rf_diskqueue.c revision 1.6 1 /* $NetBSD: rf_diskqueue.c,v 1.6 1999/02/05 00:06:09 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /****************************************************************************************
30 *
31 * rf_diskqueue.c -- higher-level disk queue code
32 *
33 * the routines here are a generic wrapper around the actual queueing
34 * routines. The code here implements thread scheduling, synchronization,
35 * and locking ops (see below) on top of the lower-level queueing code.
36 *
37 * to support atomic RMW, we implement "locking operations". When a locking op
38 * is dispatched to the lower levels of the driver, the queue is locked, and no further
39 * I/Os are dispatched until the queue receives & completes a corresponding "unlocking
40 * operation". This code relies on the higher layers to guarantee that a locking
41 * op will always be eventually followed by an unlocking op. The model is that
42 * the higher layers are structured so locking and unlocking ops occur in pairs, i.e.
43 * an unlocking op cannot be generated until after a locking op reports completion.
44 * There is no good way to check to see that an unlocking op "corresponds" to the
45 * op that currently has the queue locked, so we make no such attempt. Since by
46 * definition there can be only one locking op outstanding on a disk, this should
47 * not be a problem.
48 *
49 * In the kernel, we allow multiple I/Os to be concurrently dispatched to the disk
50 * driver. In order to support locking ops in this environment, when we decide to
51 * do a locking op, we stop dispatching new I/Os and wait until all dispatched I/Os
52 * have completed before dispatching the locking op.
53 *
54 * Unfortunately, the code is different in the 3 different operating states
55 * (user level, kernel, simulator). In the kernel, I/O is non-blocking, and
56 * we have no disk threads to dispatch for us. Therefore, we have to dispatch
57 * new I/Os to the scsi driver at the time of enqueue, and also at the time
58 * of completion. At user level, I/O is blocking, and so only the disk threads
59 * may dispatch I/Os. Thus at user level, all we can do at enqueue time is
60 * enqueue and wake up the disk thread to do the dispatch.
61 *
62 ***************************************************************************************/
63
64 #include "rf_types.h"
65 #include "rf_threadstuff.h"
66 #include "rf_threadid.h"
67 #include "rf_raid.h"
68 #include "rf_diskqueue.h"
69 #include "rf_alloclist.h"
70 #include "rf_acctrace.h"
71 #include "rf_etimer.h"
72 #include "rf_configure.h"
73 #include "rf_general.h"
74 #include "rf_freelist.h"
75 #include "rf_debugprint.h"
76 #include "rf_shutdown.h"
77 #include "rf_cvscan.h"
78 #include "rf_sstf.h"
79 #include "rf_fifo.h"
80
81 static int init_dqd(RF_DiskQueueData_t *);
82 static void clean_dqd(RF_DiskQueueData_t *);
83 static void rf_ShutdownDiskQueueSystem(void *);
84 /* From rf_kintf.c */
85 int rf_DispatchKernelIO(RF_DiskQueue_t *, RF_DiskQueueData_t *);
86
87
88 #define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
89 #define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
90 #define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
91 #define Dprintf4(s,a,b,c,d) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
92 #define Dprintf5(s,a,b,c,d,e) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
93
94
95 #define SIGNAL_DISK_QUEUE(_q_,_wh_)
96 #define WAIT_DISK_QUEUE(_q_,_wh_)
97
98 /*****************************************************************************************
99 *
100 * the disk queue switch defines all the functions used in the different queueing
101 * disciplines
102 * queue ID, init routine, enqueue routine, dequeue routine
103 *
104 ****************************************************************************************/
105
106 static RF_DiskQueueSW_t diskqueuesw[] = {
107 {"fifo", /* FIFO */
108 rf_FifoCreate,
109 rf_FifoEnqueue,
110 rf_FifoDequeue,
111 rf_FifoPeek,
112 rf_FifoPromote},
113
114 {"cvscan", /* cvscan */
115 rf_CvscanCreate,
116 rf_CvscanEnqueue,
117 rf_CvscanDequeue,
118 rf_CvscanPeek,
119 rf_CvscanPromote},
120
121 {"sstf", /* shortest seek time first */
122 rf_SstfCreate,
123 rf_SstfEnqueue,
124 rf_SstfDequeue,
125 rf_SstfPeek,
126 rf_SstfPromote},
127
128 {"scan", /* SCAN (two-way elevator) */
129 rf_ScanCreate,
130 rf_SstfEnqueue,
131 rf_ScanDequeue,
132 rf_ScanPeek,
133 rf_SstfPromote},
134
135 {"cscan", /* CSCAN (one-way elevator) */
136 rf_CscanCreate,
137 rf_SstfEnqueue,
138 rf_CscanDequeue,
139 rf_CscanPeek,
140 rf_SstfPromote},
141
142 #if !defined(_KERNEL) && RF_INCLUDE_QUEUE_RANDOM > 0
143 /* to make a point to Chris :-> */
144 {"random", /* random */
145 rf_FifoCreate,
146 rf_FifoEnqueue,
147 rf_RandomDequeue,
