Home | History | Annotate | Line # | Download | only in raidframe
rf_diskqueue.c revision 1.24
      1 /*	$NetBSD: rf_diskqueue.c,v 1.24 2003/12/29 03:33:47 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************
     30  *
     31  * rf_diskqueue.c -- higher-level disk queue code
     32  *
     33  * the routines here are a generic wrapper around the actual queueing
     34  * routines.  The code here implements thread scheduling, synchronization,
     35  * and locking ops (see below) on top of the lower-level queueing code.
     36  *
     37  * to support atomic RMW, we implement "locking operations".  When a
     38  * locking op is dispatched to the lower levels of the driver, the
     39  * queue is locked, and no further I/Os are dispatched until the queue
     40  * receives & completes a corresponding "unlocking operation".  This
     41  * code relies on the higher layers to guarantee that a locking op
     42  * will always be eventually followed by an unlocking op.  The model
     43  * is that the higher layers are structured so locking and unlocking
     44  * ops occur in pairs, i.e.  an unlocking op cannot be generated until
     45  * after a locking op reports completion.  There is no good way to
     46  * check to see that an unlocking op "corresponds" to the op that
     47  * currently has the queue locked, so we make no such attempt.  Since
     48  * by definition there can be only one locking op outstanding on a
     49  * disk, this should not be a problem.
     50  *
     51  * In the kernel, we allow multiple I/Os to be concurrently dispatched
     52  * to the disk driver.  In order to support locking ops in this
     53  * environment, when we decide to do a locking op, we stop dispatching
     54  * new I/Os and wait until all dispatched I/Os have completed before
     55  * dispatching the locking op.
     56  *
     57  * Unfortunately, the code is different in the 3 different operating
     58  * states (user level, kernel, simulator).  In the kernel, I/O is
     59  * non-blocking, and we have no disk threads to dispatch for us.
     60  * Therefore, we have to dispatch new I/Os to the scsi driver at the
     61  * time of enqueue, and also at the time of completion.  At user
     62  * level, I/O is blocking, and so only the disk threads may dispatch
     63  * I/Os.  Thus at user level, all we can do at enqueue time is enqueue
     64  * and wake up the disk thread to do the dispatch.
     65  *
     66  ****************************************************************************/
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.24 2003/12/29 03:33:47 oster Exp $");
     70 
     71 #include <dev/raidframe/raidframevar.h>
     72 
     73 #include "rf_threadstuff.h"
     74 #include "rf_raid.h"
     75 #include "rf_diskqueue.h"
     76 #include "rf_alloclist.h"
     77 #include "rf_acctrace.h"
     78 #include "rf_etimer.h"
     79 #include "rf_general.h"
     80 #include "rf_debugprint.h"
     81 #include "rf_shutdown.h"
     82 #include "rf_cvscan.h"
     83 #include "rf_sstf.h"
     84 #include "rf_fifo.h"
     85 #include "rf_kintf.h"
     86 
     87 static int init_dqd(RF_DiskQueueData_t *);
     88 static void clean_dqd(RF_DiskQueueData_t *);
     89 static void rf_ShutdownDiskQueueSystem(void *);
     90 
     91 #ifndef RF_DEBUG_DISKQUEUE
     92 #define RF_DEBUG_DISKQUEUE 0
     93 #endif
     94 
     95 #if RF_DEBUG_DISKQUEUE
     96 #define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     97 #define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     98 #define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
     99 #else
    100 #define Dprintf1(s,a)
    101 #define Dprintf2(s,a,b)
    102 #define Dprintf3(s,a,b,c)
    103 #endif
    104 
