Home | History | Annotate | Line # | Download | only in raidframe
rf_diskqueue.c revision 1.27
      1 /*	$NetBSD: rf_diskqueue.c,v 1.27 2003/12/30 21:59:03 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************
     30  *
     31  * rf_diskqueue.c -- higher-level disk queue code
     32  *
     33  * the routines here are a generic wrapper around the actual queueing
     34  * routines.  The code here implements thread scheduling, synchronization,
     35  * and locking ops (see below) on top of the lower-level queueing code.
     36  *
     37  * to support atomic RMW, we implement "locking operations".  When a
     38  * locking op is dispatched to the lower levels of the driver, the
     39  * queue is locked, and no further I/Os are dispatched until the queue
     40  * receives & completes a corresponding "unlocking operation".  This
     41  * code relies on the higher layers to guarantee that a locking op
     42  * will always be eventually followed by an unlocking op.  The model
     43  * is that the higher layers are structured so locking and unlocking
     44  * ops occur in pairs, i.e.  an unlocking op cannot be generated until
     45  * after a locking op reports completion.  There is no good way to
     46  * check to see that an unlocking op "corresponds" to the op that
     47  * currently has the queue locked, so we make no such attempt.  Since
     48  * by definition there can be only one locking op outstanding on a
     49  * disk, this should not be a problem.
     50  *
     51  * In the kernel, we allow multiple I/Os to be concurrently dispatched
     52  * to the disk driver.  In order to support locking ops in this
     53  * environment, when we decide to do a locking op, we stop dispatching
     54  * new I/Os and wait until all dispatched I/Os have completed before
     55  * dispatching the locking op.
     56  *
     57  * Unfortunately, the code is different in the 3 different operating
     58  * states (user level, kernel, simulator).  In the kernel, I/O is
     59  * non-blocking, and we have no disk threads to dispatch for us.
     60  * Therefore, we have to dispatch new I/Os to the scsi driver at the
     61  * time of enqueue, and also at the time of completion.  At user
     62  * level, I/O is blocking, and so only the disk threads may dispatch
     63  * I/Os.  Thus at user level, all we can do at enqueue time is enqueue
     64  * and wake up the disk thread to do the dispatch.
     65  *
     66  ****************************************************************************/
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.27 2003/12/30 21:59:03 oster Exp $");
     70 
     71 #include <dev/raidframe/raidframevar.h>
     72 
     73 #include "rf_threadstuff.h"
     74 #include "rf_raid.h"
     75 #include "rf_diskqueue.h"
     76 #include "rf_alloclist.h"
     77 #include "rf_acctrace.h"
     78 #include "rf_etimer.h"
     79 #include "rf_general.h"
     80 #include "rf_debugprint.h"
     81 #include "rf_shutdown.h"
     82 #include "rf_cvscan.h"
     83 #include "rf_sstf.h"
     84 #include "rf_fifo.h"
     85 #include "rf_kintf.h"
     86 
     87 static int init_dqd(RF_DiskQueueData_t *);
     88 static void clean_dqd(RF_DiskQueueData_t *);
     89 static void rf_ShutdownDiskQueueSystem(void *);
     90 
     91 #ifndef RF_DEBUG_DISKQUEUE
     92 #define RF_DEBUG_DISKQUEUE 0
     93 #endif
     94 
     95 #if RF_DEBUG_DISKQUEUE
     96 #define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     97 #define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     98 #define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
     99 #else
