rf_diskqueue.c revision 1.30 1 /* $NetBSD: rf_diskqueue.c,v 1.30 2004/02/29 04:03:50 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /****************************************************************************
30 *
31 * rf_diskqueue.c -- higher-level disk queue code
32 *
33 * the routines here are a generic wrapper around the actual queueing
34 * routines. The code here implements thread scheduling, synchronization,
35 * and locking ops (see below) on top of the lower-level queueing code.
36 *
37 * to support atomic RMW, we implement "locking operations". When a
38 * locking op is dispatched to the lower levels of the driver, the
39 * queue is locked, and no further I/Os are dispatched until the queue
40 * receives & completes a corresponding "unlocking operation". This
41 * code relies on the higher layers to guarantee that a locking op
42 * will always be eventually followed by an unlocking op. The model
43 * is that the higher layers are structured so locking and unlocking
44 * ops occur in pairs, i.e. an unlocking op cannot be generated until
45 * after a locking op reports completion. There is no good way to
46 * check to see that an unlocking op "corresponds" to the op that
47 * currently has the queue locked, so we make no such attempt. Since
48 * by definition there can be only one locking op outstanding on a
49 * disk, this should not be a problem.
50 *
51 * In the kernel, we allow multiple I/Os to be concurrently dispatched
52 * to the disk driver. In order to support locking ops in this
53 * environment, when we decide to do a locking op, we stop dispatching
54 * new I/Os and wait until all dispatched I/Os have completed before
55 * dispatching the locking op.
56 *
57 * Unfortunately, the code is different in the 3 different operating
58 * states (user level, kernel, simulator). In the kernel, I/O is
59 * non-blocking, and we have no disk threads to dispatch for us.
60 * Therefore, we have to dispatch new I/Os to the scsi driver at the
61 * time of enqueue, and also at the time of completion. At user
62 * level, I/O is blocking, and so only the disk threads may dispatch
63 * I/Os. Thus at user level, all we can do at enqueue time is enqueue
64 * and wake up the disk thread to do the dispatch.
65 *
66 ****************************************************************************/
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.30 2004/02/29 04:03:50 oster Exp $");
70
71 #include <dev/raidframe/raidframevar.h>
72
73 #include "rf_threadstuff.h"
74 #include "rf_raid.h"
75 #include "rf_diskqueue.h"
76 #include "rf_alloclist.h"
77 #include "rf_acctrace.h"
78 #include "rf_etimer.h"
79 #include "rf_general.h"
80 #include "rf_debugprint.h"
81 #include "rf_shutdown.h"
82 #include "rf_cvscan.h"
83 #include "rf_sstf.h"
84 #include "rf_fifo.h"
85 #include "rf_kintf.h"
86
87 static void rf_ShutdownDiskQueueSystem(void *);
88
89 #ifndef RF_DEBUG_DISKQUEUE
90 #define RF_DEBUG_DISKQUEUE 0
91 #endif
92
93 #if RF_DEBUG_DISKQUEUE
94 #define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
95 #define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
96 #define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
97 #else
98 #define Dprintf1(s,a)
99 #define Dprintf2(s,a,b)
100 #define Dprintf3(s,a,b,c)
101 #endif
102
103 /*****************************************************************************
104 *
105 * the disk queue switch defines all the functions used in the
106 * different queueing disciplines queue ID, init routine, enqueue
107 * routine, dequeue routine
108 *
109 ****************************************************************************/
110
111 static const RF_DiskQueueSW_t diskqueuesw[] = {
112 {"fifo", /* FIFO */
113 rf_FifoCreate,
114 rf_FifoEnqueue,
115 rf_FifoDequeue,
116 rf_FifoPeek,
117 rf_FifoPromote},
118
119 {"cvscan", /* cvscan */
120 rf_CvscanCreate,
121 rf_CvscanEnqueue,
