rf_diskqueue.c revision 1.53.56.1 1 /* $NetBSD: rf_diskqueue.c,v 1.53.56.1 2019/06/10 22:07:31 christos Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /****************************************************************************
30 *
31 * rf_diskqueue.c -- higher-level disk queue code
32 *
33 * the routines here are a generic wrapper around the actual queueing
34 * routines. The code here implements thread scheduling, synchronization,
35 * and locking ops (see below) on top of the lower-level queueing code.
36 *
37 * to support atomic RMW, we implement "locking operations". When a
38 * locking op is dispatched to the lower levels of the driver, the
39 * queue is locked, and no further I/Os are dispatched until the queue
40 * receives & completes a corresponding "unlocking operation". This
41 * code relies on the higher layers to guarantee that a locking op
42 * will always be eventually followed by an unlocking op. The model
43 * is that the higher layers are structured so locking and unlocking
44 * ops occur in pairs, i.e. an unlocking op cannot be generated until
45 * after a locking op reports completion. There is no good way to
46 * check to see that an unlocking op "corresponds" to the op that
47 * currently has the queue locked, so we make no such attempt. Since
48 * by definition there can be only one locking op outstanding on a
49 * disk, this should not be a problem.
50 *
51 * In the kernel, we allow multiple I/Os to be concurrently dispatched
52 * to the disk driver. In order to support locking ops in this
53 * environment, when we decide to do a locking op, we stop dispatching
54 * new I/Os and wait until all dispatched I/Os have completed before
55 * dispatching the locking op.
56 *
57 * Unfortunately, the code is different in the 3 different operating
58 * states (user level, kernel, simulator). In the kernel, I/O is
59 * non-blocking, and we have no disk threads to dispatch for us.
60 * Therefore, we have to dispatch new I/Os to the scsi driver at the
61 * time of enqueue, and also at the time of completion. At user
62 * level, I/O is blocking, and so only the disk threads may dispatch
63 * I/Os. Thus at user level, all we can do at enqueue time is enqueue
64 * and wake up the disk thread to do the dispatch.
65 *
66 ****************************************************************************/
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.53.56.1 2019/06/10 22:07:31 christos Exp $");
70
71 #include <dev/raidframe/raidframevar.h>
72
73 #include "rf_threadstuff.h"
74 #include "rf_raid.h"
75 #include "rf_diskqueue.h"
76 #include "rf_alloclist.h"
77 #include "rf_acctrace.h"
78 #include "rf_etimer.h"
79 #include "rf_general.h"
80 #include "rf_debugprint.h"
81 #include "rf_shutdown.h"
82 #include "rf_cvscan.h"
83 #include "rf_sstf.h"
84 #include "rf_fifo.h"
85 #include "rf_kintf.h"
86
87 static void rf_ShutdownDiskQueueSystem(void *);
88
89 #ifndef RF_DEBUG_DISKQUEUE
90 #define RF_DEBUG_DISKQUEUE 0
91 #endif
92
93 #if RF_DEBUG_DISKQUEUE
94 #define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
95 #define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
96 #define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
97 #else
98 #define Dprintf1(s,a)
99 #define Dprintf2(s,a,b)
100 #define Dprintf3(s,a,b,c)
101 #endif
102
103 /*****************************************************************************
104 *
105 * the disk queue switch defines all the functions used in the
106 * different queueing disciplines queue ID, init routine, enqueue
107 * routine, dequeue routine
108 *
109 ****************************************************************************/
110
111 static const RF_DiskQueueSW_t diskqueuesw[] = {
112 {"fifo", /* FIFO */
113 rf_FifoCreate,
114 rf_FifoEnqueue,
115 rf_FifoDequeue,
116 rf_FifoPeek,