    100 #define Dprintf1(s,a)
    101 #define Dprintf2(s,a,b)
    102 #define Dprintf3(s,a,b,c)
    103 #endif
    104 
    105 /*****************************************************************************
    106  *
    107  * the disk queue switch defines all the functions used in the
    108  * different queueing disciplines queue ID, init routine, enqueue
    109  * routine, dequeue routine
    110  *
    111  ****************************************************************************/
    112 
    113 static const RF_DiskQueueSW_t diskqueuesw[] = {
    114 	{"fifo",		/* FIFO */
    115 		rf_FifoCreate,
    116 		rf_FifoEnqueue,
    117 		rf_FifoDequeue,
    118 		rf_FifoPeek,
    119 	rf_FifoPromote},
    120 
    121 	{"cvscan",		/* cvscan */
    122 		rf_CvscanCreate,
    123 		rf_CvscanEnqueue,
    124 		rf_CvscanDequeue,
    125 		rf_CvscanPeek,
    126 	rf_CvscanPromote},
    127 
    128 	{"sstf",		/* shortest seek time first */
    129 		rf_SstfCreate,
    130 		rf_SstfEnqueue,
    131 		rf_SstfDequeue,
    132 		rf_SstfPeek,
    133 	rf_SstfPromote},
    134 
    135 	{"scan",		/* SCAN (two-way elevator) */
    136 		rf_ScanCreate,
    137 		rf_SstfEnqueue,
    138 		rf_ScanDequeue,
    139 		rf_ScanPeek,
    140 	rf_SstfPromote},
    141 
    142 	{"cscan",		/* CSCAN (one-way elevator) */
    143 		rf_CscanCreate,
    144 		rf_SstfEnqueue,
    145 		rf_CscanDequeue,
    146 		rf_CscanPeek,
    147 	rf_SstfPromote},
    148 
    149 };
    150 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
    151 
    152 static struct pool rf_dqd_pool;
    153 #define RF_MAX_FREE_DQD 256
    154 #define RF_DQD_INC       16
    155 #define RF_DQD_INITIAL   64
    156 
    157 #include <sys/buf.h>
    158 
    159 static int
    160 init_dqd(RF_DiskQueueData_t *dqd)
    161 {
    162 
    163 	dqd->bp = (struct buf *) malloc(sizeof(struct buf),
    164 					M_RAIDFRAME, M_NOWAIT);
    165 	if (dqd->bp == NULL) {
    166 		return (ENOMEM);
    167 	}
    168 	memset(dqd->bp, 0, sizeof(struct buf));	/* if you don't do it, nobody
    169 						 * else will.. */
    170 	return (0);
    171 }
    172 
    173 static void
    174 clean_dqd(RF_DiskQueueData_t *dqd)
    175 {
    176 	free(dqd->bp, M_RAIDFRAME);
    177 }
    178 /* configures a single disk queue */
    179 
    180 int
    181 rf_ConfigureDiskQueue(RF_Raid_t *raidPtr, RF_DiskQueue_t *diskqueue,
    182 		      RF_RowCol_t c, const RF_DiskQueueSW_t *p,
    183 		      RF_SectorCount_t sectPerDisk, dev_t dev,
    184 		      int maxOutstanding, RF_ShutdownList_t **listp,
    185 		      RF_AllocListElem_t *clList)
    186 {
    187 	diskqueue->col = c;
    188 	diskqueue->qPtr = p;
    189 	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
    190 	diskqueue->dev = dev;
    191 	diskqueue->numOutstanding = 0;
    192 	diskqueue->queueLength = 0;
    193 	diskqueue->maxOutstanding = maxOutstanding;
    194 	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
    195 	diskqueue->nextLockingOp = NULL;
    196 	diskqueue->numWaiting = 0;
    197 	diskqueue->flags = 0;
    198 	diskqueue->raidPtr = raidPtr;
    199 	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[c];
    200 	rf_mutex_init(&diskqueue->mutex);
    201 	diskqueue->cond = 0;
    202 	return (0);
    203 }
    204 
    205 static void
    206 rf_ShutdownDiskQueueSystem(void *ignored)
    207 {
    208 	pool_destroy(&rf_dqd_pool);
    209 }
    210 
    211 int
    212 rf_ConfigureDiskQueueSystem(RF_ShutdownList_t **listp)
    213 {
    214 	int     rc;
    215 
    216 	pool_init(&rf_dqd_pool, sizeof(RF_DiskQueueData_t), 0, 0, 0,
    217 		  "rf_dqd_pl", NULL);