148 rf_RandomPeek,
149 rf_FifoPromote},
150 #endif /* !KERNEL && RF_INCLUDE_QUEUE_RANDOM > 0 */
151 };
152 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
153
154 static RF_FreeList_t *rf_dqd_freelist;
155
156 #define RF_MAX_FREE_DQD 256
157 #define RF_DQD_INC 16
158 #define RF_DQD_INITIAL 64
159
160 #include <sys/buf.h>
161
162 static int
163 init_dqd(dqd)
164 RF_DiskQueueData_t *dqd;
165 {
166 /* XXX not sure if the following malloc is appropriate... probably not
167 * quite... */
168 dqd->bp = (struct buf *) malloc(sizeof(struct buf), M_RAIDFRAME, M_NOWAIT);
169 if (dqd->bp == NULL) {
170 return (ENOMEM);
171 }
172 memset(dqd->bp, 0, sizeof(struct buf)); /* if you don't do it, nobody
173 * else will.. */
174 return (0);
175 }
176
177 static void
178 clean_dqd(dqd)
179 RF_DiskQueueData_t *dqd;
180 {
181 free(dqd->bp, M_RAIDFRAME);
182 }
183 /* configures a single disk queue */
184 static int
185 config_disk_queue(
186 RF_Raid_t * raidPtr,
187 RF_DiskQueue_t * diskqueue,
188 RF_RowCol_t r, /* row & col -- debug only. BZZT not any
189 * more... */
190 RF_RowCol_t c,
191 RF_DiskQueueSW_t * p,
192 RF_SectorCount_t sectPerDisk,
193 dev_t dev,
194 int maxOutstanding,
195 RF_ShutdownList_t ** listp,
196 RF_AllocListElem_t * clList)
197 {
198 int rc;
199
200 diskqueue->row = r;
201 diskqueue->col = c;
202 diskqueue->qPtr = p;
203 diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
204 diskqueue->dev = dev;
205 diskqueue->numOutstanding = 0;
206 diskqueue->queueLength = 0;
207 diskqueue->maxOutstanding = maxOutstanding;
208 diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
209 diskqueue->nextLockingOp = NULL;
210 diskqueue->unlockingOp = NULL;
211 diskqueue->numWaiting = 0;
212 diskqueue->flags = 0;
213 diskqueue->raidPtr = raidPtr;
214 diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
215 rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
216 if (rc) {
217 RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
218 __LINE__, rc);
219 return (rc);
220 }
221 rc = rf_create_managed_cond(listp, &diskqueue->cond);
222 if (rc) {
223 RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
224 __LINE__, rc);
225 return (rc);
226 }
227 return (0);
228 }
229
230 static void
231 rf_ShutdownDiskQueueSystem(ignored)
232 void *ignored;
233 {
234 RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
235 }
236
237 int
238 rf_ConfigureDiskQueueSystem(listp)
239 RF_ShutdownList_t **listp;
240 {
241 int rc;
242
243 RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
244 RF_DQD_INC, sizeof(RF_DiskQueueData_t));
245 if (rf_dqd_freelist == NULL)
246 return (ENOMEM);
247 rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
248 if (rc) {
249 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
250 __FILE__, __LINE__, rc);
251 rf_ShutdownDiskQueueSystem(NULL);
252 return (rc);
253 }
254 RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
255 (RF_DiskQueueData_t *), init_dqd);
256 return (0);
257 }
258
259 int
260 rf_ConfigureDiskQueues(
261 RF_ShutdownList_t ** listp,
262 RF_Raid_t * raidPtr,
263 RF_Config_t * cfgPtr)
264 {
265 RF_DiskQueue_t **diskQueues, *spareQueues;
266 RF_DiskQueueSW_t *p;
267 RF_RowCol_t r, c;
268 int rc, i;
269
270 raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
271
272 for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
273 if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
274 p = &diskqueuesw[i];
275 break;
276 }
277 }
278 if (p == NULL) {
279 RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
280 p = &diskqueuesw[0];
281 }
282 RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
283 if (diskQueues == NULL) {
284 return (ENOMEM);
285 }
286 raidPtr->Queues = diskQueues;
287 for (r = 0; r < raidPtr->numRow; r++) {
288 RF_CallocAndAdd(diskQueues[r], raidPtr->numCol + ((r == 0) ? raidPtr->numSpare : 0), sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *), raidPtr->cleanupList);
289 if (diskQueues[r] == NULL)
290 return (ENOMEM);
291 for (c = 0; c < raidPtr->numCol; c++) {
292 rc = config_disk_queue(raidPtr, &diskQueues[r][c], r, c, p,
293 raidPtr->sectorsPerDisk, raidPtr->Disks[r][c].dev,
294 cfgPtr->maxOutstandingDiskReqs, listp, raidPtr->cleanupList);
295 if (rc)
296 return (rc);
297 }
298 }
299
300 spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
301 for (r = 0; r < raidPtr->numSpare; r++) {
302 rc = config_disk_queue(raidPtr, &spareQueues[r],
303 0, raidPtr->numCol + r, p,
304 raidPtr->sectorsPerDisk,
305 raidPtr->Disks[0][raidPtr->numCol + r].dev,
306 cfgPtr->maxOutstandingDiskReqs, listp,
307 raidPtr->cleanupList);
308 if (rc)
309 return (rc);
310 }
311 return (0);
312 }
313 /* Enqueue a disk I/O
314 *
315 * Unfortunately, we have to do things differently in the different
316 * environments (simulator, user-level, kernel).
