Home | History | Annotate | Line # | Download | only in raidframe
rf_diskqueue.c revision 1.26
      1 /*	$NetBSD: rf_diskqueue.c,v 1.26 2003/12/29 05:48:13 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************
     30  *
     31  * rf_diskqueue.c -- higher-level disk queue code
     32  *
     33  * the routines here are a generic wrapper around the actual queueing
     34  * routines.  The code here implements thread scheduling, synchronization,
     35  * and locking ops (see below) on top of the lower-level queueing code.
     36  *
     37  * to support atomic RMW, we implement "locking operations".  When a
     38  * locking op is dispatched to the lower levels of the driver, the
     39  * queue is locked, and no further I/Os are dispatched until the queue
     40  * receives & completes a corresponding "unlocking operation".  This
     41  * code relies on the higher layers to guarantee that a locking op
     42  * will always be eventually followed by an unlocking op.  The model
     43  * is that the higher layers are structured so locking and unlocking
     44  * ops occur in pairs, i.e.  an unlocking op cannot be generated until
     45  * after a locking op reports completion.  There is no good way to
     46  * check to see that an unlocking op "corresponds" to the op that
     47  * currently has the queue locked, so we make no such attempt.  Since
     48  * by definition there can be only one locking op outstanding on a
     49  * disk, this should not be a problem.
     50  *
     51  * In the kernel, we allow multiple I/Os to be concurrently dispatched
     52  * to the disk driver.  In order to support locking ops in this
     53  * environment, when we decide to do a locking op, we stop dispatching
     54  * new I/Os and wait until all dispatched I/Os have completed before
     55  * dispatching the locking op.
     56  *
     57  * Unfortunately, the code is different in the 3 different operating
     58  * states (user level, kernel, simulator).  In the kernel, I/O is
     59  * non-blocking, and we have no disk threads to dispatch for us.
     60  * Therefore, we have to dispatch new I/Os to the scsi driver at the
     61  * time of enqueue, and also at the time of completion.  At user
     62  * level, I/O is blocking, and so only the disk threads may dispatch
     63  * I/Os.  Thus at user level, all we can do at enqueue time is enqueue
     64  * and wake up the disk thread to do the dispatch.
     65  *
     66  ****************************************************************************/
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.26 2003/12/29 05:48:13 oster Exp $");
     70 
     71 #include <dev/raidframe/raidframevar.h>
     72 
     73 #include "rf_threadstuff.h"
     74 #include "rf_raid.h"
     75 #include "rf_diskqueue.h"
     76 #include "rf_alloclist.h"
     77 #include "rf_acctrace.h"
     78 #include "rf_etimer.h"
     79 #include "rf_general.h"
     80 #include "rf_debugprint.h"
     81 #include "rf_shutdown.h"
     82 #include "rf_cvscan.h"
     83 #include "rf_sstf.h"
     84 #include "rf_fifo.h"
     85 #include "rf_kintf.h"
     86 
     87 static int init_dqd(RF_DiskQueueData_t *);
     88 static void clean_dqd(RF_DiskQueueData_t *);
     89 static void rf_ShutdownDiskQueueSystem(void *);
     90 
     91 #ifndef RF_DEBUG_DISKQUEUE
     92 #define RF_DEBUG_DISKQUEUE 0
     93 #endif
     94 
     95 #if RF_DEBUG_DISKQUEUE
     96 #define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     97 #define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     98 #define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
     99 #else
    100 #define Dprintf1(s,a)
    101 #define Dprintf2(s,a,b)
