Home | History | Annotate | Line # | Download | only in raidframe
rf_diskqueue.c revision 1.29
      1 /*	$NetBSD: rf_diskqueue.c,v 1.29 2004/01/01 19:27:35 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************
     30  *
     31  * rf_diskqueue.c -- higher-level disk queue code
     32  *
     33  * the routines here are a generic wrapper around the actual queueing
     34  * routines.  The code here implements thread scheduling, synchronization,
     35  * and locking ops (see below) on top of the lower-level queueing code.
     36  *
     37  * to support atomic RMW, we implement "locking operations".  When a
     38  * locking op is dispatched to the lower levels of the driver, the
     39  * queue is locked, and no further I/Os are dispatched until the queue
     40  * receives & completes a corresponding "unlocking operation".  This
     41  * code relies on the higher layers to guarantee that a locking op
     42  * will always be eventually followed by an unlocking op.  The model
     43  * is that the higher layers are structured so locking and unlocking
     44  * ops occur in pairs, i.e.  an unlocking op cannot be generated until
     45  * after a locking op reports completion.  There is no good way to
     46  * check to see that an unlocking op "corresponds" to the op that
     47  * currently has the queue locked, so we make no such attempt.  Since
     48  * by definition there can be only one locking op outstanding on a
     49  * disk, this should not be a problem.
     50  *
     51  * In the kernel, we allow multiple I/Os to be concurrently dispatched
     52  * to the disk driver.  In order to support locking ops in this
     53  * environment, when we decide to do a locking op, we stop dispatching
     54  * new I/Os and wait until all dispatched I/Os have completed before
     55  * dispatching the locking op.
     56  *
     57  * Unfortunately, the code is different in the 3 different operating
     58  * states (user level, kernel, simulator).  In the kernel, I/O is
     59  * non-blocking, and we have no disk threads to dispatch for us.
     60  * Therefore, we have to dispatch new I/Os to the scsi driver at the
     61  * time of enqueue, and also at the time of completion.  At user
     62  * level, I/O is blocking, and so only the disk threads may dispatch
     63  * I/Os.  Thus at user level, all we can do at enqueue time is enqueue
     64  * and wake up the disk thread to do the dispatch.
     65  *
     66  ****************************************************************************/
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.29 2004/01/01 19:27:35 oster Exp $");
     70 
     71 #include <dev/raidframe/raidframevar.h>
     72 
     73 #include "rf_threadstuff.h"
     74 #include "rf_raid.h"
     75 #include "rf_diskqueue.h"
     76 #include "rf_alloclist.h"
     77 #include "rf_acctrace.h"
     78 #include "rf_etimer.h"
     79 #include "rf_general.h"
     80 #include "rf_debugprint.h"
     81 #include "rf_shutdown.h"
     82 #include "rf_cvscan.h"
     83 #include "rf_sstf.h"
     84 #include "rf_fifo.h"
     85 #include "rf_kintf.h"
     86 
     87 static void rf_ShutdownDiskQueueSystem(void *);
     88 
     89 #ifndef RF_DEBUG_DISKQUEUE
     90 #define RF_DEBUG_DISKQUEUE 0
     91 #endif
     92 
     93 #if RF_DEBUG_DISKQUEUE
     94 #define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     95 #define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     96 #define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
