rf_diskqueue.c revision 1.7 1 /* $NetBSD: rf_diskqueue.c,v 1.7 1999/06/04 01:51:00 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /****************************************************************************************
30 *
31 * rf_diskqueue.c -- higher-level disk queue code
32 *
33 * the routines here are a generic wrapper around the actual queueing
34 * routines. The code here implements thread scheduling, synchronization,
35 * and locking ops (see below) on top of the lower-level queueing code.
36 *
37 * to support atomic RMW, we implement "locking operations". When a locking op
38 * is dispatched to the lower levels of the driver, the queue is locked, and no further
39 * I/Os are dispatched until the queue receives & completes a corresponding "unlocking
40 * operation". This code relies on the higher layers to guarantee that a locking
41 * op will always be eventually followed by an unlocking op. The model is that
42 * the higher layers are structured so locking and unlocking ops occur in pairs, i.e.
43 * an unlocking op cannot be generated until after a locking op reports completion.
44 * There is no good way to check to see that an unlocking op "corresponds" to the
45 * op that currently has the queue locked, so we make no such attempt. Since by
46 * definition there can be only one locking op outstanding on a disk, this should
47 * not be a problem.
48 *
49 * In the kernel, we allow multiple I/Os to be concurrently dispatched to the disk
50 * driver. In order to support locking ops in this environment, when we decide to
51 * do a locking op, we stop dispatching new I/Os and wait until all dispatched I/Os
52 * have completed before dispatching the locking op.
53 *
54 * Unfortunately, the code is different in the 3 different operating states
55 * (user level, kernel, simulator). In the kernel, I/O is non-blocking, and
56 * we have no disk threads to dispatch for us. Therefore, we have to dispatch
57 * new I/Os to the scsi driver at the time of enqueue, and also at the time
58 * of completion. At user level, I/O is blocking, and so only the disk threads
59 * may dispatch I/Os. Thus at user level, all we can do at enqueue time is
60 * enqueue and wake up the disk thread to do the dispatch.
61 *
62 ***************************************************************************************/
63
64 #include "rf_types.h"
65 #include "rf_threadstuff.h"
66 #include "rf_threadid.h"
67 #include "rf_raid.h"
68 #include "rf_diskqueue.h"
69 #include "rf_alloclist.h"
70 #include "rf_acctrace.h"
71 #include "rf_etimer.h"
72 #include "rf_configure.h"
73 #include "rf_general.h"
74 #include "rf_freelist.h"
75 #include "rf_debugprint.h"
76 #include "rf_shutdown.h"
77 #include "rf_cvscan.h"
78 #include "rf_sstf.h"
79 #include "rf_fifo.h"
80
81 static int init_dqd(RF_DiskQueueData_t *);
82 static void clean_dqd(RF_DiskQueueData_t *);
83 static void rf_ShutdownDiskQueueSystem(void *);
84 /* From rf_kintf.c */
85 int rf_DispatchKernelIO(RF_DiskQueue_t *, RF_DiskQueueData_t *);
86
87
88 #define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
89 #define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
90 #define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
91 #define Dprintf4(s,a,b,c,d) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
92 #define Dprintf5(s,a,b,c,d,e) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
93
94
95 #define SIGNAL_DISK_QUEUE(_q_,_wh_)
96 #define WAIT_DISK_QUEUE(_q_,_wh_)
97
98 /*****************************************************************************************
