rf_diskqueue.c revision 1.26 1 /* $NetBSD: rf_diskqueue.c,v 1.26 2003/12/29 05:48:13 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /****************************************************************************
30 *
31 * rf_diskqueue.c -- higher-level disk queue code
32 *
33 * the routines here are a generic wrapper around the actual queueing
34 * routines. The code here implements thread scheduling, synchronization,
35 * and locking ops (see below) on top of the lower-level queueing code.
36 *
37 * to support atomic RMW, we implement "locking operations". When a
38 * locking op is dispatched to the lower levels of the driver, the
39 * queue is locked, and no further I/Os are dispatched until the queue
40 * receives & completes a corresponding "unlocking operation". This
41 * code relies on the higher layers to guarantee that a locking op
42 * will always be eventually followed by an unlocking op. The model
43 * is that the higher layers are structured so locking and unlocking
44 * ops occur in pairs, i.e. an unlocking op cannot be generated until
45 * after a locking op reports completion. There is no good way to
46 * check to see that an unlocking op "corresponds" to the op that
47 * currently has the queue locked, so we make no such attempt. Since
48 * by definition there can be only one locking op outstanding on a
49 * disk, this should not be a problem.
50 *
51 * In the kernel, we allow multiple I/Os to be concurrently dispatched
52 * to the disk driver. In order to support locking ops in this
53 * environment, when we decide to do a locking op, we stop dispatching
54 * new I/Os and wait until all dispatched I/Os have completed before
55 * dispatching the locking op.
56 *
57 * Unfortunately, the code is different in the 3 different operating
58 * states (user level, kernel, simulator). In the kernel, I/O is
59 * non-blocking, and we have no disk threads to dispatch for us.
60 * Therefore, we have to dispatch new I/Os to the scsi driver at the
61 * time of enqueue, and also at the time of completion. At user
62 * level, I/O is blocking, and so only the disk threads may dispatch
63 * I/Os. Thus at user level, all we can do at enqueue time is enqueue
64 * and wake up the disk thread to do the dispatch.
65 *
66 ****************************************************************************/
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.26 2003/12/29 05:48:13 oster Exp $");
70
71 #include <dev/raidframe/raidframevar.h>
72
73 #include "rf_threadstuff.h"
74 #include "rf_raid.h"
75 #include "rf_diskqueue.h"
76 #include "rf_alloclist.h"
77 #include "rf_acctrace.h"
78 #include "rf_etimer.h"
79 #include "rf_general.h"
80 #include "rf_debugprint.h"
81 #include "rf_shutdown.h"
82 #include "rf_cvscan.h"
83 #include "rf_sstf.h"
84 #include "rf_fifo.h"
85 #include "rf_kintf.h"
86
87 static int init_dqd(RF_DiskQueueData_t *);
88 static void clean_dqd(RF_DiskQueueData_t *);
89 static void rf_ShutdownDiskQueueSystem(void *);
90
91 #ifndef RF_DEBUG_DISKQUEUE
92 #define RF_DEBUG_DISKQUEUE 0
93 #endif
94
95 #if RF_DEBUG_DISKQUEUE
96 #define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
97 #define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
98 #define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
99 #else
100 #define Dprintf1(s,a)
101 #define Dprintf2(s,a,b)
102 #define Dprintf3(s,a,b,c)
103 #endif
104
105 /*****************************************************************************
106 *
107 * the disk queue switch defines all the functions used in the
108 * different queueing disciplines queue ID, init routine, enqueue
109 * routine, dequeue routine
110 *
111 ****************************************************************************/
112
113 static const RF_DiskQueueSW_t diskqueuesw[] = {
114 {"fifo", /* FIFO */
115 rf_FifoCreate,
116 rf_FifoEnqueue,
117 rf_FifoDequeue,
118 rf_FifoPeek,
119 rf_FifoPromote},
120
121 {"cvscan", /* cvscan */
122 rf_CvscanCreate,
123 rf_CvscanEnqueue,
124 rf_CvscanDequeue,
125 rf_CvscanPeek,
126 rf_CvscanPromote},
127
128 {"sstf", /* shortest seek time first */
129 rf_SstfCreate,
130 rf_SstfEnqueue,
131 rf_SstfDequeue,
132 rf_SstfPeek,
133 rf_SstfPromote},
134