     97 #else
     98 #define Dprintf1(s,a)
     99 #define Dprintf2(s,a,b)
    100 #define Dprintf3(s,a,b,c)
    101 #endif
    102 
    103 /*****************************************************************************
    104  *
    105  * the disk queue switch defines all the functions used in the
    106  * different queueing disciplines queue ID, init routine, enqueue
    107  * routine, dequeue routine
    108  *
    109  ****************************************************************************/
    110 
    111 static const RF_DiskQueueSW_t diskqueuesw[] = {
    112 	{"fifo",		/* FIFO */
    113 		rf_FifoCreate,
    114 		rf_FifoEnqueue,
    115 		rf_FifoDequeue,
    116 		rf_FifoPeek,
    117 	rf_FifoPromote},
    118 
    119 	{"cvscan",		/* cvscan */
    120 		rf_CvscanCreate,
    121 		rf_CvscanEnqueue,
    122 		rf_CvscanDequeue,
    123 		rf_CvscanPeek,
    124 	rf_CvscanPromote},
    125 
    126 	{"sstf",		/* shortest seek time first */
    127 		rf_SstfCreate,
    128 		rf_SstfEnqueue,
    129 		rf_SstfDequeue,
    130 		rf_SstfPeek,
    131 	rf_SstfPromote},
    132 
    133 	{"scan",		/* SCAN (two-way elevator) */
    134 		rf_ScanCreate,
    135 		rf_SstfEnqueue,
    136 		rf_ScanDequeue,
    137 		rf_ScanPeek,
    138 	rf_SstfPromote},
    139 
    140 	{"cscan",		/* CSCAN (one-way elevator) */
    141 		rf_CscanCreate,
    142 		rf_SstfEnqueue,
    143 		rf_CscanDequeue,
    144 		rf_CscanPeek,
    145 	rf_SstfPromote},
    146 
    147 };
    148 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
    149 
    150 static struct pool rf_dqd_pool;
    151 #define RF_MAX_FREE_DQD 256
    152 #define RF_DQD_INC       16
    153 #define RF_DQD_INITIAL   64
    154 
    155 #include <sys/buf.h>
    156 
    157 /* configures a single disk queue */
    158 
    159 int
    160 rf_ConfigureDiskQueue(RF_Raid_t *raidPtr, RF_DiskQueue_t *diskqueue,
    161 		      RF_RowCol_t c, const RF_DiskQueueSW_t *p,
    162 		      RF_SectorCount_t sectPerDisk, dev_t dev,
    163 		      int maxOutstanding, RF_ShutdownList_t **listp,
    164 		      RF_AllocListElem_t *clList)
    165 {
    166 	diskqueue->col = c;
    167 	diskqueue->qPtr = p;
    168 	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
    169 	diskqueue->dev = dev;
    170 	diskqueue->numOutstanding = 0;
    171 	diskqueue->queueLength = 0;
    172 	diskqueue->maxOutstanding = maxOutstanding;
    173 	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
    174 	diskqueue->nextLockingOp = NULL;
    175 	diskqueue->flags = 0;
    176 	diskqueue->raidPtr = raidPtr;
    177 	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[c];
    178 	rf_mutex_init(&diskqueue->mutex);
    179 	diskqueue->cond = 0;
    180 	return (0);
    181 }
    182 
    183 static void
    184 rf_ShutdownDiskQueueSystem(void *ignored)
    185 {
    186 	pool_destroy(&rf_dqd_pool);
    187 }
    188 
    189 int
    190 rf_ConfigureDiskQueueSystem(RF_ShutdownList_t **listp)
    191 {
    192 	int     rc;
    193 
    194 	pool_init(&rf_dqd_pool, sizeof(RF_DiskQueueData_t), 0, 0, 0,
    195 		  "rf_dqd_pl", NULL);
    196 	pool_sethiwat(&rf_dqd_pool, RF_MAX_FREE_DQD);
    197 	pool_prime(&rf_dqd_pool, RF_DQD_INITIAL);
    198 
    199 	rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
    200 	if (rc) {
    201 		rf_print_unable_to_add_shutdown( __FILE__, __LINE__, rc);
