rf_diskqueue.c revision 1.29 1 /* $NetBSD: rf_diskqueue.c,v 1.29 2004/01/01 19:27:35 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /****************************************************************************
30 *
31 * rf_diskqueue.c -- higher-level disk queue code
32 *
33 * the routines here are a generic wrapper around the actual queueing
34 * routines. The code here implements thread scheduling, synchronization,
35 * and locking ops (see below) on top of the lower-level queueing code.
36 *
37 * to support atomic RMW, we implement "locking operations". When a
38 * locking op is dispatched to the lower levels of the driver, the
39 * queue is locked, and no further I/Os are dispatched until the queue
40 * receives & completes a corresponding "unlocking operation". This
41 * code relies on the higher layers to guarantee that a locking op
42 * will always be eventually followed by an unlocking op. The model
43 * is that the higher layers are structured so locking and unlocking
44 * ops occur in pairs, i.e. an unlocking op cannot be generated until
45 * after a locking op reports completion. There is no good way to
46 * check to see that an unlocking op "corresponds" to the op that
47 * currently has the queue locked, so we make no such attempt. Since
48 * by definition there can be only one locking op outstanding on a
49 * disk, this should not be a problem.
50 *
51 * In the kernel, we allow multiple I/Os to be concurrently dispatched
52 * to the disk driver. In order to support locking ops in this
53 * environment, when we decide to do a locking op, we stop dispatching
54 * new I/Os and wait until all dispatched I/Os have completed before
55 * dispatching the locking op.
56 *
57 * Unfortunately, the code is different in the 3 different operating
58 * states (user level, kernel, simulator). In the kernel, I/O is
59 * non-blocking, and we have no disk threads to dispatch for us.
60 * Therefore, we have to dispatch new I/Os to the scsi driver at the
61 * time of enqueue, and also at the time of completion. At user
62 * level, I/O is blocking, and so only the disk threads may dispatch
63 * I/Os. Thus at user level, all we can do at enqueue time is enqueue
64 * and wake up the disk thread to do the dispatch.
65 *
66 ****************************************************************************/
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.29 2004/01/01 19:27:35 oster Exp $");
70
71 #include <dev/raidframe/raidframevar.h>
72
73 #include "rf_threadstuff.h"
74 #include "rf_raid.h"
75 #include "rf_diskqueue.h"
76 #include "rf_alloclist.h"
77 #include "rf_acctrace.h"
78 #include "rf_etimer.h"
79 #include "rf_general.h"
80 #include "rf_debugprint.h"
81 #include "rf_shutdown.h"
82 #include "rf_cvscan.h"
83 #include "rf_sstf.h"
84 #include "rf_fifo.h"
85 #include "rf_kintf.h"
86
87 static void rf_ShutdownDiskQueueSystem(void *);
88
89 #ifndef RF_DEBUG_DISKQUEUE
90 #define RF_DEBUG_DISKQUEUE 0
91 #endif
92
93 #if RF_DEBUG_DISKQUEUE
94 #define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
95 #define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
96 #define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
97 #else
98 #define Dprintf1(s,a)
99 #define Dprintf2(s,a,b)
100 #define Dprintf3(s,a,b,c)
101 #endif
102
103 /*****************************************************************************
104 *
105 * the disk queue switch defines all the functions used in the
106 * different queueing disciplines queue ID, init routine, enqueue
107 * routine, dequeue routine
108 *
109 ****************************************************************************/
110
111 static const RF_DiskQueueSW_t diskqueuesw[] = {
112 {"fifo", /* FIFO */
113 rf_FifoCreate,
114 rf_FifoEnqueue,
115 rf_FifoDequeue,
116 rf_FifoPeek,
117 rf_FifoPromote},
118
119 {"cvscan", /* cvscan */
120 rf_CvscanCreate,
121 rf_CvscanEnqueue,