99 *
100 * the disk queue switch defines all the functions used in the different queueing
101 * disciplines
102 * queue ID, init routine, enqueue routine, dequeue routine
103 *
104 ****************************************************************************************/
105
106 static RF_DiskQueueSW_t diskqueuesw[] = {
107 {"fifo", /* FIFO */
108 rf_FifoCreate,
109 rf_FifoEnqueue,
110 rf_FifoDequeue,
111 rf_FifoPeek,
112 rf_FifoPromote},
113
114 {"cvscan", /* cvscan */
115 rf_CvscanCreate,
116 rf_CvscanEnqueue,
117 rf_CvscanDequeue,
118 rf_CvscanPeek,
119 rf_CvscanPromote},
120
121 {"sstf", /* shortest seek time first */
122 rf_SstfCreate,
123 rf_SstfEnqueue,
124 rf_SstfDequeue,
125 rf_SstfPeek,
126 rf_SstfPromote},
127
128 {"scan", /* SCAN (two-way elevator) */
129 rf_ScanCreate,
130 rf_SstfEnqueue,
131 rf_ScanDequeue,
132 rf_ScanPeek,
133 rf_SstfPromote},
134
135 {"cscan", /* CSCAN (one-way elevator) */
136 rf_CscanCreate,
137 rf_SstfEnqueue,
138 rf_CscanDequeue,
139 rf_CscanPeek,
140 rf_SstfPromote},
141
142 #if !defined(_KERNEL) && RF_INCLUDE_QUEUE_RANDOM > 0
143 /* to make a point to Chris :-> */
144 {"random", /* random */
145 rf_FifoCreate,
146 rf_FifoEnqueue,
147 rf_RandomDequeue,
148 rf_RandomPeek,
149 rf_FifoPromote},
150 #endif /* !KERNEL && RF_INCLUDE_QUEUE_RANDOM > 0 */
151 };
152 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
153
154 static RF_FreeList_t *rf_dqd_freelist;
155
156 #define RF_MAX_FREE_DQD 256
157 #define RF_DQD_INC 16
158 #define RF_DQD_INITIAL 64
159
160 #include <sys/buf.h>
161
162 static int
163 init_dqd(dqd)
164 RF_DiskQueueData_t *dqd;
165 {
166 /* XXX not sure if the following malloc is appropriate... probably not
167 * quite... */
168 dqd->bp = (struct buf *) malloc(sizeof(struct buf), M_RAIDFRAME, M_NOWAIT);
169 if (dqd->bp == NULL) {
170 return (ENOMEM);
171 }
172 memset(dqd->bp, 0, sizeof(struct buf)); /* if you don't do it, nobody
173 * else will.. */
174 return (0);
175 }
176
177 static void
178 clean_dqd(dqd)
179 RF_DiskQueueData_t *dqd;
180 {
181 free(dqd->bp, M_RAIDFRAME);
182 }
183 /* configures a single disk queue */
184 int config_disk_queue(RF_Raid_t *, RF_DiskQueue_t *, RF_RowCol_t,
185 RF_RowCol_t, RF_DiskQueueSW_t *,
186 RF_SectorCount_t, dev_t, int,
187 RF_ShutdownList_t **,
188 RF_AllocListElem_t *);
189 int
190 config_disk_queue(
191 RF_Raid_t * raidPtr,
192 RF_DiskQueue_t * diskqueue,
193 RF_RowCol_t r, /* row & col -- debug only. BZZT not any
194 * more... */
195 RF_RowCol_t c,
196 RF_DiskQueueSW_t * p,
197 RF_SectorCount_t sectPerDisk,
198 dev_t dev,
199 int maxOutstanding,
200 RF_ShutdownList_t ** listp,
201 RF_AllocListElem_t * clList)
202 {
203 int rc;
204
205 diskqueue->row = r;
206 diskqueue->col = c;
207 diskqueue->qPtr = p;
208 diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
209 diskqueue->dev = dev;
210 diskqueue->numOutstanding = 0;
211 diskqueue->queueLength = 0;
212 diskqueue->maxOutstanding = maxOutstanding;
213 diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
214 diskqueue->nextLockingOp = NULL;
215 diskqueue->unlockingOp = NULL;
216 diskqueue->numWaiting = 0;
217 diskqueue->flags = 0;
218 diskqueue->raidPtr = raidPtr;
219 diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
220 rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
221 if (rc) {
222 RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
223 __LINE__, rc);
224 return (rc);
225 }
226 rc = rf_create_managed_cond(listp, &diskqueue->cond);
227 if (rc) {
228 RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
