rf_diskqueue.c revision 1.5 1 /* $NetBSD: rf_diskqueue.c,v 1.5 1999/01/26 02:33:56 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /****************************************************************************************
30 *
31 * rf_diskqueue.c -- higher-level disk queue code
32 *
33 * the routines here are a generic wrapper around the actual queueing
34 * routines. The code here implements thread scheduling, synchronization,
35 * and locking ops (see below) on top of the lower-level queueing code.
36 *
37 * to support atomic RMW, we implement "locking operations". When a locking op
38 * is dispatched to the lower levels of the driver, the queue is locked, and no further
39 * I/Os are dispatched until the queue receives & completes a corresponding "unlocking
40 * operation". This code relies on the higher layers to guarantee that a locking
41 * op will always be eventually followed by an unlocking op. The model is that
42 * the higher layers are structured so locking and unlocking ops occur in pairs, i.e.
43 * an unlocking op cannot be generated until after a locking op reports completion.
44 * There is no good way to check to see that an unlocking op "corresponds" to the
45 * op that currently has the queue locked, so we make no such attempt. Since by
46 * definition there can be only one locking op outstanding on a disk, this should
47 * not be a problem.
48 *
49 * In the kernel, we allow multiple I/Os to be concurrently dispatched to the disk
50 * driver. In order to support locking ops in this environment, when we decide to
51 * do a locking op, we stop dispatching new I/Os and wait until all dispatched I/Os
52 * have completed before dispatching the locking op.
53 *
54 * Unfortunately, the code is different in the 3 different operating states
55 * (user level, kernel, simulator). In the kernel, I/O is non-blocking, and
56 * we have no disk threads to dispatch for us. Therefore, we have to dispatch
57 * new I/Os to the scsi driver at the time of enqueue, and also at the time
58 * of completion. At user level, I/O is blocking, and so only the disk threads
59 * may dispatch I/Os. Thus at user level, all we can do at enqueue time is
60 * enqueue and wake up the disk thread to do the dispatch.
61 *
62 ***************************************************************************************/
63
64 #include "rf_types.h"
65 #include "rf_threadstuff.h"
66 #include "rf_threadid.h"
67 #include "rf_raid.h"
68 #include "rf_diskqueue.h"
69 #include "rf_alloclist.h"
70 #include "rf_acctrace.h"
71 #include "rf_etimer.h"
72 #include "rf_configure.h"
73 #include "rf_general.h"
74 #include "rf_freelist.h"
75 #include "rf_debugprint.h"
76 #include "rf_shutdown.h"
77 #include "rf_cvscan.h"
78 #include "rf_sstf.h"
79 #include "rf_fifo.h"
80
81 static int init_dqd(RF_DiskQueueData_t *);
82 static void clean_dqd(RF_DiskQueueData_t *);
83 static void rf_ShutdownDiskQueueSystem(void *);
84 /* From rf_kintf.c */
85 int rf_DispatchKernelIO(RF_DiskQueue_t *,RF_DiskQueueData_t *);
86
87
88 #define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
89 #define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
90 #define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
91 #define Dprintf4(s,a,b,c,d) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
92 #define Dprintf5(s,a,b,c,d,e) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
93
94
95 #define SIGNAL_DISK_QUEUE(_q_,_wh_)
96 #define WAIT_DISK_QUEUE(_q_,_wh_)
97
98 /*****************************************************************************************