122 rf_CvscanDequeue,
123 rf_CvscanPeek,
124 rf_CvscanPromote},
125
126 {"sstf", /* shortest seek time first */
127 rf_SstfCreate,
128 rf_SstfEnqueue,
129 rf_SstfDequeue,
130 rf_SstfPeek,
131 rf_SstfPromote},
132
133 {"scan", /* SCAN (two-way elevator) */
134 rf_ScanCreate,
135 rf_SstfEnqueue,
136 rf_ScanDequeue,
137 rf_ScanPeek,
138 rf_SstfPromote},
139
140 {"cscan", /* CSCAN (one-way elevator) */
141 rf_CscanCreate,
142 rf_SstfEnqueue,
143 rf_CscanDequeue,
144 rf_CscanPeek,
145 rf_SstfPromote},
146
147 };
148 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
149
150 static struct pool rf_dqd_pool;
151 #define RF_MAX_FREE_DQD 256
152 #define RF_DQD_INC 16
153 #define RF_DQD_INITIAL 64
154
155 #include <sys/buf.h>
156
157 /* configures a single disk queue */
158
159 int
160 rf_ConfigureDiskQueue(RF_Raid_t *raidPtr, RF_DiskQueue_t *diskqueue,
161 RF_RowCol_t c, const RF_DiskQueueSW_t *p,
162 RF_SectorCount_t sectPerDisk, dev_t dev,
163 int maxOutstanding, RF_ShutdownList_t **listp,
164 RF_AllocListElem_t *clList)
165 {
166 diskqueue->col = c;
167 diskqueue->qPtr = p;
168 diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
169 diskqueue->dev = dev;
170 diskqueue->numOutstanding = 0;
171 diskqueue->queueLength = 0;
172 diskqueue->maxOutstanding = maxOutstanding;
173 diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
174 diskqueue->nextLockingOp = NULL;
175 diskqueue->flags = 0;
176 diskqueue->raidPtr = raidPtr;
177 diskqueue->rf_cinfo = &raidPtr->raid_cinfo[c];
178 rf_mutex_init(&diskqueue->mutex);
179 diskqueue->cond = 0;
180 return (0);
181 }
182
183 static void
184 rf_ShutdownDiskQueueSystem(void *ignored)
185 {
186 pool_destroy(&rf_dqd_pool);
187 }
188
189 int
190 rf_ConfigureDiskQueueSystem(RF_ShutdownList_t **listp)
191 {
192 int rc;
193
194 pool_init(&rf_dqd_pool, sizeof(RF_DiskQueueData_t), 0, 0, 0,
195 "rf_dqd_pl", NULL);
196 pool_sethiwat(&rf_dqd_pool, RF_MAX_FREE_DQD);
197 pool_prime(&rf_dqd_pool, RF_DQD_INITIAL);
198
199 rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
200 if (rc) {
201 rf_print_unable_to_add_shutdown( __FILE__, __LINE__, rc);
202 rf_ShutdownDiskQueueSystem(NULL);
203 return (rc);
204 }
205
206 return (0);
207 }
208
209 int
210 rf_ConfigureDiskQueues(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
211 RF_Config_t *cfgPtr)
212 {
213 RF_DiskQueue_t *diskQueues, *spareQueues;
214 const RF_DiskQueueSW_t *p;
215 RF_RowCol_t r,c;
216 int rc, i;
217
218 raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
219
220 for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
221 if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
222 p = &diskqueuesw[i];
223 break;
224 }
225 }
226 if (p == NULL) {
227 RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
228 p = &diskqueuesw[0];
229 }
230 raidPtr->qType = p;
231
232 RF_MallocAndAdd(diskQueues,
233 (raidPtr->numCol + RF_MAXSPARE) *
234 sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
235 raidPtr->cleanupList);
236 if (diskQueues == NULL)
237 return (ENOMEM);
238 raidPtr->Queues = diskQueues;
239
240 for (c = 0; c < raidPtr->numCol; c++) {
241 rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[c],
242 c, p,
243 raidPtr->sectorsPerDisk,
244 raidPtr->Disks[c].dev,
245 cfgPtr->maxOutstandingDiskReqs,
246 listp, raidPtr->cleanupList);
247 if (rc)
248 return (rc);
249 }
250
251 spareQueues = &raidPtr->Queues[raidPtr->numCol];
252 for (r = 0; r < raidPtr->numSpare; r++) {
253 rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
254 raidPtr->numCol + r, p,
255 raidPtr->sectorsPerDisk,
256 raidPtr->Disks[raidPtr->numCol + r].dev,
257 cfgPtr->maxOutstandingDiskReqs, listp,
258 raidPtr->cleanupList);
259 if (rc)
260 return (rc);
261 }
262 return (0);
263 }
264 /* Enqueue a disk I/O
265 *
266 * Unfortunately, we have to do things differently in the different
267 * environments (simulator, user-level, kernel).