229 __LINE__, rc);
230 return (rc);
231 }
232 return (0);
233 }
234
235 static void
236 rf_ShutdownDiskQueueSystem(ignored)
237 void *ignored;
238 {
239 RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
240 }
241
242 int
243 rf_ConfigureDiskQueueSystem(listp)
244 RF_ShutdownList_t **listp;
245 {
246 int rc;
247
248 RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
249 RF_DQD_INC, sizeof(RF_DiskQueueData_t));
250 if (rf_dqd_freelist == NULL)
251 return (ENOMEM);
252 rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
253 if (rc) {
254 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
255 __FILE__, __LINE__, rc);
256 rf_ShutdownDiskQueueSystem(NULL);
257 return (rc);
258 }
259 RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
260 (RF_DiskQueueData_t *), init_dqd);
261 return (0);
262 }
263
264 int
265 rf_ConfigureDiskQueues(
266 RF_ShutdownList_t ** listp,
267 RF_Raid_t * raidPtr,
268 RF_Config_t * cfgPtr)
269 {
270 RF_DiskQueue_t **diskQueues, *spareQueues;
271 RF_DiskQueueSW_t *p;
272 RF_RowCol_t r, c;
273 int rc, i;
274
275 raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
276
277 for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
278 if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
279 p = &diskqueuesw[i];
280 break;
281 }
282 }
283 if (p == NULL) {
284 RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
285 p = &diskqueuesw[0];
286 }
287 RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
288 if (diskQueues == NULL) {
289 return (ENOMEM);
290 }
291 raidPtr->Queues = diskQueues;
292 for (r = 0; r < raidPtr->numRow; r++) {
293 RF_CallocAndAdd(diskQueues[r], raidPtr->numCol +
294 ((r == 0) ? RF_MAXSPARE : 0),
295 sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
296 raidPtr->cleanupList);
297 if (diskQueues[r] == NULL)
298 return (ENOMEM);
299 for (c = 0; c < raidPtr->numCol; c++) {
300 rc = config_disk_queue(raidPtr, &diskQueues[r][c], r, c, p,
301 raidPtr->sectorsPerDisk, raidPtr->Disks[r][c].dev,
302 cfgPtr->maxOutstandingDiskReqs, listp, raidPtr->cleanupList);
303 if (rc)
304 return (rc);
305 }
306 }
307
308 spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
309 for (r = 0; r < raidPtr->numSpare; r++) {
310 rc = config_disk_queue(raidPtr, &spareQueues[r],
311 0, raidPtr->numCol + r, p,
312 raidPtr->sectorsPerDisk,
313 raidPtr->Disks[0][raidPtr->numCol + r].dev,
314 cfgPtr->maxOutstandingDiskReqs, listp,
315 raidPtr->cleanupList);
316 if (rc)
317 return (rc);
318 }
319 return (0);
320 }
321 /* Enqueue a disk I/O
322 *
323 * Unfortunately, we have to do things differently in the different
324 * environments (simulator, user-level, kernel).
325 * At user level, all I/O is blocking, so we have 1 or more threads/disk
326 * and the thread that enqueues is different from the thread that dequeues.
327 * In the kernel, I/O is non-blocking and so we'd like to have multiple
328 * I/Os outstanding on the physical disks when possible.
329 *
330 * when any request arrives at a queue, we have two choices:
331 * dispatch it to the lower levels
332 * queue it up
333 *
334 * kernel rules for when to do what:
335 * locking request: queue empty => dispatch and lock queue,
336 * else queue it
337 * unlocking req : always dispatch it
338 * normal req : queue empty => dispatch it & set priority
339 * queue not full & priority is ok => dispatch it
340 * else queue it
341 *
342 * user-level rules:
343 * always enqueue. In the special case of an unlocking op, enqueue
344 * in a special way that will cause the unlocking op to be the next
345 * thing dequeued.