99 *
100 * the disk queue switch defines all the functions used in the different queueing
101 * disciplines
102 * queue ID, init routine, enqueue routine, dequeue routine
103 *
104 ****************************************************************************************/
105
106 static RF_DiskQueueSW_t diskqueuesw[] = {
107 {"fifo", /* FIFO */
108 rf_FifoCreate,
109 rf_FifoEnqueue,
110 rf_FifoDequeue,
111 rf_FifoPeek,
112 rf_FifoPromote},
113
114 {"cvscan", /* cvscan */
115 rf_CvscanCreate,
116 rf_CvscanEnqueue,
117 rf_CvscanDequeue,
118 rf_CvscanPeek,
119 rf_CvscanPromote },
120
121 {"sstf", /* shortest seek time first */
122 rf_SstfCreate,
123 rf_SstfEnqueue,
124 rf_SstfDequeue,
125 rf_SstfPeek,
126 rf_SstfPromote},
127
128 {"scan", /* SCAN (two-way elevator) */
129 rf_ScanCreate,
130 rf_SstfEnqueue,
131 rf_ScanDequeue,
132 rf_ScanPeek,
133 rf_SstfPromote},
134
135 {"cscan", /* CSCAN (one-way elevator) */
136 rf_CscanCreate,
137 rf_SstfEnqueue,
138 rf_CscanDequeue,
139 rf_CscanPeek,
140 rf_SstfPromote},
141
142 #if !defined(_KERNEL) && RF_INCLUDE_QUEUE_RANDOM > 0
143 /* to make a point to Chris :-> */
144 {"random", /* random */
145 rf_FifoCreate,
146 rf_FifoEnqueue,
147 rf_RandomDequeue,
148 rf_RandomPeek,
149 rf_FifoPromote},
150 #endif /* !KERNEL && RF_INCLUDE_QUEUE_RANDOM > 0 */
151 };
152 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
153
154 static RF_FreeList_t *rf_dqd_freelist;
155
156 #define RF_MAX_FREE_DQD 256
157 #define RF_DQD_INC 16
158 #define RF_DQD_INITIAL 64
159
160 #include <sys/buf.h>
161
162 static int init_dqd(dqd)
163 RF_DiskQueueData_t *dqd;
164 {
165 /* XXX not sure if the following malloc is appropriate... probably not quite... */
166 dqd->bp = (struct buf *) malloc( sizeof(struct buf), M_RAIDFRAME, M_NOWAIT);
167 if (dqd->bp == NULL) {
168 return(ENOMEM);
169 }
170 memset(dqd->bp,0,sizeof(struct buf)); /* if you don't do it, nobody else will.. */
171 return(0);
172 }
173
174 static void clean_dqd(dqd)
175 RF_DiskQueueData_t *dqd;
176 {
177 free( dqd->bp, M_RAIDFRAME );
178 }
179
180 /* configures a single disk queue */
181 static int config_disk_queue(
182 RF_Raid_t *raidPtr,
183 RF_DiskQueue_t *diskqueue,
184 RF_RowCol_t r, /* row & col -- debug only. BZZT not any more... */
185 RF_RowCol_t c,
186 RF_DiskQueueSW_t *p,
187 RF_SectorCount_t sectPerDisk,
188 dev_t dev,
189 int maxOutstanding,
190 RF_ShutdownList_t **listp,
191 RF_AllocListElem_t *clList)
192 {
193 int rc;
194
195 diskqueue->row = r;
196 diskqueue->col = c;
197 diskqueue->qPtr = p;
198 diskqueue->qHdr = (p->Create)(sectPerDisk, clList, listp);
199 diskqueue->dev = dev;
200 diskqueue->numOutstanding = 0;
201 diskqueue->queueLength = 0;
202 diskqueue->maxOutstanding = maxOutstanding;
203 diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
204 diskqueue->nextLockingOp = NULL;
205 diskqueue->unlockingOp = NULL;
206 diskqueue->numWaiting=0;
207 diskqueue->flags = 0;
208 diskqueue->raidPtr = raidPtr;
209 diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
210 rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
211 if (rc) {
212 RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
213 __LINE__, rc);
214 return(rc);
215 }
216 rc = rf_create_managed_cond(listp, &diskqueue->cond);
217 if (rc) {
218 RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
219 __LINE__, rc);
220 return(rc);
221 }
222 return(0);
223 }
224
225 static void rf_ShutdownDiskQueueSystem(ignored)
226 void *ignored;
227 {