268 * At user level, all I/O is blocking, so we have 1 or more threads/disk
269 * and the thread that enqueues is different from the thread that dequeues.
270 * In the kernel, I/O is non-blocking and so we'd like to have multiple
271 * I/Os outstanding on the physical disks when possible.
272 *
273 * when any request arrives at a queue, we have two choices:
274 * dispatch it to the lower levels
275 * queue it up
276 *
277 * kernel rules for when to do what:
278 * locking request: queue empty => dispatch and lock queue,
279 * else queue it
280 * unlocking req : always dispatch it
281 * normal req : queue empty => dispatch it & set priority
282 * queue not full & priority is ok => dispatch it
283 * else queue it
284 *
285 * user-level rules:
286 * always enqueue. In the special case of an unlocking op, enqueue
287 * in a special way that will cause the unlocking op to be the next
288 * thing dequeued.
289 *
290 * simulator rules:
291 * Do the same as at user level, with the sleeps and wakeups suppressed.
292 */
293 void
294 rf_DiskIOEnqueue(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int pri)
295 {
296 RF_ETIMER_START(req->qtime);
297 RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
298 req->priority = pri;
299
300 #if RF_DEBUG_DISKQUEUE
301 if (rf_queueDebug && (req->numSector == 0)) {
302 printf("Warning: Enqueueing zero-sector access\n");
303 }
304 #endif
305 /*
306 * kernel
307 */
308 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
309 /* locking request */
310 if (RF_LOCKING_REQ(req)) {
311 if (RF_QUEUE_EMPTY(queue)) {
312 Dprintf2("Dispatching pri %d locking op to c %d (queue empty)\n", pri, queue->col);
313 RF_LOCK_QUEUE(queue);
314 rf_DispatchKernelIO(queue, req);
315 } else {
316 queue->queueLength++; /* increment count of number
317 * of requests waiting in this
318 * queue */
319 Dprintf2("Enqueueing pri %d locking op to c %d (queue not empty)\n", pri, queue->col);
320 req->queue = (void *) queue;
321 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
322 }
323 }
324 /* unlocking request */
325 else
326 if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock
327 * when this I/O completes */
328 Dprintf2("Dispatching pri %d unlocking op to c %d\n", pri, queue->col);
329 RF_ASSERT(RF_QUEUE_LOCKED(queue));
330 rf_DispatchKernelIO(queue, req);
331 }
332 /* normal request */
333 else
334 if (RF_OK_TO_DISPATCH(queue, req)) {
335 Dprintf2("Dispatching pri %d regular op to c %d (ok to dispatch)\n", pri, queue->col);
336 rf_DispatchKernelIO(queue, req);
337 } else {
338 queue->queueLength++; /* increment count of
339 * number of requests
340 * waiting in this queue */
341 Dprintf2("Enqueueing pri %d regular op to c %d (not ok to dispatch)\n", pri, queue->col);
342 req->queue = (void *) queue;
343 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
344 }
345 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
346 }
347
348
349 /* get the next set of I/Os started, kernel version only */
350 void
351 rf_DiskIOComplete(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int status)
352 {
353 int done = 0;
354
355 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
356
357 /* unlock the queue: (1) after an unlocking req completes (2) after a
358 * locking req fails */
359 if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
360 Dprintf1("DiskIOComplete: unlocking queue at c %d\n", queue->col);
361 RF_ASSERT(RF_QUEUE_LOCKED(queue));
362 RF_UNLOCK_QUEUE(queue);
363 }
364 queue->numOutstanding--;
365 RF_ASSERT(queue->numOutstanding >= 0);
366
367 /* dispatch requests to the disk until we find one that we can't. */
368 /* no reason to continue once we've filled up the queue */
369 /* no reason to even start if the queue is locked */
370
371 while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
372 if (queue->nextLockingOp) {
373 req = queue->nextLockingOp;
374 queue->nextLockingOp = NULL;
375 Dprintf2("DiskIOComplete: a pri %d locking req was pending at c %d\n", req->priority, queue->col);