122 rf_CvscanDequeue,
123 rf_CvscanPeek,
124 rf_CvscanPromote},
125
126 {"sstf", /* shortest seek time first */
127 rf_SstfCreate,
128 rf_SstfEnqueue,
129 rf_SstfDequeue,
130 rf_SstfPeek,
131 rf_SstfPromote},
132
133 {"scan", /* SCAN (two-way elevator) */
134 rf_ScanCreate,
135 rf_SstfEnqueue,
136 rf_ScanDequeue,
137 rf_ScanPeek,
138 rf_SstfPromote},
139
140 {"cscan", /* CSCAN (one-way elevator) */
141 rf_CscanCreate,
142 rf_SstfEnqueue,
143 rf_CscanDequeue,
144 rf_CscanPeek,
145 rf_SstfPromote},
146
147 };
148 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
149
150 static struct pool rf_dqd_pool;
151 #define RF_MAX_FREE_DQD 256
152 #define RF_DQD_INC 16
153 #define RF_DQD_INITIAL 64
154
155 #include <sys/buf.h>
156
157 /* configures a single disk queue */
158
159 int
160 rf_ConfigureDiskQueue(RF_Raid_t *raidPtr, RF_DiskQueue_t *diskqueue,
161 RF_RowCol_t c, const RF_DiskQueueSW_t *p,
162 RF_SectorCount_t sectPerDisk, dev_t dev,
163 int maxOutstanding, RF_ShutdownList_t **listp,
164 RF_AllocListElem_t *clList)
165 {
166 diskqueue->col = c;
167 diskqueue->qPtr = p;
168 diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
169 diskqueue->dev = dev;
170 diskqueue->numOutstanding = 0;
171 diskqueue->queueLength = 0;
172 diskqueue->maxOutstanding = maxOutstanding;
173 diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
174 diskqueue->nextLockingOp = NULL;
175 diskqueue->flags = 0;
176 diskqueue->raidPtr = raidPtr;
177 diskqueue->rf_cinfo = &raidPtr->raid_cinfo[c];
178 rf_mutex_init(&diskqueue->mutex);
179 diskqueue->cond = 0;
180 return (0);
181 }
182
183 static void
184 rf_ShutdownDiskQueueSystem(void *ignored)
185 {
186 pool_destroy(&rf_dqd_pool);
187 }
188
189 int
190 rf_ConfigureDiskQueueSystem(RF_ShutdownList_t **listp)
191 {
192
193 pool_init(&rf_dqd_pool, sizeof(RF_DiskQueueData_t), 0, 0, 0,
194 "rf_dqd_pl", NULL);
195 pool_sethiwat(&rf_dqd_pool, RF_MAX_FREE_DQD);
196 pool_prime(&rf_dqd_pool, RF_DQD_INITIAL);
197
198 rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
199
200 return (0);
201 }
202
203 int
204 rf_ConfigureDiskQueues(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
205 RF_Config_t *cfgPtr)
206 {
207 RF_DiskQueue_t *diskQueues, *spareQueues;
208 const RF_DiskQueueSW_t *p;
209 RF_RowCol_t r,c;
210 int rc, i;
211
212 raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
213
214 for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
215 if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
216 p = &diskqueuesw[i];
217 break;
218 }
219 }
220 if (p == NULL) {
221 RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
222 p = &diskqueuesw[0];
223 }
224 raidPtr->qType = p;
225
226 RF_MallocAndAdd(diskQueues,
227 (raidPtr->numCol + RF_MAXSPARE) *
228 sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
229 raidPtr->cleanupList);
230 if (diskQueues == NULL)
231 return (ENOMEM);
232 raidPtr->Queues = diskQueues;
233
234 for (c = 0; c < raidPtr->numCol; c++) {
235 rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[c],
236 c, p,
237 raidPtr->sectorsPerDisk,
238 raidPtr->Disks[c].dev,
239 cfgPtr->maxOutstandingDiskReqs,
240 listp, raidPtr->cleanupList);
241 if (rc)
242 return (rc);
243 }
244
245 spareQueues = &raidPtr->Queues[raidPtr->numCol];
246 for (r = 0; r < raidPtr->numSpare; r++) {
247 rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
248 raidPtr->numCol + r, p,
249 raidPtr->sectorsPerDisk,
250 raidPtr->Disks[raidPtr->numCol + r].dev,
251 cfgPtr->maxOutstandingDiskReqs, listp,
252 raidPtr->cleanupList);
253 if (rc)
254 return (rc);
255 }
256 return (0);
257 }
258 /* Enqueue a disk I/O
259 *
260 * Unfortunately, we have to do things differently in the different
261 * environments (simulator, user-level, kernel).
262 * At user level, all I/O is blocking, so we have 1 or more threads/disk
263 * and the thread that enqueues is different from the thread that dequeues.