    102 #define Dprintf3(s,a,b,c)
    103 #endif
    104 
    105 /*****************************************************************************
    106  *
    107  * the disk queue switch defines all the functions used in the
    108  * different queueing disciplines queue ID, init routine, enqueue
    109  * routine, dequeue routine
    110  *
    111  ****************************************************************************/
    112 
    113 static const RF_DiskQueueSW_t diskqueuesw[] = {
    114 	{"fifo",		/* FIFO */
    115 		rf_FifoCreate,
    116 		rf_FifoEnqueue,
    117 		rf_FifoDequeue,
    118 		rf_FifoPeek,
    119 	rf_FifoPromote},
    120 
    121 	{"cvscan",		/* cvscan */
    122 		rf_CvscanCreate,
    123 		rf_CvscanEnqueue,
    124 		rf_CvscanDequeue,
    125 		rf_CvscanPeek,
    126 	rf_CvscanPromote},
    127 
    128 	{"sstf",		/* shortest seek time first */
    129 		rf_SstfCreate,
    130 		rf_SstfEnqueue,
    131 		rf_SstfDequeue,
    132 		rf_SstfPeek,
    133 	rf_SstfPromote},
    134 
    135 	{"scan",		/* SCAN (two-way elevator) */
    136 		rf_ScanCreate,
    137 		rf_SstfEnqueue,
    138 		rf_ScanDequeue,
    139 		rf_ScanPeek,
    140 	rf_SstfPromote},
    141 
    142 	{"cscan",		/* CSCAN (one-way elevator) */
    143 		rf_CscanCreate,
    144 		rf_SstfEnqueue,
    145 		rf_CscanDequeue,
    146 		rf_CscanPeek,
    147 	rf_SstfPromote},
    148 
    149 };
    150 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
    151 
    152 static struct pool rf_dqd_pool;
    153 #define RF_MAX_FREE_DQD 256
    154 #define RF_DQD_INC       16
    155 #define RF_DQD_INITIAL   64
    156 
    157 #include <sys/buf.h>
    158 
    159 static int
    160 init_dqd(dqd)
    161 	RF_DiskQueueData_t *dqd;
    162 {
    163 
    164 	dqd->bp = (struct buf *) malloc(sizeof(struct buf),
    165 					M_RAIDFRAME, M_NOWAIT);
    166 	if (dqd->bp == NULL) {
    167 		return (ENOMEM);
    168 	}
    169 	memset(dqd->bp, 0, sizeof(struct buf));	/* if you don't do it, nobody
    170 						 * else will.. */
    171 	return (0);
    172 }
    173 
    174 static void
    175 clean_dqd(dqd)
    176 	RF_DiskQueueData_t *dqd;
    177 {
    178 	free(dqd->bp, M_RAIDFRAME);
    179 }
    180 /* configures a single disk queue */
    181 
    182 int
    183 rf_ConfigureDiskQueue(
    184       RF_Raid_t * raidPtr,
    185       RF_DiskQueue_t * diskqueue,
    186       RF_RowCol_t c,
    187       const RF_DiskQueueSW_t * p,
    188       RF_SectorCount_t sectPerDisk,
    189       dev_t dev,
    190       int maxOutstanding,
    191       RF_ShutdownList_t ** listp,
    192       RF_AllocListElem_t * clList)
    193 {
    194 	diskqueue->col = c;
    195 	diskqueue->qPtr = p;
    196 	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
    197 	diskqueue->dev = dev;
    198 	diskqueue->numOutstanding = 0;
    199 	diskqueue->queueLength = 0;
    200 	diskqueue->maxOutstanding = maxOutstanding;
    201 	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
    202 	diskqueue->nextLockingOp = NULL;
    203 	diskqueue->numWaiting = 0;
    204 	diskqueue->flags = 0;
    205 	diskqueue->raidPtr = raidPtr;
    206 	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[c];
    207 	rf_mutex_init(&diskqueue->mutex);
    208 	diskqueue->cond = 0;
    209 	return (0);
    210 }
    211 
    212 static void
    213 rf_ShutdownDiskQueueSystem(ignored)
    214 	void   *ignored;
    215 {
    216 	pool_destroy(&rf_dqd_pool);
    217 }
    218 
    219 int
    220 rf_ConfigureDiskQueueSystem(listp)
    221 	RF_ShutdownList_t **listp;
    222 {
    223 	int     rc;
    224 
    225 	pool_init(&rf_dqd_pool, sizeof(RF_DiskQueueData_t), 0, 0, 0,
