Home | History | Annotate | Line # | Download | only in raidframe
rf_diskqueue.c revision 1.6.4.1
      1 /*	$NetBSD: rf_diskqueue.c,v 1.6.4.1 1999/06/21 01:18:57 thorpej Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************************
     30  *
     31  * rf_diskqueue.c -- higher-level disk queue code
     32  *
     33  * the routines here are a generic wrapper around the actual queueing
     34  * routines.  The code here implements thread scheduling, synchronization,
     35  * and locking ops (see below) on top of the lower-level queueing code.
     36  *
     37  * to support atomic RMW, we implement "locking operations".  When a locking op
     38  * is dispatched to the lower levels of the driver, the queue is locked, and no further
     39  * I/Os are dispatched until the queue receives & completes a corresponding "unlocking
     40  * operation".  This code relies on the higher layers to guarantee that a locking
     41  * op will always be eventually followed by an unlocking op.  The model is that
     42  * the higher layers are structured so locking and unlocking ops occur in pairs, i.e.
     43  * an unlocking op cannot be generated until after a locking op reports completion.
     44  * There is no good way to check to see that an unlocking op "corresponds" to the
     45  * op that currently has the queue locked, so we make no such attempt.  Since by
     46  * definition there can be only one locking op outstanding on a disk, this should
     47  * not be a problem.
     48  *
     49  * In the kernel, we allow multiple I/Os to be concurrently dispatched to the disk
     50  * driver.  In order to support locking ops in this environment, when we decide to
     51  * do a locking op, we stop dispatching new I/Os and wait until all dispatched I/Os
     52  * have completed before dispatching the locking op.
     53  *
     54  * Unfortunately, the code is different in the 3 different operating states
     55  * (user level, kernel, simulator).  In the kernel, I/O is non-blocking, and
     56  * we have no disk threads to dispatch for us.  Therefore, we have to dispatch
     57  * new I/Os to the scsi driver at the time of enqueue, and also at the time
     58  * of completion.  At user level, I/O is blocking, and so only the disk threads
     59  * may dispatch I/Os.  Thus at user level, all we can do at enqueue time is
     60  * enqueue and wake up the disk thread to do the dispatch.
     61  *
     62  ***************************************************************************************/
     63 
     64 #include "rf_types.h"
     65 #include "rf_threadstuff.h"
     66 #include "rf_threadid.h"
     67 #include "rf_raid.h"
     68 #include "rf_diskqueue.h"
     69 #include "rf_alloclist.h"
     70 #include "rf_acctrace.h"
     71 #include "rf_etimer.h"
     72 #include "rf_configure.h"
     73 #include "rf_general.h"
     74 #include "rf_freelist.h"
     75 #include "rf_debugprint.h"
     76 #include "rf_shutdown.h"
     77 #include "rf_cvscan.h"
     78 #include "rf_sstf.h"
     79 #include "rf_fifo.h"
     80 
     81 static int init_dqd(RF_DiskQueueData_t *);
     82 static void clean_dqd(RF_DiskQueueData_t *);
     83 static void rf_ShutdownDiskQueueSystem(void *);
     84 /* From rf_kintf.c */
     85 int     rf_DispatchKernelIO(RF_DiskQueue_t *, RF_DiskQueueData_t *);
     86 
     87 
     88 #define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     89 #define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     90 #define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
     91 #define Dprintf4(s,a,b,c,d)   if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
     92 #define Dprintf5(s,a,b,c,d,e) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
     93 
     94 
     95 #define SIGNAL_DISK_QUEUE(_q_,_wh_)
     96 #define WAIT_DISK_QUEUE(_q_,_wh_)
     97 
     98 /*****************************************************************************************
     99  *
    100  * the disk queue switch defines all the functions used in the different queueing
    101  * disciplines
    102  *    queue ID, init routine, enqueue routine, dequeue routine
    103  *