    218 	pool_sethiwat(&rf_dqd_pool, RF_MAX_FREE_DQD);
    219 	pool_prime(&rf_dqd_pool, RF_DQD_INITIAL);
    220 
    221 	rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
    222 	if (rc) {
    223 		rf_print_unable_to_add_shutdown( __FILE__, __LINE__, rc);
    224 		rf_ShutdownDiskQueueSystem(NULL);
    225 		return (rc);
    226 	}
    227 
    228 	return (0);
    229 }
    230 
    231 int
    232 rf_ConfigureDiskQueues(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
    233 		       RF_Config_t *cfgPtr)
    234 {
    235 	RF_DiskQueue_t *diskQueues, *spareQueues;
    236 	const RF_DiskQueueSW_t *p;
    237 	RF_RowCol_t r,c;
    238 	int     rc, i;
    239 
    240 	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
    241 
    242 	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
    243 		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
    244 			p = &diskqueuesw[i];
    245 			break;
    246 		}
    247 	}
    248 	if (p == NULL) {
    249 		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
    250 		p = &diskqueuesw[0];
    251 	}
    252 	raidPtr->qType = p;
    253 
    254 	RF_MallocAndAdd(diskQueues,
    255 			(raidPtr->numCol + RF_MAXSPARE) *
    256 			sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
    257 			raidPtr->cleanupList);
    258 	if (diskQueues == NULL)
    259 		return (ENOMEM);
    260 	raidPtr->Queues = diskQueues;
    261 
    262 	for (c = 0; c < raidPtr->numCol; c++) {
    263 		rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[c],
    264 					   c, p,
    265 					   raidPtr->sectorsPerDisk,
    266 					   raidPtr->Disks[c].dev,
    267 					   cfgPtr->maxOutstandingDiskReqs,
    268 					   listp, raidPtr->cleanupList);
    269 		if (rc)
    270 			return (rc);
    271 	}
    272 
    273 	spareQueues = &raidPtr->Queues[raidPtr->numCol];
    274 	for (r = 0; r < raidPtr->numSpare; r++) {
    275 		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
    276 					   raidPtr->numCol + r, p,
    277 					   raidPtr->sectorsPerDisk,
    278 					   raidPtr->Disks[raidPtr->numCol + r].dev,
    279 					   cfgPtr->maxOutstandingDiskReqs, listp,
    280 					   raidPtr->cleanupList);
    281 		if (rc)
    282 			return (rc);
    283 	}
    284 	return (0);
    285 }
    286 /* Enqueue a disk I/O
    287  *
    288  * Unfortunately, we have to do things differently in the different
    289  * environments (simulator, user-level, kernel).
    290  * At user level, all I/O is blocking, so we have 1 or more threads/disk
    291  * and the thread that enqueues is different from the thread that dequeues.
    292  * In the kernel, I/O is non-blocking and so we'd like to have multiple
    293  * I/Os outstanding on the physical disks when possible.
    294  *
    295  * when any request arrives at a queue, we have two choices:
    296  *    dispatch it to the lower levels
    297  *    queue it up
    298  *
    299  * kernel rules for when to do what:
    300  *    locking request:  queue empty => dispatch and lock queue,
    301  *                      else queue it
    302  *    unlocking req  :  always dispatch it
    303  *    normal req     :  queue empty => dispatch it & set priority
    304  *                      queue not full & priority is ok => dispatch it
    305  *                      else queue it
    306  *
    307  * user-level rules:
    308  *    always enqueue.  In the special case of an unlocking op, enqueue
    309  *    in a special way that will cause the unlocking op to be the next
    310  *    thing dequeued.
    311  *
    312  * simulator rules:
    313  *    Do the same as at user level, with the sleeps and wakeups suppressed.