135 {"scan", /* SCAN (two-way elevator) */
136 rf_ScanCreate,
137 rf_SstfEnqueue,
138 rf_ScanDequeue,
139 rf_ScanPeek,
140 rf_SstfPromote},
141
142 {"cscan", /* CSCAN (one-way elevator) */
143 rf_CscanCreate,
144 rf_SstfEnqueue,
145 rf_CscanDequeue,
146 rf_CscanPeek,
147 rf_SstfPromote},
148
149 };
150 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
151
152 static struct pool rf_dqd_pool;
153 #define RF_MAX_FREE_DQD 256
154 #define RF_DQD_INC 16
155 #define RF_DQD_INITIAL 64
156
157 #include <sys/buf.h>
158
159 static int
160 init_dqd(dqd)
161 RF_DiskQueueData_t *dqd;
162 {
163
164 dqd->bp = (struct buf *) malloc(sizeof(struct buf),
165 M_RAIDFRAME, M_NOWAIT);
166 if (dqd->bp == NULL) {
167 return (ENOMEM);
168 }
169 memset(dqd->bp, 0, sizeof(struct buf)); /* if you don't do it, nobody
170 * else will.. */
171 return (0);
172 }
173
174 static void
175 clean_dqd(dqd)
176 RF_DiskQueueData_t *dqd;
177 {
178 free(dqd->bp, M_RAIDFRAME);
179 }
180 /* configures a single disk queue */
181
182 int
183 rf_ConfigureDiskQueue(
184 RF_Raid_t * raidPtr,
185 RF_DiskQueue_t * diskqueue,
186 RF_RowCol_t c,
187 const RF_DiskQueueSW_t * p,
188 RF_SectorCount_t sectPerDisk,
189 dev_t dev,
190 int maxOutstanding,
191 RF_ShutdownList_t ** listp,
192 RF_AllocListElem_t * clList)
193 {
194 diskqueue->col = c;
195 diskqueue->qPtr = p;
196 diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
197 diskqueue->dev = dev;
198 diskqueue->numOutstanding = 0;
199 diskqueue->queueLength = 0;
200 diskqueue->maxOutstanding = maxOutstanding;
201 diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
202 diskqueue->nextLockingOp = NULL;
203 diskqueue->numWaiting = 0;
204 diskqueue->flags = 0;
205 diskqueue->raidPtr = raidPtr;
206 diskqueue->rf_cinfo = &raidPtr->raid_cinfo[c];
207 rf_mutex_init(&diskqueue->mutex);
208 diskqueue->cond = 0;
209 return (0);
210 }
211
212 static void
213 rf_ShutdownDiskQueueSystem(ignored)
214 void *ignored;
215 {
216 pool_destroy(&rf_dqd_pool);
217 }
218
219 int
220 rf_ConfigureDiskQueueSystem(listp)
221 RF_ShutdownList_t **listp;
222 {
223 int rc;
224
225 pool_init(&rf_dqd_pool, sizeof(RF_DiskQueueData_t), 0, 0, 0,
226 "rf_dqd_pl", NULL);
227 pool_sethiwat(&rf_dqd_pool, RF_MAX_FREE_DQD);
228 pool_prime(&rf_dqd_pool, RF_DQD_INITIAL);
229
230 rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
231 if (rc) {
232 rf_print_unable_to_add_shutdown( __FILE__, __LINE__, rc);
233 rf_ShutdownDiskQueueSystem(NULL);
234 return (rc);
235 }
236
237 return (0);
238 }
239
240 int
241 rf_ConfigureDiskQueues(
242 RF_ShutdownList_t ** listp,
243 RF_Raid_t * raidPtr,
244 RF_Config_t * cfgPtr)
245 {
246 RF_DiskQueue_t *diskQueues, *spareQueues;
247 const RF_DiskQueueSW_t *p;
248 RF_RowCol_t r,c;
249 int rc, i;
250
251 raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
252
253 for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
254 if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
255 p = &diskqueuesw[i];
256 break;
257 }
258 }
259 if (p == NULL) {
260 RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
261 p = &diskqueuesw[0];
262 }
263 raidPtr->qType = p;
264
265 RF_MallocAndAdd(diskQueues,
266 (raidPtr->numCol + RF_MAXSPARE) *
267 sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
268 raidPtr->cleanupList);
269 if (diskQueues == NULL)
270 return (ENOMEM);
271 raidPtr->Queues = diskQueues;
272
273 for (c = 0; c < raidPtr->numCol; c++) {
274 rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[c],
275 c, p,
276 raidPtr->sectorsPerDisk,
277 raidPtr->Disks[c].dev,
278 cfgPtr->maxOutstandingDiskReqs,
279 listp, raidPtr->cleanupList);
280 if (rc)
281 return (rc);
282 }
283
284 spareQueues = &raidPtr->Queues[raidPtr->numCol];
285 for (r = 0; r < raidPtr->numSpare; r++) {
286 rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
287 raidPtr->numCol + r, p,
288 raidPtr->sectorsPerDisk,
289 raidPtr->Disks[raidPtr->numCol + r].dev,
290 cfgPtr->maxOutstandingDiskReqs, listp,
291 raidPtr->cleanupList);
292 if (rc)
293 return (rc);
294 }
295 return (0);
296 }
297 /* Enqueue a disk I/O
298 *
299 * Unfortunately, we have to do things differently in the different
300 * environments (simulator, user-level, kernel).