    104  ****************************************************************************************/
    105 
    106 static RF_DiskQueueSW_t diskqueuesw[] = {
    107 	{"fifo",		/* FIFO */
    108 		rf_FifoCreate,
    109 		rf_FifoEnqueue,
    110 		rf_FifoDequeue,
    111 		rf_FifoPeek,
    112 	rf_FifoPromote},
    113 
    114 	{"cvscan",		/* cvscan */
    115 		rf_CvscanCreate,
    116 		rf_CvscanEnqueue,
    117 		rf_CvscanDequeue,
    118 		rf_CvscanPeek,
    119 	rf_CvscanPromote},
    120 
    121 	{"sstf",		/* shortest seek time first */
    122 		rf_SstfCreate,
    123 		rf_SstfEnqueue,
    124 		rf_SstfDequeue,
    125 		rf_SstfPeek,
    126 	rf_SstfPromote},
    127 
    128 	{"scan",		/* SCAN (two-way elevator) */
    129 		rf_ScanCreate,
    130 		rf_SstfEnqueue,
    131 		rf_ScanDequeue,
    132 		rf_ScanPeek,
    133 	rf_SstfPromote},
    134 
    135 	{"cscan",		/* CSCAN (one-way elevator) */
    136 		rf_CscanCreate,
    137 		rf_SstfEnqueue,
    138 		rf_CscanDequeue,
    139 		rf_CscanPeek,
    140 	rf_SstfPromote},
    141 
    142 #if !defined(_KERNEL) && RF_INCLUDE_QUEUE_RANDOM > 0
    143 	/* to make a point to Chris :-> */
    144 	{"random",		/* random */
    145 		rf_FifoCreate,
    146 		rf_FifoEnqueue,
    147 		rf_RandomDequeue,
    148 		rf_RandomPeek,
    149 	rf_FifoPromote},
    150 #endif				/* !KERNEL && RF_INCLUDE_QUEUE_RANDOM > 0 */
    151 };
    152 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
    153 
    154 static RF_FreeList_t *rf_dqd_freelist;
    155 
    156 #define RF_MAX_FREE_DQD 256
    157 #define RF_DQD_INC       16
    158 #define RF_DQD_INITIAL   64
    159 
    160 #include <sys/buf.h>
    161 
    162 static int
    163 init_dqd(dqd)
    164 	RF_DiskQueueData_t *dqd;
    165 {
    166 	/* XXX not sure if the following malloc is appropriate... probably not
    167 	 * quite... */
    168 	dqd->bp = (struct buf *) malloc(sizeof(struct buf), M_RAIDFRAME, M_NOWAIT);
    169 	if (dqd->bp == NULL) {
    170 		return (ENOMEM);
    171 	}
    172 	memset(dqd->bp, 0, sizeof(struct buf));	/* if you don't do it, nobody
    173 						 * else will.. */
    174 	return (0);
    175 }
    176 
    177 static void
    178 clean_dqd(dqd)
    179 	RF_DiskQueueData_t *dqd;
    180 {
    181 	free(dqd->bp, M_RAIDFRAME);
    182 }
    183 /* configures a single disk queue */
    184 int config_disk_queue(RF_Raid_t *, RF_DiskQueue_t *, RF_RowCol_t,
    185 		      RF_RowCol_t, RF_DiskQueueSW_t *,
    186 		      RF_SectorCount_t, dev_t, int,
    187 		      RF_ShutdownList_t **,
    188 		      RF_AllocListElem_t *);
    189 int
    190 config_disk_queue(
    191     RF_Raid_t * raidPtr,
    192     RF_DiskQueue_t * diskqueue,
    193     RF_RowCol_t r,		/* row & col -- debug only.  BZZT not any
    194 				 * more... */
    195     RF_RowCol_t c,
    196     RF_DiskQueueSW_t * p,
    197     RF_SectorCount_t sectPerDisk,
    198     dev_t dev,
    199     int maxOutstanding,
    200     RF_ShutdownList_t ** listp,
    201     RF_AllocListElem_t * clList)
    202 {
    203 	int     rc;
    204 
    205 	diskqueue->row = r;
    206 	diskqueue->col = c;
    207 	diskqueue->qPtr = p;
    208 	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
    209 	diskqueue->dev = dev;
    210 	diskqueue->numOutstanding = 0;
    211 	diskqueue->queueLength = 0;
    212 	diskqueue->maxOutstanding = maxOutstanding;
    213 	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
    214 	diskqueue->nextLockingOp = NULL;
    215 	diskqueue->unlockingOp = NULL;
    216 	diskqueue->numWaiting = 0;
    217 	diskqueue->flags = 0;
    218 	diskqueue->raidPtr = raidPtr;
    219 	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
    220 	rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
    221 	if (rc) {
    222 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
    223 		    __LINE__, rc);
    224 		return (rc);
    225 	}
    226 	rc = rf_create_managed_cond(listp, &diskqueue->cond);
    227 	if (rc) {
    228 		RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
    229 		    __LINE__, rc);
    230 		return (rc);
    231 	}
    232 	return (0);
    233 }
    234 
    235 static void
    236 rf_ShutdownDiskQueueSystem(ignored)
    237 	void   *ignored;
    238 {