    105 /*****************************************************************************
    106  *
    107  * the disk queue switch defines all the functions used in the
    108  * different queueing disciplines queue ID, init routine, enqueue
    109  * routine, dequeue routine
    110  *
    111  ****************************************************************************/
    112 
    113 static const RF_DiskQueueSW_t diskqueuesw[] = {
    114 	{"fifo",		/* FIFO */
    115 		rf_FifoCreate,
    116 		rf_FifoEnqueue,
    117 		rf_FifoDequeue,
    118 		rf_FifoPeek,
    119 	rf_FifoPromote},
    120 
    121 	{"cvscan",		/* cvscan */
    122 		rf_CvscanCreate,
    123 		rf_CvscanEnqueue,
    124 		rf_CvscanDequeue,
    125 		rf_CvscanPeek,
    126 	rf_CvscanPromote},
    127 
    128 	{"sstf",		/* shortest seek time first */
    129 		rf_SstfCreate,
    130 		rf_SstfEnqueue,
    131 		rf_SstfDequeue,
    132 		rf_SstfPeek,
    133 	rf_SstfPromote},
    134 
    135 	{"scan",		/* SCAN (two-way elevator) */
    136 		rf_ScanCreate,
    137 		rf_SstfEnqueue,
    138 		rf_ScanDequeue,
    139 		rf_ScanPeek,
    140 	rf_SstfPromote},
    141 
    142 	{"cscan",		/* CSCAN (one-way elevator) */
    143 		rf_CscanCreate,
    144 		rf_SstfEnqueue,
    145 		rf_CscanDequeue,
    146 		rf_CscanPeek,
    147 	rf_SstfPromote},
    148 
    149 };
    150 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
    151 
    152 static struct pool rf_dqd_pool;
    153 #define RF_MAX_FREE_DQD 256
    154 #define RF_DQD_INC       16
    155 #define RF_DQD_INITIAL   64
    156 
    157 #include <sys/buf.h>
    158 
    159 static int
    160 init_dqd(dqd)
    161 	RF_DiskQueueData_t *dqd;
    162 {
    163 
    164 	dqd->bp = (struct buf *) malloc(sizeof(struct buf),
    165 					M_RAIDFRAME, M_NOWAIT);
    166 	if (dqd->bp == NULL) {
    167 		return (ENOMEM);
    168 	}
    169 	memset(dqd->bp, 0, sizeof(struct buf));	/* if you don't do it, nobody
    170 						 * else will.. */
    171 	return (0);
    172 }
    173 
    174 static void
    175 clean_dqd(dqd)
    176 	RF_DiskQueueData_t *dqd;
    177 {
    178 	free(dqd->bp, M_RAIDFRAME);
    179 }
    180 /* configures a single disk queue */
    181 
    182 int
    183 rf_ConfigureDiskQueue(
    184       RF_Raid_t * raidPtr,
    185       RF_DiskQueue_t * diskqueue,
    186       RF_RowCol_t c,
    187       const RF_DiskQueueSW_t * p,
    188       RF_SectorCount_t sectPerDisk,
    189       dev_t dev,
    190       int maxOutstanding,
    191       RF_ShutdownList_t ** listp,
    192       RF_AllocListElem_t * clList)
    193 {
    194 	int     rc;
    195 
    196 	diskqueue->col = c;
    197 	diskqueue->qPtr = p;
    198 	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
    199 	diskqueue->dev = dev;
    200 	diskqueue->numOutstanding = 0;
    201 	diskqueue->queueLength = 0;
    202 	diskqueue->maxOutstanding = maxOutstanding;
    203 	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
    204 	diskqueue->nextLockingOp = NULL;
    205 	diskqueue->numWaiting = 0;
    206 	diskqueue->flags = 0;
    207 	diskqueue->raidPtr = raidPtr;
    208 	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[c];
    209 	rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
    210 	if (rc) {
    211 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
    212 		return (rc);
    213 	}
    214 	rc = rf_create_managed_cond(listp, &diskqueue->cond);
    215 	if (rc) {
    216 		rf_print_unable_to_init_cond(__FILE__, __LINE__, rc);
    217 		return (rc);
    218 	}
    219 	return (0);
    220 }
    221 
    222 static void
    223 rf_ShutdownDiskQueueSystem(ignored)
    224 	void   *ignored;
    225 {
    226 	pool_destroy(&rf_dqd_pool);
    227 }
    228 
    229 int
    230 rf_ConfigureDiskQueueSystem(listp)
    231 	RF_ShutdownList_t **listp;
    232 {