376 } else {
377 req = (queue->qPtr->Dequeue) (queue->qHdr);
378 if (req != NULL) {
379 Dprintf2("DiskIOComplete: extracting pri %d req from queue at c %d\n", req->priority, queue->col);
380 } else {
381 Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
382 }
383 }
384 if (req) {
385 queue->queueLength--; /* decrement count of number
386 * of requests waiting in this
387 * queue */
388 RF_ASSERT(queue->queueLength >= 0);
389 }
390 if (!req)
391 done = 1;
392 else
393 if (RF_LOCKING_REQ(req)) {
394 if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */
395 Dprintf2("DiskIOComplete: dispatching pri %d locking req to c %d (queue empty)\n", req->priority, queue->col);
396 RF_LOCK_QUEUE(queue);
397 rf_DispatchKernelIO(queue, req);
398 done = 1;
399 } else { /* put it aside to wait for
400 * the queue to drain */
401 Dprintf2("DiskIOComplete: postponing pri %d locking req to c %d\n", req->priority, queue->col);
402 RF_ASSERT(queue->nextLockingOp == NULL);
403 queue->nextLockingOp = req;
404 done = 1;
405 }
406 } else
407 if (RF_UNLOCKING_REQ(req)) { /* should not happen:
408 * unlocking ops should
409 * not get queued */
410 RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for
411 * the future */
412 Dprintf2("DiskIOComplete: dispatching pri %d unl req to c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->col);
413 rf_DispatchKernelIO(queue, req);
414 done = 1;
415 } else
416 if (RF_OK_TO_DISPATCH(queue, req)) {
417 Dprintf2("DiskIOComplete: dispatching pri %d regular req to c %d (ok to dispatch)\n", req->priority, queue->col);
418 rf_DispatchKernelIO(queue, req);
419 } else { /* we can't dispatch it,
420 * so just re-enqueue
421 * it. */
422 /* potential trouble here if
423 * disk queues batch reqs */
424 Dprintf2("DiskIOComplete: re-enqueueing pri %d regular req to c %d\n", req->priority, queue->col);
425 queue->queueLength++;
426 (queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
427 done = 1;
428 }
429 }
430
431 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
432 }
433 /* promotes accesses tagged with the given parityStripeID from low priority
434 * to normal priority. This promotion is optional, meaning that a queue
435 * need not implement it. If there is no promotion routine associated with
436 * a queue, this routine does nothing and returns -1.
437 */
438 int
439 rf_DiskIOPromote(RF_DiskQueue_t *queue, RF_StripeNum_t parityStripeID,
440 RF_ReconUnitNum_t which_ru)
441 {
442 int retval;
443
444 if (!queue->qPtr->Promote)
445 return (-1);
446 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
447 retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
448 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
449 return (retval);
450 }
451
452 RF_DiskQueueData_t *
453 rf_CreateDiskQueueData(RF_IoType_t typ, RF_SectorNum_t ssect,
454 RF_SectorCount_t nsect, caddr_t buf,
455 RF_StripeNum_t parityStripeID,
456 RF_ReconUnitNum_t which_ru,
457 int (*wakeF) (void *, int), void *arg,
458 RF_DiskQueueData_t *next,
459 RF_AccTraceEntry_t *tracerec, void *raidPtr,
460 RF_DiskQueueDataFlags_t flags, void *kb_proc)
461 {
462 RF_DiskQueueData_t *p;
463
464 p = pool_get(&rf_dqd_pool, PR_WAITOK);
465 p->bp = pool_get(&bufpool, PR_NOWAIT); /* XXX: make up our minds here.
466 WAITOK, or NOWAIT?? */
467
468 if (p->bp == NULL) {
469 /* no memory for the buffer!?!? */
470 pool_put(&rf_dqd_pool, p);
471 return(NULL);
472 }
473
474 memset(p->bp, 0, sizeof(struct buf));
475 p->sectorOffset = ssect + rf_protectedSectors;
476 p->numSector = nsect;
477 p->type = typ;
478 p->buf = buf;
479 p->parityStripeID = parityStripeID;
480 p->which_ru = which_ru;
481 p->CompleteFunc = wakeF;
482 p->argument = arg;
483 p->next = next;
484 p->tracerec = tracerec;
485 p->priority = RF_IO_NORMAL_PRIORITY;
486 p->raidPtr = raidPtr;
487 p->flags = flags;
488 p->b_proc = kb_proc;
489 return (p);
490 }
491
492 void
493 rf_FreeDiskQueueData(RF_DiskQueueData_t *p)
494 {
495 pool_put(&bufpool, p->bp);
496 pool_put(&rf_dqd_pool, p);
497 }
498