117 rf_FifoPromote},
118
119 {"cvscan", /* cvscan */
120 rf_CvscanCreate,
121 rf_CvscanEnqueue,
122 rf_CvscanDequeue,
123 rf_CvscanPeek,
124 rf_CvscanPromote},
125
126 {"sstf", /* shortest seek time first */
127 rf_SstfCreate,
128 rf_SstfEnqueue,
129 rf_SstfDequeue,
130 rf_SstfPeek,
131 rf_SstfPromote},
132
133 {"scan", /* SCAN (two-way elevator) */
134 rf_ScanCreate,
135 rf_SstfEnqueue,
136 rf_ScanDequeue,
137 rf_ScanPeek,
138 rf_SstfPromote},
139
140 {"cscan", /* CSCAN (one-way elevator) */
141 rf_CscanCreate,
142 rf_SstfEnqueue,
143 rf_CscanDequeue,
144 rf_CscanPeek,
145 rf_SstfPromote},
146
147 };
148 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
149
150 #define RF_MAX_FREE_DQD 256
151 #define RF_MIN_FREE_DQD 64
152
153 #include <sys/buf.h>
154
155 /* configures a single disk queue */
156
157 static void
158 rf_ShutdownDiskQueue(void *arg)
159 {
160 RF_DiskQueue_t *diskqueue = arg;
161
162 rf_destroy_mutex2(diskqueue->mutex);
163 }
164
165 int
166 rf_ConfigureDiskQueue(RF_Raid_t *raidPtr, RF_DiskQueue_t *diskqueue,
167 RF_RowCol_t c, const RF_DiskQueueSW_t *p,
168 RF_SectorCount_t sectPerDisk, dev_t dev,
169 int maxOutstanding, RF_ShutdownList_t **listp,
170 RF_AllocListElem_t *clList)
171 {
172 diskqueue->col = c;
173 diskqueue->qPtr = p;
174 diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
175 diskqueue->dev = dev;
176 diskqueue->numOutstanding = 0;
177 diskqueue->queueLength = 0;
178 diskqueue->maxOutstanding = maxOutstanding;
179 diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
180 diskqueue->flags = 0;
181 diskqueue->raidPtr = raidPtr;
182 diskqueue->rf_cinfo = &raidPtr->raid_cinfo[c];
183 rf_init_mutex2(diskqueue->mutex, IPL_VM);
184 rf_ShutdownCreate(listp, rf_ShutdownDiskQueue, diskqueue);
185 return (0);
186 }
187
188 static void
189 rf_ShutdownDiskQueueSystem(void *ignored)
190 {
191 pool_destroy(&rf_pools.dqd);
192 }
193
194 int
195 rf_ConfigureDiskQueueSystem(RF_ShutdownList_t **listp)
196 {
197
198 rf_pool_init(&rf_pools.dqd, sizeof(RF_DiskQueueData_t),
199 "rf_dqd_pl", RF_MIN_FREE_DQD, RF_MAX_FREE_DQD);
200 rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
201
202 return (0);
203 }
204
205 int
206 rf_ConfigureDiskQueues(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
207 RF_Config_t *cfgPtr)
208 {
209 RF_DiskQueue_t *diskQueues, *spareQueues;
210 const RF_DiskQueueSW_t *p;
211 RF_RowCol_t r,c;
212 int rc, i;
213
214 raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
215
216 for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
217 if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
218 p = &diskqueuesw[i];
219 break;
220 }
221 }
222 if (p == NULL) {
223 RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
224 p = &diskqueuesw[0];
225 }
226 raidPtr->qType = p;
227
228 diskQueues = RF_MallocAndAdd(
229 (raidPtr->numCol + RF_MAXSPARE) * sizeof(*diskQueues),
230 raidPtr->cleanupList);
231 if (diskQueues == NULL)
232 return (ENOMEM);
233 raidPtr->Queues = diskQueues;
234
235 for (c = 0; c < raidPtr->numCol; c++) {
236 rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[c],
237 c, p,
238 raidPtr->sectorsPerDisk,
239 raidPtr->Disks[c].dev,
240 cfgPtr->maxOutstandingDiskReqs,
241 listp, raidPtr->cleanupList);
242 if (rc)
243 return (rc);
244 }
245
246 spareQueues = &raidPtr->Queues[raidPtr->numCol];
247 for (r = 0; r < raidPtr->numSpare; r++) {
248 rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
249 raidPtr->numCol + r, p,
250 raidPtr->sectorsPerDisk,
251 raidPtr->Disks[raidPtr->numCol + r].dev,
252 cfgPtr->maxOutstandingDiskReqs, listp,
253 raidPtr->cleanupList);
254 if (rc)
255 return (rc);
256 }
257 return (0);
258 }
259 /* Enqueue a disk I/O
260 *
261 * In the kernel, I/O is non-blocking and so we'd like to have multiple
262 * I/Os outstanding on the physical disks when possible.