    226 		  "rf_dqd_pl", NULL);
    227 	pool_sethiwat(&rf_dqd_pool, RF_MAX_FREE_DQD);
    228 	pool_prime(&rf_dqd_pool, RF_DQD_INITIAL);
    229 
    230 	rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
    231 	if (rc) {
    232 		rf_print_unable_to_add_shutdown( __FILE__, __LINE__, rc);
    233 		rf_ShutdownDiskQueueSystem(NULL);
    234 		return (rc);
    235 	}
    236 
    237 	return (0);
    238 }
    239 
    240 int
    241 rf_ConfigureDiskQueues(
    242     RF_ShutdownList_t ** listp,
    243     RF_Raid_t * raidPtr,
    244     RF_Config_t * cfgPtr)
    245 {
    246 	RF_DiskQueue_t *diskQueues, *spareQueues;
    247 	const RF_DiskQueueSW_t *p;
    248 	RF_RowCol_t r,c;
    249 	int     rc, i;
    250 
    251 	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
    252 
    253 	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
    254 		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
    255 			p = &diskqueuesw[i];
    256 			break;
    257 		}
    258 	}
    259 	if (p == NULL) {
    260 		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
    261 		p = &diskqueuesw[0];
    262 	}
    263 	raidPtr->qType = p;
    264 
    265 	RF_MallocAndAdd(diskQueues,
    266 			(raidPtr->numCol + RF_MAXSPARE) *
    267 			sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
    268 			raidPtr->cleanupList);
    269 	if (diskQueues == NULL)
    270 		return (ENOMEM);
    271 	raidPtr->Queues = diskQueues;
    272 
    273 	for (c = 0; c < raidPtr->numCol; c++) {
    274 		rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[c],
    275 					   c, p,
    276 					   raidPtr->sectorsPerDisk,
    277 					   raidPtr->Disks[c].dev,
    278 					   cfgPtr->maxOutstandingDiskReqs,
    279 					   listp, raidPtr->cleanupList);
    280 		if (rc)
    281 			return (rc);
    282 	}
    283 
    284 	spareQueues = &raidPtr->Queues[raidPtr->numCol];
    285 	for (r = 0; r < raidPtr->numSpare; r++) {
    286 		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
    287 					   raidPtr->numCol + r, p,
    288 					   raidPtr->sectorsPerDisk,
    289 					   raidPtr->Disks[raidPtr->numCol + r].dev,
    290 					   cfgPtr->maxOutstandingDiskReqs, listp,
    291 					   raidPtr->cleanupList);
    292 		if (rc)
    293 			return (rc);
    294 	}
    295 	return (0);
    296 }
    297 /* Enqueue a disk I/O
    298  *
    299  * Unfortunately, we have to do things differently in the different
    300  * environments (simulator, user-level, kernel).
    301  * At user level, all I/O is blocking, so we have 1 or more threads/disk
    302  * and the thread that enqueues is different from the thread that dequeues.
    303  * In the kernel, I/O is non-blocking and so we'd like to have multiple
    304  * I/Os outstanding on the physical disks when possible.
    305  *
    306  * when any request arrives at a queue, we have two choices:
    307  *    dispatch it to the lower levels
    308  *    queue it up
    309  *
    310  * kernel rules for when to do what:
    311  *    locking request:  queue empty => dispatch and lock queue,
    312  *                      else queue it
    313  *    unlocking req  :  always dispatch it
    314  *    normal req     :  queue empty => dispatch it & set priority
    315  *                      queue not full & priority is ok => dispatch it
    316  *                      else queue it
    317  *
    318  * user-level rules:
    319  *    always enqueue.  In the special case of an unlocking op, enqueue
    320  *    in a special way that will cause the unlocking op to be the next
    321  *    thing dequeued.
    322  *
    323  * simulator rules:
    324  *    Do the same as at user level, with the sleeps and wakeups suppressed.