    233 	int     rc;
    234 
    235 	pool_init(&rf_dqd_pool, sizeof(RF_DiskQueueData_t), 0, 0, 0,
    236 		  "rf_dqd_pl", NULL);
    237 	pool_sethiwat(&rf_dqd_pool, RF_MAX_FREE_DQD);
    238 	pool_prime(&rf_dqd_pool, RF_DQD_INITIAL);
    239 
    240 	rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
    241 	if (rc) {
    242 		rf_print_unable_to_add_shutdown( __FILE__, __LINE__, rc);
    243 		rf_ShutdownDiskQueueSystem(NULL);
    244 		return (rc);
    245 	}
    246 
    247 	return (0);
    248 }
    249 
    250 int
    251 rf_ConfigureDiskQueues(
    252     RF_ShutdownList_t ** listp,
    253     RF_Raid_t * raidPtr,
    254     RF_Config_t * cfgPtr)
    255 {
    256 	RF_DiskQueue_t *diskQueues, *spareQueues;
    257 	const RF_DiskQueueSW_t *p;
    258 	RF_RowCol_t r,c;
    259 	int     rc, i;
    260 
    261 	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
    262 
    263 	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
    264 		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
    265 			p = &diskqueuesw[i];
    266 			break;
    267 		}
    268 	}
    269 	if (p == NULL) {
    270 		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
    271 		p = &diskqueuesw[0];
    272 	}
    273 	raidPtr->qType = p;
    274 
    275 	RF_MallocAndAdd(diskQueues,
    276 			(raidPtr->numCol + RF_MAXSPARE) *
    277 			sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
    278 			raidPtr->cleanupList);
    279 	if (diskQueues == NULL)
    280 		return (ENOMEM);
    281 	raidPtr->Queues = diskQueues;
    282 
    283 	for (c = 0; c < raidPtr->numCol; c++) {
    284 		rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[c],
    285 					   c, p,
    286 					   raidPtr->sectorsPerDisk,
    287 					   raidPtr->Disks[c].dev,
    288 					   cfgPtr->maxOutstandingDiskReqs,
    289 					   listp, raidPtr->cleanupList);
    290 		if (rc)
    291 			return (rc);
    292 	}
    293 
    294 	spareQueues = &raidPtr->Queues[raidPtr->numCol];
    295 	for (r = 0; r < raidPtr->numSpare; r++) {
    296 		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
    297 					   raidPtr->numCol + r, p,
    298 					   raidPtr->sectorsPerDisk,
    299 					   raidPtr->Disks[raidPtr->numCol + r].dev,
    300 					   cfgPtr->maxOutstandingDiskReqs, listp,
    301 					   raidPtr->cleanupList);
    302 		if (rc)
    303 			return (rc);
    304 	}
    305 	return (0);
    306 }
    307 /* Enqueue a disk I/O
    308  *
    309  * Unfortunately, we have to do things differently in the different
    310  * environments (simulator, user-level, kernel).
    311  * At user level, all I/O is blocking, so we have 1 or more threads/disk
    312  * and the thread that enqueues is different from the thread that dequeues.
    313  * In the kernel, I/O is non-blocking and so we'd like to have multiple
    314  * I/Os outstanding on the physical disks when possible.
    315  *
    316  * when any request arrives at a queue, we have two choices:
    317  *    dispatch it to the lower levels
    318  *    queue it up
    319  *
    320  * kernel rules for when to do what:
    321  *    locking request:  queue empty => dispatch and lock queue,
    322  *                      else queue it
    323  *    unlocking req  :  always dispatch it
    324  *    normal req     :  queue empty => dispatch it & set priority
    325  *                      queue not full & priority is ok => dispatch it
    326  *                      else queue it
    327  *
    328  * user-level rules:
    329  *    always enqueue.  In the special case of an unlocking op, enqueue
    330  *    in a special way that will cause the unlocking op to be the next
    331  *    thing dequeued.
    332  *
    333  * simulator rules:
    334  *    Do the same as at user level, with the sleeps and wakeups suppressed.
