Home | History | Annotate | Line # | Download | only in raidframe
rf_diskqueue.c revision 1.51.6.1
      1 /*	$NetBSD: rf_diskqueue.c,v 1.51.6.1 2009/05/01 02:18:29 snj Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************
     30  *
     31  * rf_diskqueue.c -- higher-level disk queue code
     32  *
     33  * the routines here are a generic wrapper around the actual queueing
     34  * routines.  The code here implements thread scheduling, synchronization,
     35  * and locking ops (see below) on top of the lower-level queueing code.
     36  *
     37  * to support atomic RMW, we implement "locking operations".  When a
     38  * locking op is dispatched to the lower levels of the driver, the
     39  * queue is locked, and no further I/Os are dispatched until the queue
     40  * receives & completes a corresponding "unlocking operation".  This
     41  * code relies on the higher layers to guarantee that a locking op
     42  * will always be eventually followed by an unlocking op.  The model
     43  * is that the higher layers are structured so locking and unlocking
     44  * ops occur in pairs, i.e.  an unlocking op cannot be generated until
     45  * after a locking op reports completion.  There is no good way to
     46  * check to see that an unlocking op "corresponds" to the op that
     47  * currently has the queue locked, so we make no such attempt.  Since
     48  * by definition there can be only one locking op outstanding on a
     49  * disk, this should not be a problem.
     50  *
     51  * In the kernel, we allow multiple I/Os to be concurrently dispatched
     52  * to the disk driver.  In order to support locking ops in this
     53  * environment, when we decide to do a locking op, we stop dispatching
     54  * new I/Os and wait until all dispatched I/Os have completed before
     55  * dispatching the locking op.
     56  *
     57  * Unfortunately, the code is different in the 3 different operating
     58  * states (user level, kernel, simulator).  In the kernel, I/O is
     59  * non-blocking, and we have no disk threads to dispatch for us.
     60  * Therefore, we have to dispatch new I/Os to the scsi driver at the
     61  * time of enqueue, and also at the time of completion.  At user
     62  * level, I/O is blocking, and so only the disk threads may dispatch
     63  * I/Os.  Thus at user level, all we can do at enqueue time is enqueue
     64  * and wake up the disk thread to do the dispatch.
     65  *
     66  ****************************************************************************/
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.51.6.1 2009/05/01 02:18:29 snj Exp $");
     70 
     71 #include <dev/raidframe/raidframevar.h>
     72 
     73 #include "rf_threadstuff.h"
     74 #include "rf_raid.h"
     75 #include "rf_diskqueue.h"
     76 #include "rf_alloclist.h"
     77 #include "rf_acctrace.h"
     78 #include "rf_etimer.h"
     79 #include "rf_general.h"
     80 #include "rf_debugprint.h"
     81 #include "rf_shutdown.h"
     82 #include "rf_cvscan.h"
     83 #include "rf_sstf.h"
     84 #include "rf_fifo.h"
     85 #include "rf_kintf.h"
     86 
     87 static void rf_ShutdownDiskQueueSystem(void *);
     88 
     89 #ifndef RF_DEBUG_DISKQUEUE
     90 #define RF_DEBUG_DISKQUEUE 0
     91 #endif
     92 
     93 #if RF_DEBUG_DISKQUEUE
     94 #define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     95 #define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     96 #define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
     97 #else
     98 #define Dprintf1(s,a)
     99 #define Dprintf2(s,a,b)
    100 #define Dprintf3(s,a,b,c)
    101 #endif
    102 
    103 /*****************************************************************************
    104  *
    105  * the disk queue switch defines all the functions used in the
    106  * different queueing disciplines queue ID, init routine, enqueue
    107  * routine, dequeue routine
    108  *
    109  ****************************************************************************/
    110 
    111 static const RF_DiskQueueSW_t diskqueuesw[] = {
    112 	{"fifo",		/* FIFO */
    113 		rf_FifoCreate,
    114 		rf_FifoEnqueue,
    115 		rf_FifoDequeue,
    116 		rf_FifoPeek,
    117 	rf_FifoPromote},
    118 
    119 	{"cvscan",		/* cvscan */
    120 		rf_CvscanCreate,