    325  */
    326 void
    327 rf_DiskIOEnqueue(queue, req, pri)
    328 	RF_DiskQueue_t *queue;
    329 	RF_DiskQueueData_t *req;
    330 	int     pri;
    331 {
    332 	RF_ETIMER_START(req->qtime);
    333 	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
    334 	req->priority = pri;
    335 
    336 #if RF_DEBUG_DISKQUEUE
    337 	if (rf_queueDebug && (req->numSector == 0)) {
    338 		printf("Warning: Enqueueing zero-sector access\n");
    339 	}
    340 #endif
    341 	/*
    342          * kernel
    343          */
    344 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    345 	/* locking request */
    346 	if (RF_LOCKING_REQ(req)) {
    347 		if (RF_QUEUE_EMPTY(queue)) {
    348 			Dprintf2("Dispatching pri %d locking op to c %d (queue empty)\n", pri, queue->col);
    349 			RF_LOCK_QUEUE(queue);
    350 			rf_DispatchKernelIO(queue, req);
    351 		} else {
    352 			queue->queueLength++;	/* increment count of number
    353 						 * of requests waiting in this
    354 						 * queue */
    355 			Dprintf2("Enqueueing pri %d locking op to c %d (queue not empty)\n", pri, queue->col);
    356 			req->queue = (void *) queue;
    357 			(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    358 		}
    359 	}
    360 	/* unlocking request */
    361 	else
    362 		if (RF_UNLOCKING_REQ(req)) {	/* we'll do the actual unlock
    363 						 * when this I/O completes */
    364 			Dprintf2("Dispatching pri %d unlocking op to c %d\n", pri, queue->col);
    365 			RF_ASSERT(RF_QUEUE_LOCKED(queue));
    366 			rf_DispatchKernelIO(queue, req);
    367 		}
    368 	/* normal request */
    369 		else
    370 			if (RF_OK_TO_DISPATCH(queue, req)) {
    371 				Dprintf2("Dispatching pri %d regular op to c %d (ok to dispatch)\n", pri, queue->col);
    372 				rf_DispatchKernelIO(queue, req);
    373 			} else {
    374 				queue->queueLength++;	/* increment count of
    375 							 * number of requests
    376 							 * waiting in this queue */
    377 				Dprintf2("Enqueueing pri %d regular op to c %d (not ok to dispatch)\n", pri, queue->col);
    378 				req->queue = (void *) queue;
    379 				(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    380 			}
    381 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    382 }
    383 
    384 
    385 /* get the next set of I/Os started, kernel version only */
    386 void
    387 rf_DiskIOComplete(queue, req, status)
    388 	RF_DiskQueue_t *queue;
    389 	RF_DiskQueueData_t *req;
    390 	int     status;
    391 {
    392 	int     done = 0;
    393 
    394 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    395 
    396 	/* unlock the queue: (1) after an unlocking req completes (2) after a
    397 	 * locking req fails */
    398 	if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
    399 		Dprintf1("DiskIOComplete: unlocking queue at c %d\n", queue->col);
    400 		RF_ASSERT(RF_QUEUE_LOCKED(queue));
    401 		RF_UNLOCK_QUEUE(queue);
    402 	}
    403 	queue->numOutstanding--;
    404 	RF_ASSERT(queue->numOutstanding >= 0);
    405 
    406 	/* dispatch requests to the disk until we find one that we can't. */
    407 	/* no reason to continue once we've filled up the queue */
    408 	/* no reason to even start if the queue is locked */
    409 
    410 	while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
    411 		if (queue->nextLockingOp) {
    412 			req = queue->nextLockingOp;
    413 			queue->nextLockingOp = NULL;
    414 			Dprintf2("DiskIOComplete: a pri %d locking req was pending at c %d\n", req->priority, queue->col);
    415 		} else {
    416 			req = (queue->qPtr->Dequeue) (queue->qHdr);
    417 			if (req != NULL) {
    418 				Dprintf2("DiskIOComplete: extracting pri %d req from queue at c %d\n", req->priority, queue->col);
    419 			} else {
    420 				Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
    421 			}
    422 		}
    423 		if (req) {
    424 			queue->queueLength--;	/* decrement count of number
    425 						 * of requests waiting in this
    426 						 * queue */
    427 			RF_ASSERT(queue->queueLength >= 0);
    428 		}
    429 		if (!req)
    430 			done = 1;
    431 		else