    314  */
    315 void
    316 rf_DiskIOEnqueue(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int pri)
    317 {
    318 	RF_ETIMER_START(req->qtime);
    319 	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
    320 	req->priority = pri;
    321 
    322 #if RF_DEBUG_DISKQUEUE
    323 	if (rf_queueDebug && (req->numSector == 0)) {
    324 		printf("Warning: Enqueueing zero-sector access\n");
    325 	}
    326 #endif
    327 	/*
    328          * kernel
    329          */
    330 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    331 	/* locking request */
    332 	if (RF_LOCKING_REQ(req)) {
    333 		if (RF_QUEUE_EMPTY(queue)) {
    334 			Dprintf2("Dispatching pri %d locking op to c %d (queue empty)\n", pri, queue->col);
    335 			RF_LOCK_QUEUE(queue);
    336 			rf_DispatchKernelIO(queue, req);
    337 		} else {
    338 			queue->queueLength++;	/* increment count of number
    339 						 * of requests waiting in this
    340 						 * queue */
    341 			Dprintf2("Enqueueing pri %d locking op to c %d (queue not empty)\n", pri, queue->col);
    342 			req->queue = (void *) queue;
    343 			(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    344 		}
    345 	}
    346 	/* unlocking request */
    347 	else
    348 		if (RF_UNLOCKING_REQ(req)) {	/* we'll do the actual unlock
    349 						 * when this I/O completes */
    350 			Dprintf2("Dispatching pri %d unlocking op to c %d\n", pri, queue->col);
    351 			RF_ASSERT(RF_QUEUE_LOCKED(queue));
    352 			rf_DispatchKernelIO(queue, req);
    353 		}
    354 	/* normal request */
    355 		else
    356 			if (RF_OK_TO_DISPATCH(queue, req)) {
    357 				Dprintf2("Dispatching pri %d regular op to c %d (ok to dispatch)\n", pri, queue->col);
    358 				rf_DispatchKernelIO(queue, req);
    359 			} else {
    360 				queue->queueLength++;	/* increment count of
    361 							 * number of requests
    362 							 * waiting in this queue */
    363 				Dprintf2("Enqueueing pri %d regular op to c %d (not ok to dispatch)\n", pri, queue->col);
    364 				req->queue = (void *) queue;
    365 				(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    366 			}
    367 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    368 }
    369 
    370 
    371 /* get the next set of I/Os started, kernel version only */
    372 void
    373 rf_DiskIOComplete(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int status)
    374 {
    375 	int     done = 0;
    376 
    377 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    378 
    379 	/* unlock the queue: (1) after an unlocking req completes (2) after a
    380 	 * locking req fails */
    381 	if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
    382 		Dprintf1("DiskIOComplete: unlocking queue at c %d\n", queue->col);
    383 		RF_ASSERT(RF_QUEUE_LOCKED(queue));
    384 		RF_UNLOCK_QUEUE(queue);
    385 	}
    386 	queue->numOutstanding--;
    387 	RF_ASSERT(queue->numOutstanding >= 0);
    388 
    389 	/* dispatch requests to the disk until we find one that we can't. */
    390 	/* no reason to continue once we've filled up the queue */
    391 	/* no reason to even start if the queue is locked */
    392 
    393 	while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
    394 		if (queue->nextLockingOp) {
    395 			req = queue->nextLockingOp;
    396 			queue->nextLockingOp = NULL;
    397 			Dprintf2("DiskIOComplete: a pri %d locking req was pending at c %d\n", req->priority, queue->col);
    398 		} else {
    399 			req = (queue->qPtr->Dequeue) (queue->qHdr);
    400 			if (req != NULL) {
    401 				Dprintf2("DiskIOComplete: extracting pri %d req from queue at c %d\n", req->priority, queue->col);
    402 			} else {
    403 				Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
    404 			}
    405 		}
    406 		if (req) {
    407 			queue->queueLength--;	/* decrement count of number
    408 						 * of requests waiting in this
    409 						 * queue */
    410 			RF_ASSERT(queue->queueLength >= 0);
    411 		}
    412 		if (!req)
    413 			done = 1;