346 *
347 * simulator rules:
348 * Do the same as at user level, with the sleeps and wakeups suppressed.
349 */
350 void
351 rf_DiskIOEnqueue(queue, req, pri)
352 RF_DiskQueue_t *queue;
353 RF_DiskQueueData_t *req;
354 int pri;
355 {
356 int tid;
357
358 RF_ETIMER_START(req->qtime);
359 rf_get_threadid(tid);
360 RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
361 req->priority = pri;
362
363 if (rf_queueDebug && (req->numSector == 0)) {
364 printf("Warning: Enqueueing zero-sector access\n");
365 }
366 /*
367 * kernel
368 */
369 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
370 /* locking request */
371 if (RF_LOCKING_REQ(req)) {
372 if (RF_QUEUE_EMPTY(queue)) {
373 Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
374 RF_LOCK_QUEUE(queue);
375 rf_DispatchKernelIO(queue, req);
376 } else {
377 queue->queueLength++; /* increment count of number
378 * of requests waiting in this
379 * queue */
380 Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
381 req->queue = (void *) queue;
382 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
383 }
384 }
385 /* unlocking request */
386 else
387 if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock
388 * when this I/O completes */
389 Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
390 RF_ASSERT(RF_QUEUE_LOCKED(queue));
391 rf_DispatchKernelIO(queue, req);
392 }
393 /* normal request */
394 else
395 if (RF_OK_TO_DISPATCH(queue, req)) {
396 Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
397 rf_DispatchKernelIO(queue, req);
398 } else {
399 queue->queueLength++; /* increment count of
400 * number of requests
401 * waiting in this queue */
402 Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
403 req->queue = (void *) queue;
404 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
405 }
406 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
407 }
408
409
410 /* get the next set of I/Os started, kernel version only */
411 void
412 rf_DiskIOComplete(queue, req, status)
413 RF_DiskQueue_t *queue;
414 RF_DiskQueueData_t *req;
415 int status;
416 {
417 int done = 0;
418
419 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
420
421 /* unlock the queue: (1) after an unlocking req completes (2) after a
422 * locking req fails */
423 if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
424 Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
425 RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
426 RF_UNLOCK_QUEUE(queue);
427 }
428 queue->numOutstanding--;
429 RF_ASSERT(queue->numOutstanding >= 0);
430
431 /* dispatch requests to the disk until we find one that we can't. */
432 /* no reason to continue once we've filled up the queue */
433 /* no reason to even start if the queue is locked */
434
435 while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
436 if (queue->nextLockingOp) {
437 req = queue->nextLockingOp;
438 queue->nextLockingOp = NULL;
439 Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
440 } else {
441 req = (queue->qPtr->Dequeue) (queue->qHdr);
442 if (req != NULL) {
443 Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
444 } else {
445 Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
446 }
447 }
448 if (req) {
449 queue->queueLength--; /* decrement count of number
450 * of requests waiting in this
451 * queue */
452 RF_ASSERT(queue->queueLength >= 0);
453 }
454 if (!req)
455 done = 1;
456 else
457 if (RF_LOCKING_REQ(req)) {
458 if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */
459 Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
460 RF_LOCK_QUEUE(queue);
461 rf_DispatchKernelIO(queue, req);
462 done = 1;
463 } else { /* put it aside to wait for
464 * the queue to drain */
465 Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
466 RF_ASSERT(queue->nextLockingOp == NULL);
467 queue->nextLockingOp = req;
468 done = 1;
469 }
470 } else
471 if (RF_UNLOCKING_REQ(req)) { /* should not happen:
472 * unlocking ops should
473 * not get queued */
474 RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for
475 * the future */
476 Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
477 rf_DispatchKernelIO(queue, req);
478 done = 1;
479 } else
480 if (RF_OK_TO_DISPATCH(queue, req)) {
481 Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
482 rf_DispatchKernelIO(queue, req);
483 } else { /* we can't dispatch it,
484 * so just re-enqueue
485 * it. */
486 /* potential trouble here if
487 * disk queues batch reqs */
488 Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
489 queue->queueLength++;
490 (queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
491 done = 1;
492 }
493 }
494
495 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
496 }
497 /* promotes accesses tagged with the given parityStripeID from low priority
498 * to normal priority. This promotion is optional, meaning that a queue
499 * need not implement it. If there is no promotion routine associated with
500 * a queue, this routine does nothing and returns -1.