    335  */
    336 void
    337 rf_DiskIOEnqueue(queue, req, pri)
    338 	RF_DiskQueue_t *queue;
    339 	RF_DiskQueueData_t *req;
    340 	int     pri;
    341 {
    342 	RF_ETIMER_START(req->qtime);
    343 	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
    344 	req->priority = pri;
    345 
    346 #if RF_DEBUG_DISKQUEUE
    347 	if (rf_queueDebug && (req->numSector == 0)) {
    348 		printf("Warning: Enqueueing zero-sector access\n");
    349 	}
    350 #endif
    351 	/*
    352          * kernel
    353          */
    354 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    355 	/* locking request */
    356 	if (RF_LOCKING_REQ(req)) {
    357 		if (RF_QUEUE_EMPTY(queue)) {
    358 			Dprintf2("Dispatching pri %d locking op to c %d (queue empty)\n", pri, queue->col);
    359 			RF_LOCK_QUEUE(queue);
    360 			rf_DispatchKernelIO(queue, req);
    361 		} else {
    362 			queue->queueLength++;	/* increment count of number
    363 						 * of requests waiting in this
    364 						 * queue */
    365 			Dprintf2("Enqueueing pri %d locking op to c %d (queue not empty)\n", pri, queue->col);
    366 			req->queue = (void *) queue;
    367 			(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    368 		}
    369 	}
    370 	/* unlocking request */
    371 	else
    372 		if (RF_UNLOCKING_REQ(req)) {	/* we'll do the actual unlock
    373 						 * when this I/O completes */
    374 			Dprintf2("Dispatching pri %d unlocking op to c %d\n", pri, queue->col);
    375 			RF_ASSERT(RF_QUEUE_LOCKED(queue));
    376 			rf_DispatchKernelIO(queue, req);
    377 		}
    378 	/* normal request */
    379 		else
    380 			if (RF_OK_TO_DISPATCH(queue, req)) {
    381 				Dprintf2("Dispatching pri %d regular op to c %d (ok to dispatch)\n", pri, queue->col);
    382 				rf_DispatchKernelIO(queue, req);
    383 			} else {
    384 				queue->queueLength++;	/* increment count of
    385 							 * number of requests
    386 							 * waiting in this queue */
    387 				Dprintf2("Enqueueing pri %d regular op to c %d (not ok to dispatch)\n", pri, queue->col);
    388 				req->queue = (void *) queue;
    389 				(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    390 			}
    391 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    392 }
    393 
    394 
    395 /* get the next set of I/Os started, kernel version only */
    396 void
    397 rf_DiskIOComplete(queue, req, status)
    398 	RF_DiskQueue_t *queue;
    399 	RF_DiskQueueData_t *req;
    400 	int     status;
    401 {
    402 	int     done = 0;
    403 
    404 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    405 
    406 	/* unlock the queue: (1) after an unlocking req completes (2) after a
    407 	 * locking req fails */
    408 	if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
    409 		Dprintf1("DiskIOComplete: unlocking queue at c %d\n", queue->col);
    410 		RF_ASSERT(RF_QUEUE_LOCKED(queue));
    411 		RF_UNLOCK_QUEUE(queue);
    412 	}
    413 	queue->numOutstanding--;
    414 	RF_ASSERT(queue->numOutstanding >= 0);
    415 
    416 	/* dispatch requests to the disk until we find one that we can't. */
    417 	/* no reason to continue once we've filled up the queue */
    418 	/* no reason to even start if the queue is locked */
    419 
    420 	while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
    421 		if (queue->nextLockingOp) {
    422 			req = queue->nextLockingOp;
    423 			queue->nextLockingOp = NULL;
    424 			Dprintf2("DiskIOComplete: a pri %d locking req was pending at c %d\n", req->priority, queue->col);
    425 		} else {
    426 			req = (queue->qPtr->Dequeue) (queue->qHdr);
    427 			if (req != NULL) {
    428 				Dprintf2("DiskIOComplete: extracting pri %d req from queue at c %d\n", req->priority, queue->col);
    429 			} else {
    430 				Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
    431 			}
    432 		}
    433 		if (req) {
    434 			queue->queueLength--;	/* decrement count of number
    435 						 * of requests waiting in this
    436 						 * queue */
    437 			RF_ASSERT(queue->queueLength >= 0);
    438 		}
    439 		if (!req)
    440 			done = 1;
    441 		else