    202 		rf_ShutdownDiskQueueSystem(NULL);
    203 		return (rc);
    204 	}
    205 
    206 	return (0);
    207 }
    208 
    209 int
    210 rf_ConfigureDiskQueues(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
    211 		       RF_Config_t *cfgPtr)
    212 {
    213 	RF_DiskQueue_t *diskQueues, *spareQueues;
    214 	const RF_DiskQueueSW_t *p;
    215 	RF_RowCol_t r,c;
    216 	int     rc, i;
    217 
    218 	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
    219 
    220 	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
    221 		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
    222 			p = &diskqueuesw[i];
    223 			break;
    224 		}
    225 	}
    226 	if (p == NULL) {
    227 		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
    228 		p = &diskqueuesw[0];
    229 	}
    230 	raidPtr->qType = p;
    231 
    232 	RF_MallocAndAdd(diskQueues,
    233 			(raidPtr->numCol + RF_MAXSPARE) *
    234 			sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
    235 			raidPtr->cleanupList);
    236 	if (diskQueues == NULL)
    237 		return (ENOMEM);
    238 	raidPtr->Queues = diskQueues;
    239 
    240 	for (c = 0; c < raidPtr->numCol; c++) {
    241 		rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[c],
    242 					   c, p,
    243 					   raidPtr->sectorsPerDisk,
    244 					   raidPtr->Disks[c].dev,
    245 					   cfgPtr->maxOutstandingDiskReqs,
    246 					   listp, raidPtr->cleanupList);
    247 		if (rc)
    248 			return (rc);
    249 	}
    250 
    251 	spareQueues = &raidPtr->Queues[raidPtr->numCol];
    252 	for (r = 0; r < raidPtr->numSpare; r++) {
    253 		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
    254 					   raidPtr->numCol + r, p,
    255 					   raidPtr->sectorsPerDisk,
    256 					   raidPtr->Disks[raidPtr->numCol + r].dev,
    257 					   cfgPtr->maxOutstandingDiskReqs, listp,
    258 					   raidPtr->cleanupList);
    259 		if (rc)
    260 			return (rc);
    261 	}
    262 	return (0);
    263 }
    264 /* Enqueue a disk I/O
    265  *
    266  * Unfortunately, we have to do things differently in the different
    267  * environments (simulator, user-level, kernel).
    268  * At user level, all I/O is blocking, so we have 1 or more threads/disk
    269  * and the thread that enqueues is different from the thread that dequeues.
    270  * In the kernel, I/O is non-blocking and so we'd like to have multiple
    271  * I/Os outstanding on the physical disks when possible.
    272  *
    273  * when any request arrives at a queue, we have two choices:
    274  *    dispatch it to the lower levels
    275  *    queue it up
    276  *
    277  * kernel rules for when to do what:
    278  *    locking request:  queue empty => dispatch and lock queue,
    279  *                      else queue it
    280  *    unlocking req  :  always dispatch it
    281  *    normal req     :  queue empty => dispatch it & set priority
    282  *                      queue not full & priority is ok => dispatch it
    283  *                      else queue it
    284  *
    285  * user-level rules:
    286  *    always enqueue.  In the special case of an unlocking op, enqueue
    287  *    in a special way that will cause the unlocking op to be the next
    288  *    thing dequeued.
    289  *
    290  * simulator rules:
    291  *    Do the same as at user level, with the sleeps and wakeups suppressed.
