rf_diskqueue.c revision 1.8 1 /* $NetBSD: rf_diskqueue.c,v 1.8 2000/01/07 03:43:39 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /****************************************************************************************
30 *
31 * rf_diskqueue.c -- higher-level disk queue code
32 *
33 * the routines here are a generic wrapper around the actual queueing
34 * routines. The code here implements thread scheduling, synchronization,
35 * and locking ops (see below) on top of the lower-level queueing code.
36 *
37 * to support atomic RMW, we implement "locking operations". When a locking op
38 * is dispatched to the lower levels of the driver, the queue is locked, and no further
39 * I/Os are dispatched until the queue receives & completes a corresponding "unlocking
40 * operation". This code relies on the higher layers to guarantee that a locking
41 * op will always be eventually followed by an unlocking op. The model is that
42 * the higher layers are structured so locking and unlocking ops occur in pairs, i.e.
43 * an unlocking op cannot be generated until after a locking op reports completion.
44 * There is no good way to check to see that an unlocking op "corresponds" to the
45 * op that currently has the queue locked, so we make no such attempt. Since by
46 * definition there can be only one locking op outstanding on a disk, this should
47 * not be a problem.
48 *
49 * In the kernel, we allow multiple I/Os to be concurrently dispatched to the disk
50 * driver. In order to support locking ops in this environment, when we decide to
51 * do a locking op, we stop dispatching new I/Os and wait until all dispatched I/Os
52 * have completed before dispatching the locking op.
53 *
54 * Unfortunately, the code is different in the 3 different operating states
55 * (user level, kernel, simulator). In the kernel, I/O is non-blocking, and
56 * we have no disk threads to dispatch for us. Therefore, we have to dispatch
57 * new I/Os to the scsi driver at the time of enqueue, and also at the time
58 * of completion. At user level, I/O is blocking, and so only the disk threads
59 * may dispatch I/Os. Thus at user level, all we can do at enqueue time is
60 * enqueue and wake up the disk thread to do the dispatch.
61 *
62 ***************************************************************************************/
63
64 #include "rf_types.h"
65 #include "rf_threadstuff.h"
66 #include "rf_raid.h"
67 #include "rf_diskqueue.h"
68 #include "rf_alloclist.h"
69 #include "rf_acctrace.h"
70 #include "rf_etimer.h"
71 #include "rf_configure.h"
72 #include "rf_general.h"
73 #include "rf_freelist.h"
74 #include "rf_debugprint.h"
75 #include "rf_shutdown.h"
76 #include "rf_cvscan.h"
77 #include "rf_sstf.h"
78 #include "rf_fifo.h"
79
80 static int init_dqd(RF_DiskQueueData_t *);
81 static void clean_dqd(RF_DiskQueueData_t *);
82 static void rf_ShutdownDiskQueueSystem(void *);
83 /* From rf_kintf.c */
84 int rf_DispatchKernelIO(RF_DiskQueue_t *, RF_DiskQueueData_t *);
85
86
87 #define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
88 #define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
89 #define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
90 #define Dprintf4(s,a,b,c,d) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
91 #define Dprintf5(s,a,b,c,d,e) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
92
93
94 #define SIGNAL_DISK_QUEUE(_q_,_wh_)
95 #define WAIT_DISK_QUEUE(_q_,_wh_)
96
97 /*****************************************************************************************
98 *
99 * the disk queue switch defines all the functions used in the different queueing
100 * disciplines
101 * queue ID, init routine, enqueue routine, dequeue routine
102 *
103 ****************************************************************************************/
104
105 static RF_DiskQueueSW_t diskqueuesw[] = {
106 {"fifo", /* FIFO */
107 rf_FifoCreate,
108 rf_FifoEnqueue,
109 rf_FifoDequeue,
110 rf_FifoPeek,
111 rf_FifoPromote},
112
113 {"cvscan", /* cvscan */
114 rf_CvscanCreate,
115 rf_CvscanEnqueue,
116 rf_CvscanDequeue,
117 rf_CvscanPeek,
118 rf_CvscanPromote},
119
120 {"sstf", /* shortest seek time first */
121 rf_SstfCreate,
122 rf_SstfEnqueue,
123 rf_SstfDequeue,
124 rf_SstfPeek,
125 rf_SstfPromote},
126
127 {"scan", /* SCAN (two-way elevator) */
128 rf_ScanCreate,
129 rf_SstfEnqueue,
130 rf_ScanDequeue,
131 rf_ScanPeek,
132 rf_SstfPromote},
133
134 {"cscan", /* CSCAN (one-way elevator) */
135 rf_CscanCreate,
136 rf_SstfEnqueue,
137 rf_CscanDequeue,
138 rf_CscanPeek,
139 rf_SstfPromote},
140
141 #if !defined(_KERNEL) && RF_INCLUDE_QUEUE_RANDOM > 0
142 /* to make a point to Chris :-> */
143 {"random", /* random */
144 rf_FifoCreate,