264 * In the kernel, I/O is non-blocking and so we'd like to have multiple
265 * I/Os outstanding on the physical disks when possible.
266 *
267 * when any request arrives at a queue, we have two choices:
268 * dispatch it to the lower levels
269 * queue it up
270 *
271 * kernel rules for when to do what:
272 * locking request: queue empty => dispatch and lock queue,
273 * else queue it
274 * unlocking req : always dispatch it
275 * normal req : queue empty => dispatch it & set priority
276 * queue not full & priority is ok => dispatch it
277 * else queue it
278 *
279 * user-level rules:
280 * always enqueue. In the special case of an unlocking op, enqueue
281 * in a special way that will cause the unlocking op to be the next
282 * thing dequeued.
283 *
284 * simulator rules:
285 * Do the same as at user level, with the sleeps and wakeups suppressed.
286 */
287 void
288 rf_DiskIOEnqueue(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int pri)
289 {
290 RF_ETIMER_START(req->qtime);
291 RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
292 req->priority = pri;
293
294 #if RF_DEBUG_DISKQUEUE
295 if (rf_queueDebug && (req->numSector == 0)) {
296 printf("Warning: Enqueueing zero-sector access\n");
297 }
298 #endif
299 /*
300 * kernel
301 */
302 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
303 /* locking request */
304 if (RF_LOCKING_REQ(req)) {
305 if (RF_QUEUE_EMPTY(queue)) {
306 Dprintf2("Dispatching pri %d locking op to c %d (queue empty)\n", pri, queue->col);
307 RF_LOCK_QUEUE(queue);
308 rf_DispatchKernelIO(queue, req);
309 } else {
310 queue->queueLength++; /* increment count of number
311 * of requests waiting in this
312 * queue */
313 Dprintf2("Enqueueing pri %d locking op to c %d (queue not empty)\n", pri, queue->col);
314 req->queue = (void *) queue;
315 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
316 }
317 }
318 /* unlocking request */
319 else
320 if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock
321 * when this I/O completes */
322 Dprintf2("Dispatching pri %d unlocking op to c %d\n", pri, queue->col);
323 RF_ASSERT(RF_QUEUE_LOCKED(queue));
324 rf_DispatchKernelIO(queue, req);
325 }
326 /* normal request */
327 else
328 if (RF_OK_TO_DISPATCH(queue, req)) {
329 Dprintf2("Dispatching pri %d regular op to c %d (ok to dispatch)\n", pri, queue->col);
330 rf_DispatchKernelIO(queue, req);
331 } else {
332 queue->queueLength++; /* increment count of
333 * number of requests
334 * waiting in this queue */
335 Dprintf2("Enqueueing pri %d regular op to c %d (not ok to dispatch)\n", pri, queue->col);
336 req->queue = (void *) queue;
337 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
338 }
339 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
340 }
341
342
343 /* get the next set of I/Os started, kernel version only */
344 void
345 rf_DiskIOComplete(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int status)
346 {
347 int done = 0;
348
349 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
350
351 /* unlock the queue: (1) after an unlocking req completes (2) after a
352 * locking req fails */
353 if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
354 Dprintf1("DiskIOComplete: unlocking queue at c %d\n", queue->col);
355 RF_ASSERT(RF_QUEUE_LOCKED(queue));
356 RF_UNLOCK_QUEUE(queue);
357 }
358 queue->numOutstanding--;
359 RF_ASSERT(queue->numOutstanding >= 0);
360
361 /* dispatch requests to the disk until we find one that we can't. */
362 /* no reason to continue once we've filled up the queue */
363 /* no reason to even start if the queue is locked */
364
365 while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
366 if (queue->nextLockingOp) {
367 req = queue->nextLockingOp;
368 queue->nextLockingOp = NULL;
369 Dprintf2("DiskIOComplete: a pri %d locking req was pending at c %d\n", req->priority, queue->col);
370 } else {
371 req = (queue->qPtr->Dequeue) (queue->qHdr);
372 if (req != NULL) {
