struct buf));	/* if you don't do it, nobody
    172 						 * else will.. */
    173 	return (0);
    174 }
    175 
    176 static void
    177 clean_dqd(dqd)
    178 	RF_DiskQueueData_t *dqd;
    179 {
    180 	free(dqd->bp, M_RAIDFRAME);
    181 }
    182 /* configures a single disk queue */
    183 
    184 int
    185 rf_ConfigureDiskQueue(
    186       RF_Raid_t * raidPtr,
    187       RF_DiskQueue_t * diskqueue,
    188       RF_RowCol_t r,		/* row & col -- debug only.  BZZT not any
    189 				 * more... */
    190       RF_RowCol_t c,
    191       RF_DiskQueueSW_t * p,
    192       RF_SectorCount_t sectPerDisk,
    193       dev_t dev,
    194       int maxOutstanding,
    195       RF_ShutdownList_t ** listp,
    196       RF_AllocListElem_t * clList)
    197 {
    198 	int     rc;
    199 
    200 	diskqueue->row = r;
    201 	diskqueue->col = c;
    202 	diskqueue->qPtr = p;
    203 	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
    204 	diskqueue->dev = dev;
    205 	diskqueue->numOutstanding = 0;
    206 	diskqueue->queueLength = 0;
    207 	diskqueue->maxOutstanding = maxOutstanding;
    208 	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
    209 	diskqueue->nextLockingOp = NULL;
    210 	diskqueue->numWaiting = 0;
    211 	diskqueue->flags = 0;
    212 	diskqueue->raidPtr = raidPtr;
    213 	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
    214 	rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
    215 	if (rc) {
    216 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    217 		return (rc);
    218 	}
    219 	rc = rf_create_managed_cond(listp, &diskqueue->cond);
    220 	if (rc) {
    221 		rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
    222 		return (rc);
    223 	}
    224 	return (0);
    225 }
    226 
    227 static void
    228 rf_ShutdownDiskQueueSystem(ignored)
    229 	void   *ignored;
    230 {
    231 	RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
    232 }
    233 
    234 int
    235 rf_ConfigureDiskQueueSystem(listp)
    236 	RF_ShutdownList_t **listp;
    237 {
    238 	int     rc;
    239 
    240 	RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
    241 	    RF_DQD_INC, sizeof(RF_DiskQueueData_t));
    242 	if (rf_dqd_freelist == NULL)
    243 		return (ENOMEM);
    244 	rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
    245 	if (rc) {
    246 		rf_print_unable_to_add_shutdown( __FILE__, __LINE__, rc);
    247 		rf_ShutdownDiskQueueSystem(NULL);
    248 		return (rc);
    249 	}
    250 	RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
    251 	    (RF_DiskQueueData_t *), init_dqd);
    252 	return (0);
    253 }
    254 
    255 int
    256 rf_ConfigureDiskQueues(
    257     RF_ShutdownList_t ** listp,
    258     RF_Raid_t * raidPtr,
    259     RF_Config_t * cfgPtr)
    260 {
    261 	RF_DiskQueue_t **diskQueues, *spareQueues;
    262 	RF_DiskQueueSW_t *p;
    263 	RF_RowCol_t r, c;
    264 	int     rc, i;
    265 
    266 	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
    267 
    268 	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
    269 		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
    270 			p = &diskqueuesw[i];
    271 			break;
    272 		}
    273 	}
    274 	if (p == NULL) {
    275 		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
    276 		p = &diskqueuesw[0];
    277 	}
    278 	raidPtr->qType = p;
    279 	RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
    280 	if (diskQueues == NULL) {
    281 		return (ENOMEM);
    282 	}
    283 	raidPtr->Queues = diskQueues;
    284 	for (r = 0; r < raidPtr->numRow; r++) {
    285 		RF_CallocAndAdd(diskQueues[r], raidPtr->numCol +
    286 				 ((r == 0) ? RF_MAXSPARE : 0),
    287 				sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
    288 				raidPtr->cleanupList);
    289 		if (diskQueues[r] == NULL)
    290 			return (ENOMEM);
    291 		for (c = 0; c < raidPtr->numCol; c++) {
    292 			rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[r][c],
    293 						   r, c, p,
    294 						   raidPtr->sectorsPerDisk,
    295 						   raidPtr->Disks[r][c].dev,
    296 						   cfgPtr->maxOutstandingDiskReqs,
    297 						   listp, raidPtr->cleanupList);
    298 			if (rc)
    299 				return (rc);
    300 		}
    301 	}
    302 
    303 	spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
    304 	for (r = 0; r < raidPtr->numSpare; r++) {
    305 		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
    306 		    0, raidPtr->numCol + r, p,
    307 		    raidPtr->sectorsPerDisk,
    308 		    raidPtr->Disks[0][raidPtr->numCol + r].dev,
    309 		    cfgPtr->maxOutstandingDiskReqs, listp,
    310 		    raidPtr->cleanupList);
    311 		if (rc)
    312 			return (rc);
    313 	}
    314 	return (0);
    315 }
    316 /* Enqueue a disk I/O
    317  *
    318  * Unfortunately, we have to do things differently in the different
    319  * environments (simulator, user-level, kernel).