    292  */
    293 void
    294 rf_DiskIOEnqueue(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int pri)
    295 {
    296 	RF_ETIMER_START(req->qtime);
    297 	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
    298 	req->priority = pri;
    299 
    300 #if RF_DEBUG_DISKQUEUE
    301 	if (rf_queueDebug && (req->numSector == 0)) {
    302 		printf("Warning: Enqueueing zero-sector access\n");
    303 	}
    304 #endif
    305 	/*
    306          * kernel
    307          */
    308 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    309 	/* locking request */
    310 	if (RF_LOCKING_REQ(req)) {
    311 		if (RF_QUEUE_EMPTY(queue)) {
    312 			Dprintf2("Dispatching pri %d locking op to c %d (queue empty)\n", pri, queue->col);
    313 			RF_LOCK_QUEUE(queue);
    314 			rf_DispatchKernelIO(queue, req);
    315 		} else {
    316 			queue->queueLength++;	/* increment count of number
    317 						 * of requests waiting in this
    318 						 * queue */
    319 			Dprintf2("Enqueueing pri %d locking op to c %d (queue not empty)\n", pri, queue->col);
    320 			req->queue = (void *) queue;
    321 			(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    322 		}
    323 	}
    324 	/* unlocking request */
    325 	else
    326 		if (RF_UNLOCKING_REQ(req)) {	/* we'll do the actual unlock
    327 						 * when this I/O completes */
    328 			Dprintf2("Dispatching pri %d unlocking op to c %d\n", pri, queue->col);
    329 			RF_ASSERT(RF_QUEUE_LOCKED(queue));
    330 			rf_DispatchKernelIO(queue, req);
    331 		}
    332 	/* normal request */
    333 		else
    334 			if (RF_OK_TO_DISPATCH(queue, req)) {
    335 				Dprintf2("Dispatching pri %d regular op to c %d (ok to dispatch)\n", pri, queue->col);
    336 				rf_DispatchKernelIO(queue, req);
    337 			} else {
    338 				queue->queueLength++;	/* increment count of
    339 							 * number of requests
    340 							 * waiting in this queue */
    341 				Dprintf2("Enqueueing pri %d regular op to c %d (not ok to dispatch)\n", pri, queue->col);
    342 				req->queue = (void *) queue;
    343 				(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    344 			}
    345 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    346 }
    347 
    348 
    349 /* get the next set of I/Os started, kernel version only */
    350 void
    351 rf_DiskIOComplete(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int status)
    352 {
    353 	int     done = 0;
    354 
    355 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    356 
    357 	/* unlock the queue: (1) after an unlocking req completes (2) after a
    358 	 * locking req fails */
    359 	if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
    360 		Dprintf1("DiskIOComplete: unlocking queue at c %d\n", queue->col);
    361 		RF_ASSERT(RF_QUEUE_LOCKED(queue));
    362 		RF_UNLOCK_QUEUE(queue);
    363 	}
    364 	queue->numOutstanding--;
    365 	RF_ASSERT(queue->numOutstanding >= 0);
    366 
    367 	/* dispatch requests to the disk until we find one that we can't. */
    368 	/* no reason to continue once we've filled up the queue */
    369 	/* no reason to even start if the queue is locked */
    370 
    371 	while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
    372 		if (queue->nextLockingOp) {
    373 			req = queue->nextLockingOp;
    374 			queue->nextLockingOp = NULL;
    375 			Dprintf2("DiskIOComplete: a pri %d locking req was pending at c %d\n", req->priority, queue->col);
    376 		} else {
    377 			req = (queue->qPtr->Dequeue) (queue->qHdr);
    378 			if (req != NULL) {
    379 				Dprintf2("DiskIOComplete: extracting pri %d req from queue at c %d\n", req->priority, queue->col);
    380 			} else {
    381 				Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
    382 			}
    383 		}
    384 		if (req) {
    385 			queue->queueLength--;	/* decrement count of number
    386 						 * of requests waiting in this
    387 						 * queue */
    388 			RF_ASSERT(queue->queueLength >= 0);
    389 		}
    390 		if (!req)
    391 			done = 1;
    392 		else
    393 			if (RF_LOCKING_REQ(req)) {
    394 				if (RF_QUEUE_EMPTY(queue)) {	/* dispatch it */