228 RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist,next,(RF_DiskQueueData_t *),clean_dqd);
229 }
230
231 int rf_ConfigureDiskQueueSystem(listp)
232 RF_ShutdownList_t **listp;
233 {
234 int rc;
235
236 RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
237 RF_DQD_INC, sizeof(RF_DiskQueueData_t));
238 if (rf_dqd_freelist == NULL)
239 return(ENOMEM);
240 rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
241 if (rc) {
242 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
243 __FILE__, __LINE__, rc);
244 rf_ShutdownDiskQueueSystem(NULL);
245 return(rc);
246 }
247 RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL,next,
248 (RF_DiskQueueData_t *),init_dqd);
249 return(0);
250 }
251
252 int rf_ConfigureDiskQueues(
253 RF_ShutdownList_t **listp,
254 RF_Raid_t *raidPtr,
255 RF_Config_t *cfgPtr)
256 {
257 RF_DiskQueue_t **diskQueues, *spareQueues;
258 RF_DiskQueueSW_t *p;
259 RF_RowCol_t r, c;
260 int rc, i;
261
262 raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
263
264 for(p=NULL,i=0;i<NUM_DISK_QUEUE_TYPES;i++) {
265 if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
266 p = &diskqueuesw[i];
267 break;
268 }
269 }
270 if (p == NULL) {
271 RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n",cfgPtr->diskQueueType, diskqueuesw[0].queueType);
272 p = &diskqueuesw[0];
273 }
274
275 RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
276 if (diskQueues == NULL) {
277 return(ENOMEM);
278 }
279 raidPtr->Queues = diskQueues;
280 for (r=0; r<raidPtr->numRow; r++) {
281 RF_CallocAndAdd(diskQueues[r], raidPtr->numCol + ((r==0) ? raidPtr->numSpare : 0), sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *), raidPtr->cleanupList);
282 if (diskQueues[r] == NULL)
283 return(ENOMEM);
284 for (c=0; c<raidPtr->numCol; c++) {
285 rc = config_disk_queue(raidPtr, &diskQueues[r][c], r, c, p,
286 raidPtr->sectorsPerDisk, raidPtr->Disks[r][c].dev,
287 cfgPtr->maxOutstandingDiskReqs, listp, raidPtr->cleanupList);
288 if (rc)
289 return(rc);
290 }
291 }
292
293 spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
294 for (r=0; r<raidPtr->numSpare; r++) {
295 rc = config_disk_queue(raidPtr, &spareQueues[r],
296 0, raidPtr->numCol+r, p,
297 raidPtr->sectorsPerDisk,
298 raidPtr->Disks[0][raidPtr->numCol+r].dev,
299 cfgPtr->maxOutstandingDiskReqs, listp,
300 raidPtr->cleanupList);
301 if (rc)
302 return(rc);
303 }
304 return(0);
305 }
306
307 /* Enqueue a disk I/O
308 *
309 * Unfortunately, we have to do things differently in the different
310 * environments (simulator, user-level, kernel).
311 * At user level, all I/O is blocking, so we have 1 or more threads/disk
312 * and the thread that enqueues is different from the thread that dequeues.
313 * In the kernel, I/O is non-blocking and so we'd like to have multiple
314 * I/Os outstanding on the physical disks when possible.
315 *
316 * when any request arrives at a queue, we have two choices:
317 * dispatch it to the lower levels
318 * queue it up
319 *
320 * kernel rules for when to do what:
321 * locking request: queue empty => dispatch and lock queue,
322 * else queue it
323 * unlocking req : always dispatch it
324 * normal req : queue empty => dispatch it & set priority
325 * queue not full & priority is ok => dispatch it
326 * else queue it
327 *
328 * user-level rules:
329 * always enqueue. In the special case of an unlocking op, enqueue
330 * in a special way that will cause the unlocking op to be the next
331 * thing dequeued.
332 *
333 * simulator rules:
334 * Do the same as at user level, with the sleeps and wakeups suppressed.