263 *
264 * when any request arrives at a queue, we have two choices:
265 * dispatch it to the lower levels
266 * queue it up
267 *
268 * kernel rules for when to do what:
269 * unlocking req : always dispatch it
270 * normal req : queue empty => dispatch it & set priority
271 * queue not full & priority is ok => dispatch it
272 * else queue it
273 */
274 void
275 rf_DiskIOEnqueue(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int pri)
276 {
277 RF_ETIMER_START(req->qtime);
278 RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
279 req->priority = pri;
280
281 #if RF_DEBUG_DISKQUEUE
282 if (rf_queueDebug && (req->numSector == 0)) {
283 printf("Warning: Enqueueing zero-sector access\n");
284 }
285 #endif
286 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
287 if (RF_OK_TO_DISPATCH(queue, req)) {
288 Dprintf2("Dispatching pri %d regular op to c %d (ok to dispatch)\n", pri, queue->col);
289 rf_DispatchKernelIO(queue, req);
290 } else {
291 queue->queueLength++; /* increment count of number of requests waiting in this queue */
292 Dprintf2("Enqueueing pri %d regular op to c %d (not ok to dispatch)\n", pri, queue->col);
293 req->queue = (void *) queue;
294 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
295 }
296 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
297 }
298
299
300 /* get the next set of I/Os started */
301 void
302 rf_DiskIOComplete(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int status)
303 {
304 int done = 0;
305
306 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
307 queue->numOutstanding--;
308 RF_ASSERT(queue->numOutstanding >= 0);
309
310 /* dispatch requests to the disk until we find one that we can't. */
311 /* no reason to continue once we've filled up the queue */
312 /* no reason to even start if the queue is locked */
313
314 while (!done && !RF_QUEUE_FULL(queue)) {
315 req = (queue->qPtr->Dequeue) (queue->qHdr);
316 if (req) {
317 Dprintf2("DiskIOComplete: extracting pri %d req from queue at c %d\n", req->priority, queue->col);
318 queue->queueLength--; /* decrement count of number of requests waiting in this queue */
319 RF_ASSERT(queue->queueLength >= 0);
320 if (RF_OK_TO_DISPATCH(queue, req)) {
321 Dprintf2("DiskIOComplete: dispatching pri %d regular req to c %d (ok to dispatch)\n", req->priority, queue->col);
322 rf_DispatchKernelIO(queue, req);
323 } else {
324 /* we can't dispatch it, so just re-enqueue it.
325 potential trouble here if disk queues batch reqs */
326 Dprintf2("DiskIOComplete: re-enqueueing pri %d regular req to c %d\n", req->priority, queue->col);
327 queue->queueLength++;
328 (queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
329 done = 1;
330 }
331 } else {
332 Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
333 done = 1;
334 }
335 }
336
337 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
338 }
339 /* promotes accesses tagged with the given parityStripeID from low priority
340 * to normal priority. This promotion is optional, meaning that a queue
341 * need not implement it. If there is no promotion routine associated with
342 * a queue, this routine does nothing and returns -1.
343 */
344 int
345 rf_DiskIOPromote(RF_DiskQueue_t *queue, RF_StripeNum_t parityStripeID,
346 RF_ReconUnitNum_t which_ru)
347 {
348 int retval;
349
350 if (!queue->qPtr->Promote)
351 return (-1);
352 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
353 retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
354 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
355 return (retval);
356 }
357
358 RF_DiskQueueData_t *
359 rf_CreateDiskQueueData(RF_IoType_t typ, RF_SectorNum_t ssect,
360 RF_SectorCount_t nsect, void *bf,
361 RF_StripeNum_t parityStripeID,
362 RF_ReconUnitNum_t which_ru,
363 int (*wakeF) (void *, int), void *arg,
364 RF_AccTraceEntry_t *tracerec, RF_Raid_t *raidPtr,
365 RF_DiskQueueDataFlags_t flags, void *kb_proc,
366 int waitflag)
367 {
368 RF_DiskQueueData_t *p;
369
370 p = pool_get(&rf_pools.dqd, waitflag | PR_ZERO);
371 if (p == NULL)
372 return (NULL);
373
374 if (waitflag == PR_WAITOK) {
375 p->bp = getiobuf(NULL, true);
376 } else {
377 p->bp = getiobuf(NULL, false);
378 }
379 if (p->bp == NULL) {
380 pool_put(&rf_pools.dqd, p);
381 return (NULL);
382 }
383 SET(p->bp->b_cflags, BC_BUSY); /* mark buffer busy */
384
385 p->sectorOffset = ssect + rf_protectedSectors;
386 p->numSector = nsect;
387 p->type = typ;
388 p->buf = bf;
389 p->parityStripeID = parityStripeID;
390 p->which_ru = which_ru;
391 p->CompleteFunc = wakeF;
392 p->argument = arg;
393 p->next = NULL;
394 p->tracerec = tracerec;
395 p->priority = RF_IO_NORMAL_PRIORITY;
396 p->raidPtr = raidPtr;
397 p->flags = flags;
398 p->b_proc = kb_proc;
399 return (p);
400 }
401
402 void
403 rf_FreeDiskQueueData(RF_DiskQueueData_t *p)
404 {
405 int s;
406 s = splbio(); /* XXX protect only pool_put, or neither? */
407 putiobuf(p->bp);
408 pool_put(&rf_pools.dqd, p);
409 splx(s);
410 }
411