    432 			if (RF_LOCKING_REQ(req)) {
    433 				if (RF_QUEUE_EMPTY(queue)) {	/* dispatch it */
    434 					Dprintf2("DiskIOComplete: dispatching pri %d locking req to c %d (queue empty)\n", req->priority, queue->col);
    435 					RF_LOCK_QUEUE(queue);
    436 					rf_DispatchKernelIO(queue, req);
    437 					done = 1;
    438 				} else {	/* put it aside to wait for
    439 						 * the queue to drain */
    440 					Dprintf2("DiskIOComplete: postponing pri %d locking req to c %d\n", req->priority, queue->col);
    441 					RF_ASSERT(queue->nextLockingOp == NULL);
    442 					queue->nextLockingOp = req;
    443 					done = 1;
    444 				}
    445 			} else
    446 				if (RF_UNLOCKING_REQ(req)) {	/* should not happen:
    447 								 * unlocking ops should
    448 								 * not get queued */
    449 					RF_ASSERT(RF_QUEUE_LOCKED(queue));	/* support it anyway for
    450 										 * the future */
    451 					Dprintf2("DiskIOComplete: dispatching pri %d unl req to c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->col);
    452 					rf_DispatchKernelIO(queue, req);
    453 					done = 1;
    454 				} else
    455 					if (RF_OK_TO_DISPATCH(queue, req)) {
    456 						Dprintf2("DiskIOComplete: dispatching pri %d regular req to c %d (ok to dispatch)\n", req->priority, queue->col);
    457 						rf_DispatchKernelIO(queue, req);
    458 					} else {	/* we can't dispatch it,
    459 							 * so just re-enqueue
    460 							 * it.  */
    461 						/* potential trouble here if
    462 						 * disk queues batch reqs */
    463 						Dprintf2("DiskIOComplete: re-enqueueing pri %d regular req to c %d\n", req->priority, queue->col);
    464 						queue->queueLength++;
    465 						(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
    466 						done = 1;
    467 					}
    468 	}
    469 
    470 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    471 }
    472 /* promotes accesses tagged with the given parityStripeID from low priority
    473  * to normal priority.  This promotion is optional, meaning that a queue
    474  * need not implement it.  If there is no promotion routine associated with
    475  * a queue, this routine does nothing and returns -1.
    476  */
    477 int
    478 rf_DiskIOPromote(queue, parityStripeID, which_ru)
    479 	RF_DiskQueue_t *queue;
    480 	RF_StripeNum_t parityStripeID;
    481 	RF_ReconUnitNum_t which_ru;
    482 {
    483 	int     retval;
    484 
    485 	if (!queue->qPtr->Promote)
    486 		return (-1);
    487 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    488 	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
    489 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    490 	return (retval);
    491 }
    492 
    493 RF_DiskQueueData_t *
    494 rf_CreateDiskQueueData(
    495     RF_IoType_t typ,
    496     RF_SectorNum_t ssect,
    497     RF_SectorCount_t nsect,
    498     caddr_t buf,
    499     RF_StripeNum_t parityStripeID,
    500     RF_ReconUnitNum_t which_ru,
    501     int (*wakeF) (void *, int),
    502     void *arg,
    503     RF_DiskQueueData_t * next,
    504     RF_AccTraceEntry_t * tracerec,
    505     void *raidPtr,
    506     RF_DiskQueueDataFlags_t flags,
    507     void *kb_proc)
    508 {
    509 	RF_DiskQueueData_t *p;
    510 
    511 	p = pool_get(&rf_dqd_pool, PR_WAITOK);
    512 	if (init_dqd(p)) {
    513 		/* no memory for the buffer!?!? */
    514 		pool_put(&rf_dqd_pool, p);
    515 		return(NULL);
    516 	}
    517 
    518 	p->sectorOffset = ssect + rf_protectedSectors;
    519 	p->numSector = nsect;
    520 	p->type = typ;
    521 	p->buf = buf;
    522 	p->parityStripeID = parityStripeID;
    523 	p->which_ru = which_ru;
    524 	p->CompleteFunc = wakeF;
    525 	p->argument = arg;
    526 	p->next = next;
    527 	p->tracerec = tracerec;
    528 	p->priority = RF_IO_NORMAL_PRIORITY;
    529 	p->raidPtr = raidPtr;
    530 	p->flags = flags;
    531 	p->b_proc = kb_proc;
    532 	return (p);
    533 }
    534 
    535 void
    536 rf_FreeDiskQueueData(p)
    537 	RF_DiskQueueData_t *p;
    538 {
    539 	clean_dqd(p);
    540 	pool_put(&rf_dqd_pool, p);
    541 }
    542