    320  * At user level, all I/O is blocking, so we have 1 or more threads/disk
    321  * and the thread that enqueues is different from the thread that dequeues.
    322  * In the kernel, I/O is non-blocking and so we'd like to have multiple
    323  * I/Os outstanding on the physical disks when possible.
    324  *
    325  * when any request arrives at a queue, we have two choices:
    326  *    dispatch it to the lower levels
    327  *    queue it up
    328  *
    329  * kernel rules for when to do what:
    330  *    locking request:  queue empty => dispatch and lock queue,
    331  *                      else queue it
    332  *    unlocking req  :  always dispatch it
    333  *    normal req     :  queue empty => dispatch it & set priority
    334  *                      queue not full & priority is ok => dispatch it
    335  *                      else queue it
    336  *
    337  * user-level rules:
    338  *    always enqueue.  In the special case of an unlocking op, enqueue
    339  *    in a special way that will cause the unlocking op to be the next
    340  *    thing dequeued.
    341  *
    342  * simulator rules:
    343  *    Do the same as at user level, with the sleeps and wakeups suppressed.
    344  */
    345 void
    346 rf_DiskIOEnqueue(queue, req, pri)
    347 	RF_DiskQueue_t *queue;
    348 	RF_DiskQueueData_t *req;
    349 	int     pri;
    350 {
    351 	RF_ETIMER_START(req->qtime);
    352 	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
    353 	req->priority = pri;
    354 
    355 #if RF_DEBUG_DISKQUEUE
    356 	if (rf_queueDebug && (req->numSector == 0)) {
    357 		printf("Warning: Enqueueing zero-sector access\n");
    358 	}
    359 #endif
    360 	/*
    361          * kernel
    362          */
    363 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    364 	/* locking request */
    365 	if (RF_LOCKING_REQ(req)) {
    366 		if (RF_QUEUE_EMPTY(queue)) {
    367 			Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
    368 			RF_LOCK_QUEUE(queue);
    369 			rf_DispatchKernelIO(queue, req);
    370 		} else {
    371 			queue->queueLength++;	/* increment count of number
    372 						 * of requests waiting in this
    373 						 * queue */
    374 			Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
    375 			req->queue = (void *) queue;
    376 			(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    377 		}
    378 	}
    379 	/* unlocking request */
    380 	else
    381 		if (RF_UNLOCKING_REQ(req)) {	/* we'll do the actual unlock
    382 						 * when this I/O completes */
    383 			Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
    384 			RF_ASSERT(RF_QUEUE_LOCKED(queue));
    385 			rf_DispatchKernelIO(queue, req);
    386 		}
    387 	/* normal request */
    388 		else
    389 			if (RF_OK_TO_DISPATCH(queue, req)) {
    390 				Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
    391 				rf_DispatchKernelIO(queue, req);
    392 			} else {
    393 				queue->queueLength++;	/* increment count of
    394 							 * number of requests
    395 							 * waiting in this queue */
    396 				Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
    397 				req->queue = (void *) queue;
    398 				(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    399 			}
    400 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    401 }
    402 
    403 
    404 /* get the next set of I/Os started, kernel version only */
    405 void
    406 rf_DiskIOComplete(queue, req, status)
    407 	RF_DiskQueue_t *queue;
    408 	RF_DiskQueueData_t *req;
    409 	int     status;
    410 {
    411 	int     done = 0;
    412 
    413 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    414 
    415 	/* unlock the queue: (1) after an unlocking req completes (2) after a
    416 	 * locking req fails */
    417 	if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
    418 		Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
    419 		RF_ASSERT(RF_QUEUE_LOCKED(queue));
    420 		RF_UNLOCK_QUEUE(queue);
    421 	}
    422 	queue->numOutstanding--;
    423 	RF_ASSERT(queue->numOutstanding >= 0);
    424 
    425 	/* dispatch requests to the disk until we find one that we can't. */
    426 	/* no reason to continue once we've filled up the queue */
    427 	/* no reason to even start if the queue is locked */
    428 
    429 	while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
    430 		if (queue->nextLockingOp) {