    395 					Dprintf2("DiskIOComplete: dispatching pri %d locking req to c %d (queue empty)\n", req->priority, queue->col);
    396 					RF_LOCK_QUEUE(queue);
    397 					rf_DispatchKernelIO(queue, req);
    398 					done = 1;
    399 				} else {	/* put it aside to wait for
    400 						 * the queue to drain */
    401 					Dprintf2("DiskIOComplete: postponing pri %d locking req to c %d\n", req->priority, queue->col);
    402 					RF_ASSERT(queue->nextLockingOp == NULL);
    403 					queue->nextLockingOp = req;
    404 					done = 1;
    405 				}
    406 			} else
    407 				if (RF_UNLOCKING_REQ(req)) {	/* should not happen:
    408 								 * unlocking ops should
    409 								 * not get queued */
    410 					RF_ASSERT(RF_QUEUE_LOCKED(queue));	/* support it anyway for
    411 										 * the future */
    412 					Dprintf2("DiskIOComplete: dispatching pri %d unl req to c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->col);
    413 					rf_DispatchKernelIO(queue, req);
    414 					done = 1;
    415 				} else
    416 					if (RF_OK_TO_DISPATCH(queue, req)) {
    417 						Dprintf2("DiskIOComplete: dispatching pri %d regular req to c %d (ok to dispatch)\n", req->priority, queue->col);
    418 						rf_DispatchKernelIO(queue, req);
    419 					} else {	/* we can't dispatch it,
    420 							 * so just re-enqueue
    421 							 * it.  */
    422 						/* potential trouble here if
    423 						 * disk queues batch reqs */
    424 						Dprintf2("DiskIOComplete: re-enqueueing pri %d regular req to c %d\n", req->priority, queue->col);
    425 						queue->queueLength++;
    426 						(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
    427 						done = 1;
    428 					}
    429 	}
    430 
    431 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    432 }
    433 /* promotes accesses tagged with the given parityStripeID from low priority
    434  * to normal priority.  This promotion is optional, meaning that a queue
    435  * need not implement it.  If there is no promotion routine associated with
    436  * a queue, this routine does nothing and returns -1.
    437  */
    438 int
    439 rf_DiskIOPromote(RF_DiskQueue_t *queue, RF_StripeNum_t parityStripeID,
    440 		 RF_ReconUnitNum_t which_ru)
    441 {
    442 	int     retval;
    443 
    444 	if (!queue->qPtr->Promote)
    445 		return (-1);
    446 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    447 	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
    448 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    449 	return (retval);
    450 }
    451 
    452 RF_DiskQueueData_t *
    453 rf_CreateDiskQueueData(RF_IoType_t typ, RF_SectorNum_t ssect,
    454 		       RF_SectorCount_t nsect, caddr_t buf,
    455 		       RF_StripeNum_t parityStripeID,
    456 		       RF_ReconUnitNum_t which_ru,
    457 		       int (*wakeF) (void *, int), void *arg,
    458 		       RF_DiskQueueData_t *next,
    459 		       RF_AccTraceEntry_t *tracerec, void *raidPtr,
    460 		       RF_DiskQueueDataFlags_t flags, void *kb_proc)
    461 {
    462 	RF_DiskQueueData_t *p;
    463 
    464 	p = pool_get(&rf_dqd_pool, PR_WAITOK);
    465 	p->bp = pool_get(&bufpool, PR_NOWAIT); /* XXX: make up our minds here.
    466 						  WAITOK, or NOWAIT?? */
    467 
    468 	if (p->bp == NULL) {
    469 		/* no memory for the buffer!?!? */
    470 		pool_put(&rf_dqd_pool, p);
    471 		return(NULL);
    472 	}
    473 
    474 	memset(p->bp, 0, sizeof(struct buf));
    475 	p->sectorOffset = ssect + rf_protectedSectors;
    476 	p->numSector = nsect;
    477 	p->type = typ;
    478 	p->buf = buf;
    479 	p->parityStripeID = parityStripeID;
    480 	p->which_ru = which_ru;
    481 	p->CompleteFunc = wakeF;
    482 	p->argument = arg;
    483 	p->next = next;
    484 	p->tracerec = tracerec;
    485 	p->priority = RF_IO_NORMAL_PRIORITY;
    486 	p->raidPtr = raidPtr;
    487 	p->flags = flags;
    488 	p->b_proc = kb_proc;
    489 	return (p);
    490 }
    491 
    492 void
    493 rf_FreeDiskQueueData(RF_DiskQueueData_t *p)
    494 {
    495 	pool_put(&bufpool, p->bp);
    496 	pool_put(&rf_dqd_pool, p);
    497 }
    498