317 * At user level, all I/O is blocking, so we have 1 or more threads/disk
318 * and the thread that enqueues is different from the thread that dequeues.
319 * In the kernel, I/O is non-blocking and so we'd like to have multiple
320 * I/Os outstanding on the physical disks when possible.
321 *
322 * when any request arrives at a queue, we have two choices:
323 * dispatch it to the lower levels
324 * queue it up
325 *
326 * kernel rules for when to do what:
327 * locking request: queue empty => dispatch and lock queue,
328 * else queue it
329 * unlocking req : always dispatch it
330 * normal req : queue empty => dispatch it & set priority
331 * queue not full & priority is ok => dispatch it
332 * else queue it
333 *
334 * user-level rules:
335 * always enqueue. In the special case of an unlocking op, enqueue
336 * in a special way that will cause the unlocking op to be the next
337 * thing dequeued.
338 *
339 * simulator rules:
340 * Do the same as at user level, with the sleeps and wakeups suppressed.
341 */
342 void
343 rf_DiskIOEnqueue(queue, req, pri)
344 RF_DiskQueue_t *queue;
345 RF_DiskQueueData_t *req;
346 int pri;
347 {
348 int tid;
349
350 RF_ETIMER_START(req->qtime);
351 rf_get_threadid(tid);
352 RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
353 req->priority = pri;
354
355 if (rf_queueDebug && (req->numSector == 0)) {
356 printf("Warning: Enqueueing zero-sector access\n");
357 }
358 /*
359 * kernel
360 */
361 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
362 /* locking request */
363 if (RF_LOCKING_REQ(req)) {
364 if (RF_QUEUE_EMPTY(queue)) {
365 Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
366 RF_LOCK_QUEUE(queue);
367 rf_DispatchKernelIO(queue, req);
368 } else {
369 queue->queueLength++; /* increment count of number
370 * of requests waiting in this
371 * queue */
372 Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
373 req->queue = (void *) queue;
374 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
375 }
376 }
377 /* unlocking request */
378 else
379 if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock
380 * when this I/O completes */
381 Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
382 RF_ASSERT(RF_QUEUE_LOCKED(queue));
383 rf_DispatchKernelIO(queue, req);
384 }
385 /* normal request */
386 else
387 if (RF_OK_TO_DISPATCH(queue, req)) {
388 Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
389 rf_DispatchKernelIO(queue, req);
390 } else {
391 queue->queueLength++; /* increment count of
392 * number of requests
393 * waiting in this queue */
394 Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
395 req->queue = (void *) queue;
396 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
397 }
398 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
399 }
400
401
402 /* get the next set of I/Os started, kernel version only */
403 void
404 rf_DiskIOComplete(queue, req, status)
405 RF_DiskQueue_t *queue;
406 RF_DiskQueueData_t *req;
407 int status;
408 {
409 int done = 0;
410
411 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
412
413 /* unlock the queue: (1) after an unlocking req completes (2) after a
414 * locking req fails */
415 if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
416 Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
417 RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
418 RF_UNLOCK_QUEUE(queue);
419 }
420 queue->numOutstanding--;
421 RF_ASSERT(queue->numOutstanding >= 0);
422
423 /* dispatch requests to the disk until we find one that we can't. */
424 /* no reason to continue once we've filled up the queue */
425 /* no reason to even start if the queue is locked */
426
427 while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
428 if (queue->nextLockingOp) {
429 req = queue->nextLockingOp;
430 queue->nextLockingOp = NULL;
431 Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
432 } else {
433 req = (queue->qPtr->Dequeue) (queue->qHdr);
434 if (req != NULL) {
435 Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
436 } else {
437 Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
438 }
439 }
440 if (req) {
441 queue->queueLength--; /* decrement count of number
442 * of requests waiting in this
443 * queue */