    431 			req = queue->nextLockingOp;
    432 			queue->nextLockingOp = NULL;
    433 			Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
    434 		} else {
    435 			req = (queue->qPtr->Dequeue) (queue->qHdr);
    436 			if (req != NULL) {
    437 				Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
    438 			} else {
    439 				Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
    440 			}
    441 		}
    442 		if (req) {
    443 			queue->queueLength--;	/* decrement count of number
    444 						 * of requests waiting in this
    445 						 * queue */
    446 			RF_ASSERT(queue->queueLength >= 0);
    447 		}
    448 		if (!req)
    449 			done = 1;
    450 		else
    451 			if (RF_LOCKING_REQ(req)) {
    452 				if (RF_QUEUE_EMPTY(queue)) {	/* dispatch it */
    453 					Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
    454 					RF_LOCK_QUEUE(queue);
    455 					rf_DispatchKernelIO(queue, req);
    456 					done = 1;
    457 				} else {	/* put it aside to wait for
    458 						 * the queue to drain */
    459 					Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
    460 					RF_ASSERT(queue->nextLockingOp == NULL);
    461 					queue->nextLockingOp = req;
    462 					done = 1;
    463 				}
    464 			} else
    465 				if (RF_UNLOCKING_REQ(req)) {	/* should not happen:
    466 								 * unlocking ops should
    467 								 * not get queued */
    468 					RF_ASSERT(RF_QUEUE_LOCKED(queue));	/* support it anyway for
    469 										 * the future */
    470 					Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
    471 					rf_DispatchKernelIO(queue, req);
    472 					done = 1;
    473 				} else
    474 					if (RF_OK_TO_DISPATCH(queue, req)) {
    475 						Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
    476 						rf_DispatchKernelIO(queue, req);
    477 					} else {	/* we can't dispatch it,
    478 							 * so just re-enqueue
    479 							 * it.  */
    480 						/* potential trouble here if
    481 						 * disk queues batch reqs */
    482 						Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
    483 						queue->queueLength++;
    484 						(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
    485 						done = 1;
    486 					}
    487 	}
    488 
    489 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    490 }
    491 /* promotes accesses tagged with the given parityStripeID from low priority
    492  * to normal priority.  This promotion is optional, meaning that a queue
    493  * need not implement it.  If there is no promotion routine associated with
    494  * a queue, this routine does nothing and returns -1.
    495  */
    496 int
    497 rf_DiskIOPromote(queue, parityStripeID, which_ru)
    498 	RF_DiskQueue_t *queue;
    499 	RF_StripeNum_t parityStripeID;
    500 	RF_ReconUnitNum_t which_ru;
    501 {
    502 	int     retval;
    503 
    504 	if (!queue->qPtr->Promote)
    505 		return (-1);
    506 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    507 	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
    508 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    509 	return (retval);
    510 }
    511 
    512 RF_DiskQueueData_t *
    513 rf_CreateDiskQueueData(
    514     RF_IoType_t typ,
    515     RF_SectorNum_t ssect,
    516     RF_SectorCount_t nsect,
    517     caddr_t buf,
    518     RF_StripeNum_t parityStripeID,
    519     RF_ReconUnitNum_t which_ru,
    520     int (*wakeF) (void *, int),
    521     void *arg,
    522     RF_DiskQueueData_t * next,
    523     RF_AccTraceEntry_t * tracerec,
    524     void *raidPtr,
    525     RF_DiskQueueDataFlags_t flags,
    526     void *kb_proc)
    527 {
    528 	RF_DiskQueueData_t *p;
    529 
    530 	RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
    531 
    532 	p->sectorOffset = ssect + rf_protectedSectors;
    533 	p->numSector = nsect;
    534 	p->type = typ;
    535 	p->buf = buf;
    536 	p->parityStripeID = parityStripeID;
    537 	p->which_ru = which_ru;
    538 	p->CompleteFunc = wakeF;
    539 	p->argument = arg;
    540 	p->next = next;
    541 	p->tracerec = tracerec;
    542 	p->priority = RF_IO_NORMAL_PRIORITY;
    543 	p->raidPtr = raidPtr;
    544 	p->flags = flags;
    545 	p->b_proc = kb_proc;
    546 	return (p);
    547 }
    548 
    549 void
    550 rf_FreeDiskQueueData(p)
    551 	RF_DiskQueueData_t *p;
    552 {
    553 	RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
    554 }
    555