    414 		else
    415 			if (RF_LOCKING_REQ(req)) {
    416 				if (RF_QUEUE_EMPTY(queue)) {	/* dispatch it */
    417 					Dprintf2("DiskIOComplete: dispatching pri %d locking req to c %d (queue empty)\n", req->priority, queue->col);
    418 					RF_LOCK_QUEUE(queue);
    419 					rf_DispatchKernelIO(queue, req);
    420 					done = 1;
    421 				} else {	/* put it aside to wait for
    422 						 * the queue to drain */
    423 					Dprintf2("DiskIOComplete: postponing pri %d locking req to c %d\n", req->priority, queue->col);
    424 					RF_ASSERT(queue->nextLockingOp == NULL);
    425 					queue->nextLockingOp = req;
    426 					done = 1;
    427 				}
    428 			} else
    429 				if (RF_UNLOCKING_REQ(req)) {	/* should not happen:
    430 								 * unlocking ops should
    431 								 * not get queued */
    432 					RF_ASSERT(RF_QUEUE_LOCKED(queue));	/* support it anyway for
    433 										 * the future */
    434 					Dprintf2("DiskIOComplete: dispatching pri %d unl req to c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->col);
    435 					rf_DispatchKernelIO(queue, req);
    436 					done = 1;
    437 				} else
    438 					if (RF_OK_TO_DISPATCH(queue, req)) {
    439 						Dprintf2("DiskIOComplete: dispatching pri %d regular req to c %d (ok to dispatch)\n", req->priority, queue->col);
    440 						rf_DispatchKernelIO(queue, req);
    441 					} else {	/* we can't dispatch it,
    442 							 * so just re-enqueue
    443 							 * it.  */
    444 						/* potential trouble here if
    445 						 * disk queues batch reqs */
    446 						Dprintf2("DiskIOComplete: re-enqueueing pri %d regular req to c %d\n", req->priority, queue->col);
    447 						queue->queueLength++;
    448 						(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
    449 						done = 1;
    450 					}
    451 	}
    452 
    453 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    454 }
    455 /* promotes accesses tagged with the given parityStripeID from low priority
    456  * to normal priority.  This promotion is optional, meaning that a queue
    457  * need not implement it.  If there is no promotion routine associated with
    458  * a queue, this routine does nothing and returns -1.
    459  */
    460 int
    461 rf_DiskIOPromote(RF_DiskQueue_t *queue, RF_StripeNum_t parityStripeID,
    462 		 RF_ReconUnitNum_t which_ru)
    463 {
    464 	int     retval;
    465 
    466 	if (!queue->qPtr->Promote)
    467 		return (-1);
    468 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    469 	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
    470 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    471 	return (retval);
    472 }
    473 
    474 RF_DiskQueueData_t *
    475 rf_CreateDiskQueueData(RF_IoType_t typ, RF_SectorNum_t ssect,
    476 		       RF_SectorCount_t nsect, caddr_t buf,
    477 		       RF_StripeNum_t parityStripeID,
    478 		       RF_ReconUnitNum_t which_ru,
    479 		       int (*wakeF) (void *, int), void *arg,
    480 		       RF_DiskQueueData_t *next,
    481 		       RF_AccTraceEntry_t *tracerec, void *raidPtr,
    482 		       RF_DiskQueueDataFlags_t flags, void *kb_proc)
    483 {
    484 	RF_DiskQueueData_t *p;
    485 
    486 	p = pool_get(&rf_dqd_pool, PR_WAITOK);
    487 	if (init_dqd(p)) {
    488 		/* no memory for the buffer!?!? */
    489 		pool_put(&rf_dqd_pool, p);
    490 		return(NULL);
    491 	}
    492 
    493 	p->sectorOffset = ssect + rf_protectedSectors;
    494 	p->numSector = nsect;
    495 	p->type = typ;
    496 	p->buf = buf;
    497 	p->parityStripeID = parityStripeID;
    498 	p->which_ru = which_ru;
    499 	p->CompleteFunc = wakeF;
    500 	p->argument = arg;
    501 	p->next = next;
    502 	p->tracerec = tracerec;
    503 	p->priority = RF_IO_NORMAL_PRIORITY;
    504 	p->raidPtr = raidPtr;
    505 	p->flags = flags;
    506 	p->b_proc = kb_proc;
    507 	return (p);
    508 }
    509 
    510 void
    511 rf_FreeDiskQueueData(RF_DiskQueueData_t *p)
    512 {
    513 	clean_dqd(p);
    514 	pool_put(&rf_dqd_pool, p);
    515 }
    516