    239 	RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
    240 }
    241 
    242 int
    243 rf_ConfigureDiskQueueSystem(listp)
    244 	RF_ShutdownList_t **listp;
    245 {
    246 	int     rc;
    247 
    248 	RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
    249 	    RF_DQD_INC, sizeof(RF_DiskQueueData_t));
    250 	if (rf_dqd_freelist == NULL)
    251 		return (ENOMEM);
    252 	rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
    253 	if (rc) {
    254 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
    255 		    __FILE__, __LINE__, rc);
    256 		rf_ShutdownDiskQueueSystem(NULL);
    257 		return (rc);
    258 	}
    259 	RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
    260 	    (RF_DiskQueueData_t *), init_dqd);
    261 	return (0);
    262 }
    263 
    264 int
    265 rf_ConfigureDiskQueues(
    266     RF_ShutdownList_t ** listp,
    267     RF_Raid_t * raidPtr,
    268     RF_Config_t * cfgPtr)
    269 {
    270 	RF_DiskQueue_t **diskQueues, *spareQueues;
    271 	RF_DiskQueueSW_t *p;
    272 	RF_RowCol_t r, c;
    273 	int     rc, i;
    274 
    275 	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
    276 
    277 	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
    278 		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
    279 			p = &diskqueuesw[i];
    280 			break;
    281 		}
    282 	}
    283 	if (p == NULL) {
    284 		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
    285 		p = &diskqueuesw[0];
    286 	}
    287 	RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
    288 	if (diskQueues == NULL) {
    289 		return (ENOMEM);
    290 	}
    291 	raidPtr->Queues = diskQueues;
    292 	for (r = 0; r < raidPtr->numRow; r++) {
    293 		RF_CallocAndAdd(diskQueues[r], raidPtr->numCol +
    294 				 ((r == 0) ? RF_MAXSPARE : 0),
    295 				sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
    296 				raidPtr->cleanupList);
    297 		if (diskQueues[r] == NULL)
    298 			return (ENOMEM);
    299 		for (c = 0; c < raidPtr->numCol; c++) {
    300 			rc = config_disk_queue(raidPtr, &diskQueues[r][c], r, c, p,
    301 			    raidPtr->sectorsPerDisk, raidPtr->Disks[r][c].dev,
    302 			    cfgPtr->maxOutstandingDiskReqs, listp, raidPtr->cleanupList);
    303 			if (rc)
    304 				return (rc);
    305 		}
    306 	}
    307 
    308 	spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
    309 	for (r = 0; r < raidPtr->numSpare; r++) {
    310 		rc = config_disk_queue(raidPtr, &spareQueues[r],
    311 		    0, raidPtr->numCol + r, p,
    312 		    raidPtr->sectorsPerDisk,
    313 		    raidPtr->Disks[0][raidPtr->numCol + r].dev,
    314 		    cfgPtr->maxOutstandingDiskReqs, listp,
    315 		    raidPtr->cleanupList);
    316 		if (rc)
    317 			return (rc);
    318 	}
    319 	return (0);
    320 }
    321 /* Enqueue a disk I/O
    322  *
    323  * Unfortunately, we have to do things differently in the different
    324  * environments (simulator, user-level, kernel).
    325  * At user level, all I/O is blocking, so we have 1 or more threads/disk
    326  * and the thread that enqueues is different from the thread that dequeues.
    327  * In the kernel, I/O is non-blocking and so we'd like to have multiple
    328  * I/Os outstanding on the physical disks when possible.
    329  *
    330  * when any request arrives at a queue, we have two choices:
    331  *    dispatch it to the lower levels
    332  *    queue it up
    333  *
    334  * kernel rules for when to do what:
    335  *    locking request:  queue empty => dispatch and lock queue,
    336  *                      else queue it
    337  *    unlocking req  :  always dispatch it
    338  *    normal req     :  queue empty => dispatch it & set priority
    339  *                      queue not full & priority is ok => dispatch it
    340  *                      else queue it
    341  *
    342  * user-level rules:
    343  *    always enqueue.  In the special case of an unlocking op, enqueue
    344  *    in a special way that will cause the unlocking op to be the next
    345  *    thing dequeued.
    346  *
    347  * simulator rules:
    348  *    Do the same as at user level, with the sleeps and wakeups suppressed.