501 */
502 int
503 rf_DiskIOPromote(queue, parityStripeID, which_ru)
504 RF_DiskQueue_t *queue;
505 RF_StripeNum_t parityStripeID;
506 RF_ReconUnitNum_t which_ru;
507 {
508 int retval;
509
510 if (!queue->qPtr->Promote)
511 return (-1);
512 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
513 retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
514 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
515 return (retval);
516 }
517
518 RF_DiskQueueData_t *
519 rf_CreateDiskQueueData(
520 RF_IoType_t typ,
521 RF_SectorNum_t ssect,
522 RF_SectorCount_t nsect,
523 caddr_t buf,
524 RF_StripeNum_t parityStripeID,
525 RF_ReconUnitNum_t which_ru,
526 int (*wakeF) (void *, int),
527 void *arg,
528 RF_DiskQueueData_t * next,
529 RF_AccTraceEntry_t * tracerec,
530 void *raidPtr,
531 RF_DiskQueueDataFlags_t flags,
532 void *kb_proc)
533 {
534 RF_DiskQueueData_t *p;
535
536 RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
537
538 p->sectorOffset = ssect + rf_protectedSectors;
539 p->numSector = nsect;
540 p->type = typ;
541 p->buf = buf;
542 p->parityStripeID = parityStripeID;
543 p->which_ru = which_ru;
544 p->CompleteFunc = wakeF;
545 p->argument = arg;
546 p->next = next;
547 p->tracerec = tracerec;
548 p->priority = RF_IO_NORMAL_PRIORITY;
549 p->AuxFunc = NULL;
550 p->buf2 = NULL;
551 p->raidPtr = raidPtr;
552 p->flags = flags;
553 p->b_proc = kb_proc;
554 return (p);
555 }
556
557 RF_DiskQueueData_t *
558 rf_CreateDiskQueueDataFull(
559 RF_IoType_t typ,
560 RF_SectorNum_t ssect,
561 RF_SectorCount_t nsect,
562 caddr_t buf,
563 RF_StripeNum_t parityStripeID,
564 RF_ReconUnitNum_t which_ru,
565 int (*wakeF) (void *, int),
566 void *arg,
567 RF_DiskQueueData_t * next,
568 RF_AccTraceEntry_t * tracerec,
569 int priority,
570 int (*AuxFunc) (void *,...),
571 caddr_t buf2,
572 void *raidPtr,
573 RF_DiskQueueDataFlags_t flags,
574 void *kb_proc)
575 {
576 RF_DiskQueueData_t *p;
577
578 RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
579
580 p->sectorOffset = ssect + rf_protectedSectors;
581 p->numSector = nsect;
582 p->type = typ;
583 p->buf = buf;
584 p->parityStripeID = parityStripeID;
585 p->which_ru = which_ru;
586 p->CompleteFunc = wakeF;
587 p->argument = arg;
588 p->next = next;
589 p->tracerec = tracerec;
590 p->priority = priority;
591 p->AuxFunc = AuxFunc;
592 p->buf2 = buf2;
593 p->raidPtr = raidPtr;
594 p->flags = flags;
595 p->b_proc = kb_proc;
596 return (p);
597 }
598
599 void
600 rf_FreeDiskQueueData(p)
601 RF_DiskQueueData_t *p;
602 {
603 RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
604 }
605