    121 		rf_CvscanEnqueue,
    122 		rf_CvscanDequeue,
    123 		rf_CvscanPeek,
    124 	rf_CvscanPromote},
    125 
    126 	{"sstf",		/* shortest seek time first */
    127 		rf_SstfCreate,
    128 		rf_SstfEnqueue,
    129 		rf_SstfDequeue,
    130 		rf_SstfPeek,
    131 	rf_SstfPromote},
    132 
    133 	{"scan",		/* SCAN (two-way elevator) */
    134 		rf_ScanCreate,
    135 		rf_SstfEnqueue,
    136 		rf_ScanDequeue,
    137 		rf_ScanPeek,
    138 	rf_SstfPromote},
    139 
    140 	{"cscan",		/* CSCAN (one-way elevator) */
    141 		rf_CscanCreate,
    142 		rf_SstfEnqueue,
    143 		rf_CscanDequeue,
    144 		rf_CscanPeek,
    145 	rf_SstfPromote},
    146 
    147 };
    148 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
    149 
    150 #define RF_MAX_FREE_DQD 256
    151 #define RF_MIN_FREE_DQD  64
    152 
    153 #include <sys/buf.h>
    154 
    155 /* configures a single disk queue */
    156 
    157 int
    158 rf_ConfigureDiskQueue(RF_Raid_t *raidPtr, RF_DiskQueue_t *diskqueue,
    159 		      RF_RowCol_t c, const RF_DiskQueueSW_t *p,
    160 		      RF_SectorCount_t sectPerDisk, dev_t dev,
    161 		      int maxOutstanding, RF_ShutdownList_t **listp,
    162 		      RF_AllocListElem_t *clList)
    163 {
    164 	diskqueue->col = c;
    165 	diskqueue->qPtr = p;
    166 	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
    167 	diskqueue->dev = dev;
    168 	diskqueue->numOutstanding = 0;
    169 	diskqueue->queueLength = 0;
    170 	diskqueue->maxOutstanding = maxOutstanding;
    171 	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
    172 	diskqueue->flags = 0;
    173 	diskqueue->raidPtr = raidPtr;
    174 	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[c];
    175 	rf_mutex_init(&diskqueue->mutex);
    176 	diskqueue->cond = 0;
    177 	return (0);
    178 }
    179 
    180 static void
    181 rf_ShutdownDiskQueueSystem(void *ignored)
    182 {
    183 	pool_destroy(&rf_pools.dqd);
    184 }
    185 
    186 int
    187 rf_ConfigureDiskQueueSystem(RF_ShutdownList_t **listp)
    188 {
    189 
    190 	rf_pool_init(&rf_pools.dqd, sizeof(RF_DiskQueueData_t),
    191 		     "rf_dqd_pl", RF_MIN_FREE_DQD, RF_MAX_FREE_DQD);
    192 	rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
    193 
    194 	return (0);
    195 }
    196 
    197 int
    198 rf_ConfigureDiskQueues(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
    199 		       RF_Config_t *cfgPtr)
    200 {
    201 	RF_DiskQueue_t *diskQueues, *spareQueues;
    202 	const RF_DiskQueueSW_t *p;
    203 	RF_RowCol_t r,c;
    204 	int     rc, i;
    205 
    206 	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
    207 
    208 	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
    209 		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
    210 			p = &diskqueuesw[i];
    211 			break;
    212 		}
    213 	}
    214 	if (p == NULL) {
    215 		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
    216 		p = &diskqueuesw[0];
    217 	}
    218 	raidPtr->qType = p;
    219 
    220 	RF_MallocAndAdd(diskQueues,
    221 			(raidPtr->numCol + RF_MAXSPARE) *
    222 			sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
    223 			raidPtr->cleanupList);
    224 	if (diskQueues == NULL)
    225 		return (ENOMEM);
    226 	raidPtr->Queues = diskQueues;
    227 
    228 	for (c = 0; c < raidPtr->numCol; c++) {
    229 		rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[c],
    230 					   c, p,
    231 					   raidPtr->sectorsPerDisk,
    232 					   raidPtr->Disks[c].dev,
    233 					   cfgPtr->maxOutstandingDiskReqs,
    234 					   listp, raidPtr->cleanupList);
    235 		if (rc)
    236 			return (rc);
    237 	}
    238 
    239 	spareQueues = &raidPtr->Queues[raidPtr->numCol];
    240 	for (r = 0; r < raidPtr->numSpare; r++) {
    241 		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
    242 					   raidPtr->numCol + r, p,
    243 					   raidPtr->sectorsPerDisk,
    244 					   raidPtr->Disks[raidPtr->numCol + r].dev,
    245 					   cfgPtr->maxOutstandingDiskReqs, listp,
    246 					   raidPtr->cleanupList);
    247 		if (rc)
    248 			return (rc);
    249 	}
    250 	return (0);
    251 }
    252 /* Enqueue a disk I/O
    253  *
    254  * In the kernel, I/O is non-blocking and so we'd like to have multiple
    255  * I/Os outstanding on the physical disks when possible.