335 */
336 void rf_DiskIOEnqueue(queue, req, pri)
337 RF_DiskQueue_t *queue;
338 RF_DiskQueueData_t *req;
339 int pri;
340 {
341 int tid;
342
343 RF_ETIMER_START(req->qtime);
344 rf_get_threadid(tid);
345 RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
346 req->priority = pri;
347
348 if (rf_queueDebug && (req->numSector == 0)) {
349 printf("Warning: Enqueueing zero-sector access\n");
350 }
351
352 /*
353 * kernel
354 */
355 RF_LOCK_QUEUE_MUTEX( queue, "DiskIOEnqueue" );
356 /* locking request */
357 if (RF_LOCKING_REQ(req)) {
358 if (RF_QUEUE_EMPTY(queue)) {
359 Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n",pri,queue->row, queue->col);
360 RF_LOCK_QUEUE(queue);
361 rf_DispatchKernelIO(queue, req);
362 } else {
363 queue->queueLength++; /* increment count of number of requests waiting in this queue */
364 Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n",pri,queue->row, queue->col);
365 req->queue = (void *)queue;
366 (queue->qPtr->Enqueue)(queue->qHdr, req, pri);
367 }
368 }
369 /* unlocking request */
370 else if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock when this I/O completes */
371 Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n",pri,queue->row, queue->col);
372 RF_ASSERT(RF_QUEUE_LOCKED(queue));
373 rf_DispatchKernelIO(queue, req);
374 }
375 /* normal request */
376 else if (RF_OK_TO_DISPATCH(queue, req)) {
377 Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n",pri,queue->row, queue->col);
378 rf_DispatchKernelIO(queue, req);
379 } else {
380 queue->queueLength++; /* increment count of number of requests waiting in this queue */
381 Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n",pri,queue->row, queue->col);
382 req->queue = (void *)queue;
383 (queue->qPtr->Enqueue)(queue->qHdr, req, pri);
384 }
385 RF_UNLOCK_QUEUE_MUTEX( queue, "DiskIOEnqueue" );
386 }
387
388
389 /* get the next set of I/Os started, kernel version only */
390 void rf_DiskIOComplete(queue, req, status)
391 RF_DiskQueue_t *queue;
392 RF_DiskQueueData_t *req;
393 int status;
394 {
395 int done=0;
396
397 RF_LOCK_QUEUE_MUTEX( queue, "DiskIOComplete" );
398
399 /* unlock the queue:
400 (1) after an unlocking req completes
401 (2) after a locking req fails
402 */
403 if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
404 Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
405 RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
406 RF_UNLOCK_QUEUE(queue);
407 }
408
409 queue->numOutstanding--;
410 RF_ASSERT(queue->numOutstanding >= 0);
411
412 /* dispatch requests to the disk until we find one that we can't. */
413 /* no reason to continue once we've filled up the queue */
414 /* no reason to even start if the queue is locked */
415
416 while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
417 if (queue->nextLockingOp) {
418 req = queue->nextLockingOp; queue->nextLockingOp = NULL;
419 Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n",req->priority,queue->row, queue->col);
420 } else {
421 req = (queue->qPtr->Dequeue)( queue->qHdr );
422 if (req != NULL) {
423 Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n",req->priority,queue->row, queue->col);
424 } else {
425 Dprintf1("DiskIOComplete: no more requests to extract.\n","");
426 }
427 }
428 if (req) {
429 queue->queueLength--; /* decrement count of number of requests waiting in this queue */
430 RF_ASSERT(queue->queueLength >= 0);
431 }
432 if (!req) done=1;
433 else if (RF_LOCKING_REQ(req)) {
434 if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */
435 Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n",req->priority,queue->row, queue->col);
436 RF_LOCK_QUEUE(queue);
437 rf_DispatchKernelIO(queue, req);
438 done = 1;
439 } else { /* put it aside to wait for the queue to drain */
440 Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n",req->priority,queue->row, queue->col);
441 RF_ASSERT(queue->nextLockingOp == NULL);
442 queue->nextLockingOp = req;
443 done = 1;
444 }
445 } else if (RF_UNLOCKING_REQ(req)) { /* should not happen: unlocking ops should not get queued */
446 RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for the future */
447 Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n",req->priority,queue->row, queue->col);
448 rf_DispatchKernelIO(queue, req);
449 done = 1;
450 } else if (RF_OK_TO_DISPATCH(queue, req)) {
451 Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n",req->priority,queue->row, queue->col);
452 rf_DispatchKernelIO(queue, req);
453 } else { /* we can't dispatch it, so just re-enqueue it. */
454 /* potential trouble here if disk queues batch reqs */
455 Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n",req->priority,queue->row, queue->col);
456 queue->queueLength++;
457 (queue->qPtr->Enqueue)(queue->qHdr, req, req->priority);
458 done = 1;
459 }
460 }
461
462 RF_UNLOCK_QUEUE_MUTEX( queue, "DiskIOComplete" );
463 }
464
465 /* promotes accesses tagged with the given parityStripeID from low priority
466 * to normal priority. This promotion is optional, meaning that a queue
467 * need not implement it. If there is no promotion routine associated with
468 * a queue, this routine does nothing and returns -1.