373 Dprintf2("DiskIOComplete: extracting pri %d req from queue at c %d\n", req->priority, queue->col);
374 } else {
375 Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
376 }
377 }
378 if (req) {
379 queue->queueLength--; /* decrement count of number
380 * of requests waiting in this
381 * queue */
382 RF_ASSERT(queue->queueLength >= 0);
383 }
384 if (!req)
385 done = 1;
386 else
387 if (RF_LOCKING_REQ(req)) {
388 if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */
389 Dprintf2("DiskIOComplete: dispatching pri %d locking req to c %d (queue empty)\n", req->priority, queue->col);
390 RF_LOCK_QUEUE(queue);
391 rf_DispatchKernelIO(queue, req);
392 done = 1;
393 } else { /* put it aside to wait for
394 * the queue to drain */
395 Dprintf2("DiskIOComplete: postponing pri %d locking req to c %d\n", req->priority, queue->col);
396 RF_ASSERT(queue->nextLockingOp == NULL);
397 queue->nextLockingOp = req;
398 done = 1;
399 }
400 } else
401 if (RF_UNLOCKING_REQ(req)) { /* should not happen:
402 * unlocking ops should
403 * not get queued */
404 RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for
405 * the future */
406 Dprintf2("DiskIOComplete: dispatching pri %d unl req to c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->col);
407 rf_DispatchKernelIO(queue, req);
408 done = 1;
409 } else
410 if (RF_OK_TO_DISPATCH(queue, req)) {
411 Dprintf2("DiskIOComplete: dispatching pri %d regular req to c %d (ok to dispatch)\n", req->priority, queue->col);
412 rf_DispatchKernelIO(queue, req);
413 } else { /* we can't dispatch it,
414 * so just re-enqueue
415 * it. */
416 /* potential trouble here if
417 * disk queues batch reqs */
418 Dprintf2("DiskIOComplete: re-enqueueing pri %d regular req to c %d\n", req->priority, queue->col);
419 queue->queueLength++;
420 (queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
421 done = 1;
422 }
423 }
424
425 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
426 }
427 /* promotes accesses tagged with the given parityStripeID from low priority
428 * to normal priority. This promotion is optional, meaning that a queue
429 * need not implement it. If there is no promotion routine associated with
430 * a queue, this routine does nothing and returns -1.
431 */
432 int
433 rf_DiskIOPromote(RF_DiskQueue_t *queue, RF_StripeNum_t parityStripeID,
434 RF_ReconUnitNum_t which_ru)
435 {
436 int retval;
437
438 if (!queue->qPtr->Promote)
439 return (-1);
440 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
441 retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
442 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
443 return (retval);
444 }
445
446 RF_DiskQueueData_t *
447 rf_CreateDiskQueueData(RF_IoType_t typ, RF_SectorNum_t ssect,
448 RF_SectorCount_t nsect, caddr_t buf,
449 RF_StripeNum_t parityStripeID,
450 RF_ReconUnitNum_t which_ru,
451 int (*wakeF) (void *, int), void *arg,
452 RF_DiskQueueData_t *next,
453 RF_AccTraceEntry_t *tracerec, void *raidPtr,
454 RF_DiskQueueDataFlags_t flags, void *kb_proc)
455 {
456 RF_DiskQueueData_t *p;
457
458 p = pool_get(&rf_dqd_pool, PR_WAITOK);
459 p->bp = pool_get(&bufpool, PR_NOWAIT); /* XXX: make up our minds here.
460 WAITOK, or NOWAIT?? */
461
462 if (p->bp == NULL) {
463 /* no memory for the buffer!?!? */
464 pool_put(&rf_dqd_pool, p);
465 return(NULL);
466 }
467
468 memset(p->bp, 0, sizeof(struct buf));
469 p->sectorOffset = ssect + rf_protectedSectors;
470 p->numSector = nsect;
471 p->type = typ;
472 p->buf = buf;
473 p->parityStripeID = parityStripeID;
474 p->which_ru = which_ru;
475 p->CompleteFunc = wakeF;
476 p->argument = arg;
477 p->next = next;
478 p->tracerec = tracerec;
479 p->priority = RF_IO_NORMAL_PRIORITY;
480 p->raidPtr = raidPtr;
481 p->flags = flags;
482 p->b_proc = kb_proc;
483 return (p);
484 }
485
486 void
487 rf_FreeDiskQueueData(RF_DiskQueueData_t *p)
488 {
489 pool_put(&bufpool, p->bp);
490 pool_put(&rf_dqd_pool, p);
491 }
492