    349  */
    350 void
    351 rf_DiskIOEnqueue(queue, req, pri)
    352 	RF_DiskQueue_t *queue;
    353 	RF_DiskQueueData_t *req;
    354 	int     pri;
    355 {
    356 	int     tid;
    357 
    358 	RF_ETIMER_START(req->qtime);
    359 	rf_get_threadid(tid);
    360 	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
    361 	req->priority = pri;
    362 
    363 	if (rf_queueDebug && (req->numSector == 0)) {
    364 		printf("Warning: Enqueueing zero-sector access\n");
    365 	}
    366 	/*
    367          * kernel
    368          */
    369 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    370 	/* locking request */
    371 	if (RF_LOCKING_REQ(req)) {
    372 		if (RF_QUEUE_EMPTY(queue)) {
    373 			Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
    374 			RF_LOCK_QUEUE(queue);
    375 			rf_DispatchKernelIO(queue, req);
    376 		} else {
    377 			queue->queueLength++;	/* increment count of number
    378 						 * of requests waiting in this
    379 						 * queue */
    380 			Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
    381 			req->queue = (void *) queue;
    382 			(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    383 		}
    384 	}
    385 	/* unlocking request */
    386 	else
    387 		if (RF_UNLOCKING_REQ(req)) {	/* we'll do the actual unlock
    388 						 * when this I/O completes */
    389 			Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
    390 			RF_ASSERT(RF_QUEUE_LOCKED(queue));
    391 			rf_DispatchKernelIO(queue, req);
    392 		}
    393 	/* normal request */
    394 		else
    395 			if (RF_OK_TO_DISPATCH(queue, req)) {
    396 				Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
    397 				rf_DispatchKernelIO(queue, req);
    398 			} else {
    399 				queue->queueLength++;	/* increment count of
    400 							 * number of requests
    401 							 * waiting in this queue */
    402 				Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
    403 				req->queue = (void *) queue;
    404 				(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
    405 			}
    406 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
    407 }
    408 
    409 
    410 /* get the next set of I/Os started, kernel version only */
    411 void
    412 rf_DiskIOComplete(queue, req, status)
    413 	RF_DiskQueue_t *queue;
    414 	RF_DiskQueueData_t *req;
    415 	int     status;
    416 {
    417 	int     done = 0;
    418 
    419 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    420 
    421 	/* unlock the queue: (1) after an unlocking req completes (2) after a
    422 	 * locking req fails */
    423 	if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
    424 		Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
    425 		RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
    426 		RF_UNLOCK_QUEUE(queue);
    427 	}
    428 	queue->numOutstanding--;
    429 	RF_ASSERT(queue->numOutstanding >= 0);
    430 
    431 	/* dispatch requests to the disk until we find one that we can't. */
    432 	/* no reason to continue once we've filled up the queue */
    433 	/* no reason to even start if the queue is locked */
    434 
    435 	while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
    436 		if (queue->nextLockingOp) {
    437 			req = queue->nextLockingOp;
    438 			queue->nextLockingOp = NULL;
    439 			Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
    440 		} else {
    441 			req = (queue->qPtr->Dequeue) (queue->qHdr);
    442 			if (req != NULL) {
    443 				Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
    444 			} else {
    445 				Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
    446 			}
    447 		}
    448 		if (req) {
    449 			queue->queueLength--;	/* decrement count of number
    450 						 * of requests waiting in this
    451 						 * queue */
    452 			RF_ASSERT(queue->queueLength >= 0);
    453 		}
    454 		if (!req)
    455 			done = 1;
    456 		else
    457 			if (RF_LOCKING_REQ(req)) {
    458 				if (RF_QUEUE_EMPTY(queue)) {	/* dispatch it */
    459 					Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
    460 					RF_LOCK_QUEUE(queue);
    461 					rf_DispatchKernelIO(queue, req);
    462 					done = 1;
    463 				} else {	/* put it aside to wait for
    464 						 * the queue to drain */
    465 					Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
    466 					RF_ASSERT(queue->nextLockingOp == NULL);
    467 					queue->nextLockingOp = req;
    468 					done = 1;
    469 				}
    470 			} else
    471 				if (RF_UNLOCKING_REQ(req)) {	/* should not happen:
    472 								 * unlocking ops should
    473 								 * not get queued */
    474 					RF_ASSERT(RF_QUEUE_LOCKED(queue));	/* support it anyway for
    475 										 * the future */
    476 					Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
    477 					rf_DispatchKernelIO(queue, req);
    478 					done = 1;
    479 				} else
    480 					if (RF_OK_TO_DISPATCH(queue, req)) {
    481 						Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
    482 						rf_DispatchKernelIO(queue, req);
    483 					} else {	/* we can't dispatch it,
    484 							 * so just re-enqueue
    485 							 * it.  */
    486 						/* potential trouble here if
    487 						 * disk queues batch reqs */
    488 						Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
    489 						queue->queueLength++;
    490 						(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
    491 						done = 1;
    492 					}
    493 	}
    494 
    495 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
    496 }
    497 /* promotes accesses tagged with the given parityStripeID from low priority
    498  * to normal priority.  This promotion is optional, meaning that a queue
    499  * need not implement it.  If there is no promotion routine associated with
    500  * a queue, this routine does nothing and returns -1.