    442 			if (RF_LOCKING_REQ(req)) {
    443 				if (RF_QUEUE_EMPTY(queue)) {	/* dispatch it */
    444 					Dprintf2("DiskIOComplete: dispatching pri %d locking req to c %d (queue empty)\n", req->priority, queue->col);
    445 					RF_LOCK_QUEUE(queue);
    446 					rf_DispatchKernelIO(queue, req);
    447 					done = 1;
    448 				} else {	/* put it aside to wait for
    449 						 * the queue to drain */
    450 					Dprintf2("DiskIOComplete: postponing pri %d locking req to c %d\n", req->priority, queue->col);
    451 					RF_ASSERT(queue->nextLockingOp == NULL);
    452 					queue->nextLockingOp = req;
    453 					done = 1;
    454 				}
    455 			} else
    456 				if (RF_UNLOCKING_REQ(req)) {	/* should not happen:
    457 								 * unlocking ops should
    458 								 * not get queued */
    459 					RF_ASSERT(RF_QUEUE_LOCKED(queue));	/* support it anyway for
    460 										 * the future */
    461 					Dprintf2("DiskIOComplete: dispatching pri %d unl req to c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->col);
    462 					rf_DispatchKernelIO(queue, req);
    463 					done = 1;
    464 				} else
    465 					if (RF_OK_TO_DISPATCH(queue, req)) {
    466 						Dprintf2("DiskIOComplete: dispatching pri %d regular req to c %d (ok to dispatch)\n", req->priority, queue->col);
    467 						rf_DispatchKernelIO(queue, req);
    468 					} else {	/* we can't dispatch it,
    469 							 * so just re-enqueue
    470 							 * it.  */
    471 						/* potential trouble here if
    472 						 * disk queues batch reqs */
    473 						Dprintf2("DiskIOComplete: re-enqueueing pri %d regular req to c %d\n", req->priority, queue->col);
    474 						queue->queueLength++;
    475 						(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
    476 						done = 1;
    477 					}
    478 	}
    479 
    480 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    481 }
    482 /* promotes accesses tagged with the given parityStripeID from low priority
    483  * to normal priority.  This promotion is optional, meaning that a queue
    484  * need not implement it.  If there is no promotion routine associated with
    485  * a queue, this routine does nothing and returns -1.
    486  */
    487 int
    488 rf_DiskIOPromote(queue, parityStripeID, which_ru)
    489 	RF_DiskQueue_t *queue;
    490 	RF_StripeNum_t parityStripeID;
    491 	RF_ReconUnitNum_t which_ru;
    492 {
    493 	int     retval;
    494 
    495 	if (!queue->qPtr->Promote)
    496 		return (-1);
    497 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    498 	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
    499 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    500 	return (retval);
    501 }
    502 
    503 RF_DiskQueueData_t *
    504 rf_CreateDiskQueueData(
    505     RF_IoType_t typ,
    506     RF_SectorNum_t ssect,
    507     RF_SectorCount_t nsect,
    508     caddr_t buf,
    509     RF_StripeNum_t parityStripeID,
    510     RF_ReconUnitNum_t which_ru,
    511     int (*wakeF) (void *, int),
    512     void *arg,
    513     RF_DiskQueueData_t * next,
    514     RF_AccTraceEntry_t * tracerec,
    515     void *raidPtr,
    516     RF_DiskQueueDataFlags_t flags,
    517     void *kb_proc)
    518 {
    519 	RF_DiskQueueData_t *p;
    520 
    521 	p = pool_get(&rf_dqd_pool, PR_WAITOK);
    522 	if (init_dqd(p)) {
    523 		/* no memory for the buffer!?!? */
    524 		pool_put(&rf_dqd_pool, p);
    525 		return(NULL);
    526 	}
    527 
    528 	p->sectorOffset = ssect + rf_protectedSectors;
    529 	p->numSector = nsect;
    530 	p->type = typ;
    531 	p->buf = buf;
    532 	p->parityStripeID = parityStripeID;
    533 	p->which_ru = which_ru;
    534 	p->CompleteFunc = wakeF;
    535 	p->argument = arg;
    536 	p->next = next;
    537 	p->tracerec = tracerec;
    538 	p->priority = RF_IO_NORMAL_PRIORITY;
    539 	p->raidPtr = raidPtr;
    540 	p->flags = flags;
    541 	p->b_proc = kb_proc;
    542 	return (p);
    543 }
    544 
    545 void
    546 rf_FreeDiskQueueData(p)
    547 	RF_DiskQueueData_t *p;
    548 {
    549 	clean_dqd(p);
    550 	pool_put(&rf_dqd_pool, p);
    551 }
    552