469 */
470 int rf_DiskIOPromote(queue, parityStripeID, which_ru)
471 RF_DiskQueue_t *queue;
472 RF_StripeNum_t parityStripeID;
473 RF_ReconUnitNum_t which_ru;
474 {
475 int retval;
476
477 if (!queue->qPtr->Promote)
478 return(-1);
479 RF_LOCK_QUEUE_MUTEX( queue, "DiskIOPromote" );
480 retval = (queue->qPtr->Promote)( queue->qHdr, parityStripeID, which_ru );
481 RF_UNLOCK_QUEUE_MUTEX( queue, "DiskIOPromote" );
482 return(retval);
483 }
484
485 RF_DiskQueueData_t *rf_CreateDiskQueueData(
486 RF_IoType_t typ,
487 RF_SectorNum_t ssect,
488 RF_SectorCount_t nsect,
489 caddr_t buf,
490 RF_StripeNum_t parityStripeID,
491 RF_ReconUnitNum_t which_ru,
492 int (*wakeF)(void *,int),
493 void *arg,
494 RF_DiskQueueData_t *next,
495 RF_AccTraceEntry_t *tracerec,
496 void *raidPtr,
497 RF_DiskQueueDataFlags_t flags,
498 void *kb_proc)
499 {
500 RF_DiskQueueData_t *p;
501
502 RF_FREELIST_GET_INIT(rf_dqd_freelist,p,next,(RF_DiskQueueData_t *),init_dqd);
503
504 p->sectorOffset = ssect + rf_protectedSectors;
505 p->numSector = nsect;
506 p->type = typ;
507 p->buf = buf;
508 p->parityStripeID= parityStripeID;
509 p->which_ru = which_ru;
510 p->CompleteFunc = wakeF;
511 p->argument = arg;
512 p->next = next;
513 p->tracerec = tracerec;
514 p->priority = RF_IO_NORMAL_PRIORITY;
515 p->AuxFunc = NULL;
516 p->buf2 = NULL;
517 p->raidPtr = raidPtr;
518 p->flags = flags;
519 p->b_proc = kb_proc;
520 return(p);
521 }
522
523 RF_DiskQueueData_t *rf_CreateDiskQueueDataFull(
524 RF_IoType_t typ,
525 RF_SectorNum_t ssect,
526 RF_SectorCount_t nsect,
527 caddr_t buf,
528 RF_StripeNum_t parityStripeID,
529 RF_ReconUnitNum_t which_ru,
530 int (*wakeF)(void *,int),
531 void *arg,
532 RF_DiskQueueData_t *next,
533 RF_AccTraceEntry_t *tracerec,
534 int priority,
535 int (*AuxFunc)(void *,...),
536 caddr_t buf2,
537 void *raidPtr,
538 RF_DiskQueueDataFlags_t flags,
539 void *kb_proc)
540 {
541 RF_DiskQueueData_t *p;
542
543 RF_FREELIST_GET_INIT(rf_dqd_freelist,p,next,(RF_DiskQueueData_t *),init_dqd);
544
545 p->sectorOffset = ssect + rf_protectedSectors;
546 p->numSector = nsect;
547 p->type = typ;
548 p->buf = buf;
549 p->parityStripeID= parityStripeID;
550 p->which_ru = which_ru;
551 p->CompleteFunc = wakeF;
552 p->argument = arg;
553 p->next = next;
554 p->tracerec = tracerec;
555 p->priority = priority;
556 p->AuxFunc = AuxFunc;
557 p->buf2 = buf2;
558 p->raidPtr = raidPtr;
559 p->flags = flags;
560 p->b_proc = kb_proc;
561 return(p);
562 }
563
564 void rf_FreeDiskQueueData(p)
565 RF_DiskQueueData_t *p;
566 {
567 RF_FREELIST_FREE_CLEAN(rf_dqd_freelist,p,next,clean_dqd);
568 }
569