301 * At user level, all I/O is blocking, so we have 1 or more threads/disk
302 * and the thread that enqueues is different from the thread that dequeues.
303 * In the kernel, I/O is non-blocking and so we'd like to have multiple
304 * I/Os outstanding on the physical disks when possible.
305 *
306 * when any request arrives at a queue, we have two choices:
307 * dispatch it to the lower levels
308 * queue it up
309 *
310 * kernel rules for when to do what:
311 * locking request: queue empty => dispatch and lock queue,
312 * else queue it
313 * unlocking req : always dispatch it
314 * normal req : queue empty => dispatch it & set priority
315 * queue not full & priority is ok => dispatch it
316 * else queue it
317 *
318 * user-level rules:
319 * always enqueue. In the special case of an unlocking op, enqueue
320 * in a special way that will cause the unlocking op to be the next
321 * thing dequeued.
322 *
323 * simulator rules:
324 * Do the same as at user level, with the sleeps and wakeups suppressed.
325 */
326 void
327 rf_DiskIOEnqueue(queue, req, pri)
328 RF_DiskQueue_t *queue;
329 RF_DiskQueueData_t *req;
330 int pri;
331 {
332 RF_ETIMER_START(req->qtime);
333 RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
334 req->priority = pri;
335
336 #if RF_DEBUG_DISKQUEUE
337 if (rf_queueDebug && (req->numSector == 0)) {
338 printf("Warning: Enqueueing zero-sector access\n");
339 }
340 #endif
341 /*
342 * kernel
343 */
344 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
345 /* locking request */
346 if (RF_LOCKING_REQ(req)) {
347 if (RF_QUEUE_EMPTY(queue)) {
348 Dprintf2("Dispatching pri %d locking op to c %d (queue empty)\n", pri, queue->col);
349 RF_LOCK_QUEUE(queue);
350 rf_DispatchKernelIO(queue, req);
351 } else {
352 queue->queueLength++; /* increment count of number
353 * of requests waiting in this
354 * queue */
355 Dprintf2("Enqueueing pri %d locking op to c %d (queue not empty)\n", pri, queue->col);
356 req->queue = (void *) queue;
357 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
358 }
359 }
360 /* unlocking request */
361 else
362 if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock
363 * when this I/O completes */
364 Dprintf2("Dispatching pri %d unlocking op to c %d\n", pri, queue->col);
365 RF_ASSERT(RF_QUEUE_LOCKED(queue));
366 rf_DispatchKernelIO(queue, req);
367 }
368 /* normal request */
369 else
370 if (RF_OK_TO_DISPATCH(queue, req)) {
371 Dprintf2("Dispatching pri %d regular op to c %d (ok to dispatch)\n", pri, queue->col);
372 rf_DispatchKernelIO(queue, req);
373 } else {
374 queue->queueLength++; /* increment count of
375 * number of requests
376 * waiting in this queue */
377 Dprintf2("Enqueueing pri %d regular op to c %d (not ok to dispatch)\n", pri, queue->col);
378 req->queue = (void *) queue;
379 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
380 }
381 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
382 }
383
384
385 /* get the next set of I/Os started, kernel version only */
386 void
387 rf_DiskIOComplete(queue, req, status)
388 RF_DiskQueue_t *queue;
389 RF_DiskQueueData_t *req;
390 int status;
391 {
392 int done = 0;
393
394 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
395
396 /* unlock the queue: (1) after an unlocking req completes (2) after a
397 * locking req fails */
398 if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
399 Dprintf1("DiskIOComplete: unlocking queue at c %d\n", queue->col);
400 RF_ASSERT(RF_QUEUE_LOCKED(queue));
401 RF_UNLOCK_QUEUE(queue);
402 }
403 queue->numOutstanding--;
404 RF_ASSERT(queue->numOutstanding >= 0);
405
406 /* dispatch requests to the disk until we find one that we can't. */
407 /* no reason to continue once we've filled up the queue */
408 /* no reason to even start if the queue is locked */
409
410 while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
411 if (queue->nextLockingOp) {
412 req = queue->nextLockingOp;
413 queue->nextLockingOp = NULL;