    501  */
    502 int
    503 rf_DiskIOPromote(queue, parityStripeID, which_ru)
    504 	RF_DiskQueue_t *queue;
    505 	RF_StripeNum_t parityStripeID;
    506 	RF_ReconUnitNum_t which_ru;
    507 {
    508 	int     retval;
    509 
    510 	if (!queue->qPtr->Promote)
    511 		return (-1);
    512 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    513 	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
    514 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
    515 	return (retval);
    516 }
    517 
    518 RF_DiskQueueData_t *
    519 rf_CreateDiskQueueData(
    520     RF_IoType_t typ,
    521     RF_SectorNum_t ssect,
    522     RF_SectorCount_t nsect,
    523     caddr_t buf,
    524     RF_StripeNum_t parityStripeID,
    525     RF_ReconUnitNum_t which_ru,
    526     int (*wakeF) (void *, int),
    527     void *arg,
    528     RF_DiskQueueData_t * next,
    529     RF_AccTraceEntry_t * tracerec,
    530     void *raidPtr,
    531     RF_DiskQueueDataFlags_t flags,
    532     void *kb_proc)
    533 {
    534 	RF_DiskQueueData_t *p;
    535 
    536 	RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
    537 
    538 	p->sectorOffset = ssect + rf_protectedSectors;
    539 	p->numSector = nsect;
    540 	p->type = typ;
    541 	p->buf = buf;
    542 	p->parityStripeID = parityStripeID;
    543 	p->which_ru = which_ru;
    544 	p->CompleteFunc = wakeF;
    545 	p->argument = arg;
    546 	p->next = next;
    547 	p->tracerec = tracerec;
    548 	p->priority = RF_IO_NORMAL_PRIORITY;
    549 	p->AuxFunc = NULL;
    550 	p->buf2 = NULL;
    551 	p->raidPtr = raidPtr;
    552 	p->flags = flags;
    553 	p->b_proc = kb_proc;
    554 	return (p);
    555 }
    556 
    557 RF_DiskQueueData_t *
    558 rf_CreateDiskQueueDataFull(
    559     RF_IoType_t typ,
    560     RF_SectorNum_t ssect,
    561     RF_SectorCount_t nsect,
    562     caddr_t buf,
    563     RF_StripeNum_t parityStripeID,
    564     RF_ReconUnitNum_t which_ru,
    565     int (*wakeF) (void *, int),
    566     void *arg,
    567     RF_DiskQueueData_t * next,
    568     RF_AccTraceEntry_t * tracerec,
    569     int priority,
    570     int (*AuxFunc) (void *,...),
    571     caddr_t buf2,
    572     void *raidPtr,
    573     RF_DiskQueueDataFlags_t flags,
    574     void *kb_proc)
    575 {
    576 	RF_DiskQueueData_t *p;
    577 
    578 	RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
    579 
    580 	p->sectorOffset = ssect + rf_protectedSectors;
    581 	p->numSector = nsect;
    582 	p->type = typ;
    583 	p->buf = buf;
    584 	p->parityStripeID = parityStripeID;
    585 	p->which_ru = which_ru;
    586 	p->CompleteFunc = wakeF;
    587 	p->argument = arg;
    588 	p->next = next;
    589 	p->tracerec = tracerec;
    590 	p->priority = priority;
    591 	p->AuxFunc = AuxFunc;
    592 	p->buf2 = buf2;
    593 	p->raidPtr = raidPtr;
    594 	p->flags = flags;
    595 	p->b_proc = kb_proc;
    596 	return (p);
    597 }
    598 
    599 void
    600 rf_FreeDiskQueueData(p)
    601 	RF_DiskQueueData_t *p;
    602 {
    603 	RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
    604 }
    605