    256  *
    257  * when any request arrives at a queue, we have two choices:
    258  *    dispatch it to the lower levels
    259  *    queue it up
    260  *
    261  * kernel rules for when to do what:
    262  *    unlocking req  :  always dispatch it
    263  *    normal req     :  queue empty => dispatch it & set priority
    264  *                      queue not full & priority is ok => dispatch it
    265  *                      else queue it
    266  */
    267 void
    268 rf_DiskIOEnqueue(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int pri)
    269 {
    270 	RF_ETIMER_START(req->qtime);
    271 	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
    272 	req->priority = pri;
    273 
    274 #if RF_DEBUG_DISKQUEUE
    275 	if (rf_queueDebug && (req->numSector == 0)) {
    276 		printf("Warning: Enqueueing zero-sector access\n");
    277 	}
    278 #endif
    279 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    280 	if (RF_OK_TO_DISPATCH(queue, req)) {
    281 		Dprintf2("Dispatching pri %d regular op to c %d (ok to dispatch)\n", pri, queue->col);
    282 		rf_DispatchKernelIO(queue, req);
    283 	} else {
    284 		queue->queueLength++;	/* increment count of number of requests waiting in this queue */
    285 		Dprintf2("Enqueueing pri %d regular op to c %d (not ok to dispatch)\n", pri, queue->col);
    286 		req->queue = (void *) queue;
    287 		(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    288 	}
    289 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    290 }
    291 
    292 
    293 /* get the next set of I/Os started */
    294 void
    295 rf_DiskIOComplete(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int status)
    296 {
    297 	int     done = 0;
    298 
    299 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    300 	queue->numOutstanding--;
    301 	RF_ASSERT(queue->numOutstanding >= 0);
    302 
    303 	/* dispatch requests to the disk until we find one that we can't. */
    304 	/* no reason to continue once we've filled up the queue */
    305 	/* no reason to even start if the queue is locked */
    306 
    307 	while (!done && !RF_QUEUE_FULL(queue)) {
    308 		req = (queue->qPtr->Dequeue) (queue->qHdr);
    309 		if (req) {
    310 			Dprintf2("DiskIOComplete: extracting pri %d req from queue at c %d\n", req->priority, queue->col);
    311 			queue->queueLength--;	/* decrement count of number of requests waiting in this queue */
    312 			RF_ASSERT(queue->queueLength >= 0);
    313 			if (RF_OK_TO_DISPATCH(queue, req)) {
    314 				Dprintf2("DiskIOComplete: dispatching pri %d regular req to c %d (ok to dispatch)\n", req->priority, queue->col);
    315 				rf_DispatchKernelIO(queue, req);
    316 			} else {
    317 				/* we can't dispatch it, so just re-enqueue it.
    318 				   potential trouble here if disk queues batch reqs */
    319 				Dprintf2("DiskIOComplete: re-enqueueing pri %d regular req to c %d\n", req->priority, queue->col);
    320 				queue->queueLength++;
    321 				(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
    322 				done = 1;
    323 			}
    324 		} else {
    325 			Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
    326 			done = 1;
    327 		}
    328 	}
    329 
    330 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    331 }
    332 /* promotes accesses tagged with the given parityStripeID from low priority
    333  * to normal priority.  This promotion is optional, meaning that a queue
    334  * need not implement it.  If there is no promotion routine associated with
    335  * a queue, this routine does nothing and returns -1.
    336  */
    337 int
    338 rf_DiskIOPromote(RF_DiskQueue_t *queue, RF_StripeNum_t parityStripeID,
    339 		 RF_ReconUnitNum_t which_ru)
    340 {
    341 	int     retval;
    342 
    343 	if (!queue->qPtr->Promote)
    344 		return (-1);
    345 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    346 	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
    347 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    348 	return (retval);
    349 }
    350 
    351 RF_DiskQueueData_t *
    352 rf_CreateDiskQueueData(RF_IoType_t typ, RF_SectorNum_t ssect,
    353 		       RF_SectorCount_t nsect, void *bf,
    354 		       RF_StripeNum_t parityStripeID,
    355 		       RF_ReconUnitNum_t which_ru,
    356 		       int (*wakeF) (void *, int), void *arg,
    357 		       RF_AccTraceEntry_t *tracerec, RF_Raid_t *raidPtr,
    358 		       RF_DiskQueueDataFlags_t flags, void *kb_proc,
    359 		       int waitflag)
    360 {
    361 	RF_DiskQueueData_t *p;
    362 
    363 	p = pool_get(&rf_pools.dqd, waitflag);
    364 	if (p == NULL)
    365 		return (NULL);
    366 
    367 	memset(p, 0, sizeof(RF_DiskQueueData_t));
    368 	if (waitflag == PR_WAITOK) {
    369 		p->bp = getiobuf(NULL, true);
    370 	} else {
    371 		p->bp = getiobuf(NULL, false);
    372 	}
    373 	if (p->bp == NULL) {
    374 		pool_put(&rf_pools.dqd, p);
    375 		return (NULL);
    376 	}
    377 	SET(p->bp->b_cflags, BC_BUSY);	/* mark buffer busy */
    378 
    379 	p->sectorOffset = ssect + rf_protectedSectors;
    380 	p->numSector = nsect;
    381 	p->type = typ;
    382 	p->buf = bf;
    383 	p->parityStripeID = parityStripeID;
    384 	p->which_ru = which_ru;
    385 	p->CompleteFunc = wakeF;
    386 	p->argument = arg;
    387 	p->next = NULL;
    388 	p->tracerec = tracerec;
    389 	p->priority = RF_IO_NORMAL_PRIORITY;
    390 	p->raidPtr = raidPtr;
    391 	p->flags = flags;
    392 	p->b_proc = kb_proc;
    393 	return (p);
    394 }
    395 
    396 void
    397 rf_FreeDiskQueueData(RF_DiskQueueData_t *p)
    398 {
    399 	int s;
    400 	s = splbio();		/* XXX protect only pool_put, or neither? */
    401 	putiobuf(p->bp);
    402 	pool_put(&rf_pools.dqd, p);
    403 	splx(s);
    404 }
    405