444 RF_ASSERT(queue->queueLength >= 0);
445 }
446 if (!req)
447 done = 1;
448 else
449 if (RF_LOCKING_REQ(req)) {
450 if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */
451 Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
452 RF_LOCK_QUEUE(queue);
453 rf_DispatchKernelIO(queue, req);
454 done = 1;
455 } else { /* put it aside to wait for
456 * the queue to drain */
457 Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
458 RF_ASSERT(queue->nextLockingOp == NULL);
459 queue->nextLockingOp = req;
460 done = 1;
461 }
462 } else
463 if (RF_UNLOCKING_REQ(req)) { /* should not happen:
464 * unlocking ops should
465 * not get queued */
466 RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for
467 * the future */
468 Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
469 rf_DispatchKernelIO(queue, req);
470 done = 1;
471 } else
472 if (RF_OK_TO_DISPATCH(queue, req)) {
473 Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
474 rf_DispatchKernelIO(queue, req);
475 } else { /* we can't dispatch it,
476 * so just re-enqueue
477 * it. */
478 /* potential trouble here if
479 * disk queues batch reqs */
480 Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
481 queue->queueLength++;
482 (queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
483 done = 1;
484 }
485 }
486
487 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
488 }
489 /* promotes accesses tagged with the given parityStripeID from low priority
490 * to normal priority. This promotion is optional, meaning that a queue
491 * need not implement it. If there is no promotion routine associated with
492 * a queue, this routine does nothing and returns -1.
493 */
494 int
495 rf_DiskIOPromote(queue, parityStripeID, which_ru)
496 RF_DiskQueue_t *queue;
497 RF_StripeNum_t parityStripeID;
498 RF_ReconUnitNum_t which_ru;
499 {
500 int retval;
501
502 if (!queue->qPtr->Promote)
503 return (-1);
504 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
505 retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
506 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
507 return (retval);
508 }
509
510 RF_DiskQueueData_t *
511 rf_CreateDiskQueueData(
512 RF_IoType_t typ,
513 RF_SectorNum_t ssect,
514 RF_SectorCount_t nsect,
515 caddr_t buf,
516 RF_StripeNum_t parityStripeID,
517 RF_ReconUnitNum_t which_ru,
518 int (*wakeF) (void *, int),
519 void *arg,
520 RF_DiskQueueData_t * next,
521 RF_AccTraceEntry_t * tracerec,
522 void *raidPtr,
523 RF_DiskQueueDataFlags_t flags,
524 void *kb_proc)
525 {
526 RF_DiskQueueData_t *p;
527
528 RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
529
530 p->sectorOffset = ssect + rf_protectedSectors;
531 p->numSector = nsect;
532 p->type = typ;
533 p->buf = buf;
534 p->parityStripeID = parityStripeID;
535 p->which_ru = which_ru;
536 p->CompleteFunc = wakeF;
537 p->argument = arg;
538 p->next = next;
539 p->tracerec = tracerec;
540 p->priority = RF_IO_NORMAL_PRIORITY;
541 p->AuxFunc = NULL;
542 p->buf2 = NULL;
543 p->raidPtr = raidPtr;
544 p->flags = flags;
545 p->b_proc = kb_proc;
546 return (p);
547 }
548
549 RF_DiskQueueData_t *
550 rf_CreateDiskQueueDataFull(
551 RF_IoType_t typ,
552 RF_SectorNum_t ssect,
553 RF_SectorCount_t nsect,
554 caddr_t buf,
555 RF_StripeNum_t parityStripeID,
556 RF_ReconUnitNum_t which_ru,
557 int (*wakeF) (void *, int),
558 void *arg,
559 RF_DiskQueueData_t * next,
560 RF_AccTraceEntry_t * tracerec,
561 int priority,
562 int (*AuxFunc) (void *,...),
563 caddr_t buf2,
564 void *raidPtr,
565 RF_DiskQueueDataFlags_t flags,
566 void *kb_proc)
567 {
568 RF_DiskQueueData_t *p;
569
570 RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
571
572 p->sectorOffset = ssect + rf_protectedSectors;
573 p->numSector = nsect;
574 p->type = typ;
575 p->buf = buf;
576 p->parityStripeID = parityStripeID;
577 p->which_ru = which_ru;
578 p->CompleteFunc = wakeF;
579 p->argument = arg;
580 p->next = next;
581 p->tracerec = tracerec;
582 p->priority = priority;
583 p->AuxFunc = AuxFunc;
584 p->buf2 = buf2;
585 p->raidPtr = raidPtr;
586 p->flags = flags;
587 p->b_proc = kb_proc;
588 return (p);
589 }
590
591 void
592 rf_FreeDiskQueueData(p)
593 RF_DiskQueueData_t *p;
594 {
595 RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
596 }
597