414 Dprintf2("DiskIOComplete: a pri %d locking req was pending at c %d\n", req->priority, queue->col);
415 } else {
416 req = (queue->qPtr->Dequeue) (queue->qHdr);
417 if (req != NULL) {
418 Dprintf2("DiskIOComplete: extracting pri %d req from queue at c %d\n", req->priority, queue->col);
419 } else {
420 Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
421 }
422 }
423 if (req) {
424 queue->queueLength--; /* decrement count of number
425 * of requests waiting in this
426 * queue */
427 RF_ASSERT(queue->queueLength >= 0);
428 }
429 if (!req)
430 done = 1;
431 else
432 if (RF_LOCKING_REQ(req)) {
433 if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */
434 Dprintf2("DiskIOComplete: dispatching pri %d locking req to c %d (queue empty)\n", req->priority, queue->col);
435 RF_LOCK_QUEUE(queue);
436 rf_DispatchKernelIO(queue, req);
437 done = 1;
438 } else { /* put it aside to wait for
439 * the queue to drain */
440 Dprintf2("DiskIOComplete: postponing pri %d locking req to c %d\n", req->priority, queue->col);
441 RF_ASSERT(queue->nextLockingOp == NULL);
442 queue->nextLockingOp = req;
443 done = 1;
444 }
445 } else
446 if (RF_UNLOCKING_REQ(req)) { /* should not happen:
447 * unlocking ops should
448 * not get queued */
449 RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for
450 * the future */
451 Dprintf2("DiskIOComplete: dispatching pri %d unl req to c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->col);
452 rf_DispatchKernelIO(queue, req);
453 done = 1;
454 } else
455 if (RF_OK_TO_DISPATCH(queue, req)) {
456 Dprintf2("DiskIOComplete: dispatching pri %d regular req to c %d (ok to dispatch)\n", req->priority, queue->col);
457 rf_DispatchKernelIO(queue, req);
458 } else { /* we can't dispatch it,
459 * so just re-enqueue
460 * it. */
461 /* potential trouble here if
462 * disk queues batch reqs */
463 Dprintf2("DiskIOComplete: re-enqueueing pri %d regular req to c %d\n", req->priority, queue->col);
464 queue->queueLength++;
465 (queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
466 done = 1;
467 }
468 }
469
470 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
471 }
472 /* promotes accesses tagged with the given parityStripeID from low priority
473 * to normal priority. This promotion is optional, meaning that a queue
474 * need not implement it. If there is no promotion routine associated with
475 * a queue, this routine does nothing and returns -1.
476 */
477 int
478 rf_DiskIOPromote(queue, parityStripeID, which_ru)
479 RF_DiskQueue_t *queue;
480 RF_StripeNum_t parityStripeID;
481 RF_ReconUnitNum_t which_ru;
482 {
483 int retval;
484
485 if (!queue->qPtr->Promote)
486 return (-1);
487 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
488 retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
489 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
490 return (retval);
491 }
492
493 RF_DiskQueueData_t *
494 rf_CreateDiskQueueData(
495 RF_IoType_t typ,
496 RF_SectorNum_t ssect,
497 RF_SectorCount_t nsect,
498 caddr_t buf,
499 RF_StripeNum_t parityStripeID,
500 RF_ReconUnitNum_t which_ru,
501 int (*wakeF) (void *, int),
502 void *arg,
503 RF_DiskQueueData_t * next,
504 RF_AccTraceEntry_t * tracerec,
505 void *raidPtr,
506 RF_DiskQueueDataFlags_t flags,
507 void *kb_proc)
508 {
509 RF_DiskQueueData_t *p;
510
511 p = pool_get(&rf_dqd_pool, PR_WAITOK);
512 if (init_dqd(p)) {
513 /* no memory for the buffer!?!? */
514 pool_put(&rf_dqd_pool, p);
515 return(NULL);
516 }
517
518 p->sectorOffset = ssect + rf_protectedSectors;
519 p->numSector = nsect;
520 p->type = typ;
521 p->buf = buf;
522 p->parityStripeID = parityStripeID;
523 p->which_ru = which_ru;
524 p->CompleteFunc = wakeF;
525 p->argument = arg;
526 p->next = next;
527 p->tracerec = tracerec;
528 p->priority = RF_IO_NORMAL_PRIORITY;
529 p->raidPtr = raidPtr;
530 p->flags = flags;
531 p->b_proc = kb_proc;
532 return (p);
533 }
534
535 void
536 rf_FreeDiskQueueData(p)
537 RF_DiskQueueData_t *p;
538 {
539 clean_dqd(p);
540 pool_put(&rf_dqd_pool, p);
541 }
542