145 rf_FifoEnqueue,
146 rf_RandomDequeue,
147 rf_RandomPeek,
148 rf_FifoPromote},
149 #endif /* !KERNEL && RF_INCLUDE_QUEUE_RANDOM > 0 */
150 };
151 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
152
153 static RF_FreeList_t *rf_dqd_freelist;
154
155 #define RF_MAX_FREE_DQD 256
156 #define RF_DQD_INC 16
157 #define RF_DQD_INITIAL 64
158
159 #include <sys/buf.h>
160
161 static int
162 init_dqd(dqd)
163 RF_DiskQueueData_t *dqd;
164 {
165 /* XXX not sure if the following malloc is appropriate... probably not
166 * quite... */
167 dqd->bp = (struct buf *) malloc(sizeof(struct buf), M_RAIDFRAME, M_NOWAIT);
168 if (dqd->bp == NULL) {
169 return (ENOMEM);
170 }
171 memset(dqd->bp, 0, sizeof(struct buf)); /* if you don't do it, nobody
172 * else will.. */
173 return (0);
174 }
175
176 static void
177 clean_dqd(dqd)
178 RF_DiskQueueData_t *dqd;
179 {
180 free(dqd->bp, M_RAIDFRAME);
181 }
182 /* configures a single disk queue */
183 int config_disk_queue(RF_Raid_t *, RF_DiskQueue_t *, RF_RowCol_t,
184 RF_RowCol_t, RF_DiskQueueSW_t *,
185 RF_SectorCount_t, dev_t, int,
186 RF_ShutdownList_t **,
187 RF_AllocListElem_t *);
188 int
189 config_disk_queue(
190 RF_Raid_t * raidPtr,
191 RF_DiskQueue_t * diskqueue,
192 RF_RowCol_t r, /* row & col -- debug only. BZZT not any
193 * more... */
194 RF_RowCol_t c,
195 RF_DiskQueueSW_t * p,
196 RF_SectorCount_t sectPerDisk,
197 dev_t dev,
198 int maxOutstanding,
199 RF_ShutdownList_t ** listp,
200 RF_AllocListElem_t * clList)
201 {
202 int rc;
203
204 diskqueue->row = r;
205 diskqueue->col = c;
206 diskqueue->qPtr = p;
207 diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
208 diskqueue->dev = dev;
209 diskqueue->numOutstanding = 0;
210 diskqueue->queueLength = 0;
211 diskqueue->maxOutstanding = maxOutstanding;
212 diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
213 diskqueue->nextLockingOp = NULL;
214 diskqueue->unlockingOp = NULL;
215 diskqueue->numWaiting = 0;
216 diskqueue->flags = 0;
217 diskqueue->raidPtr = raidPtr;
218 diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
219 rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
220 if (rc) {
221 RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
222 __LINE__, rc);
223 return (rc);
224 }
225 rc = rf_create_managed_cond(listp, &diskqueue->cond);
226 if (rc) {
227 RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
228 __LINE__, rc);
229 return (rc);
230 }
231 return (0);
232 }
233
234 static void
235 rf_ShutdownDiskQueueSystem(ignored)
236 void *ignored;
237 {
238 RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
239 }
240
241 int
242 rf_ConfigureDiskQueueSystem(listp)
243 RF_ShutdownList_t **listp;
244 {
245 int rc;
246
247 RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
248 RF_DQD_INC, sizeof(RF_DiskQueueData_t));
249 if (rf_dqd_freelist == NULL)
250 return (ENOMEM);
251 rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
252 if (rc) {
253 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
254 __FILE__, __LINE__, rc);
255 rf_ShutdownDiskQueueSystem(NULL);
256 return (rc);
257 }
258 RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
259 (RF_DiskQueueData_t *), init_dqd);
260 return (0);
261 }
262
263 int
264 rf_ConfigureDiskQueues(
265 RF_ShutdownList_t ** listp,
266 RF_Raid_t * raidPtr,
267 RF_Config_t * cfgPtr)
268 {
269 RF_DiskQueue_t **diskQueues, *spareQueues;
270 RF_DiskQueueSW_t *p;
271 RF_RowCol_t r, c;
272 int rc, i;
273
274 raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
275
276 for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
277 if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
278 p = &diskqueuesw[i];
279 break;
280 }
281 }
282 if (p == NULL) {
283 RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
284 p = &diskqueuesw[0];
285 }
286 RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
287 if (diskQueues == NULL) {
288 return (ENOMEM);
289 }
290 raidPtr->Queues = diskQueues;
291 for (r = 0; r < raidPtr->numRow; r++) {
292 RF_CallocAndAdd(diskQueues[r], raidPtr->numCol +
293 ((r == 0) ? RF_MAXSPARE : 0),
294 sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
295 raidPtr->cleanupList);
296 if (diskQueues[r] == NULL)
297 return (ENOMEM);
298 for (c = 0; c < raidPtr->numCol; c++) {
299 rc = config_disk_queue(raidPtr, &diskQueues[r][c], r, c, p,
300 raidPtr->sectorsPerDisk, raidPtr->Disks[r][c].dev,
301 cfgPtr->maxOutstandingDiskReqs, listp, raidPtr->cleanupList);
302 if (rc)
303 return (rc);
304 }
305 }
306
307 spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
308 for (r = 0; r < raidPtr->numSpare; r++) {
309 rc = config_disk_queue(raidPtr, &spareQueues[r],
310 0, raidPtr->numCol + r, p,
311 raidPtr->sectorsPerDisk,
312 raidPtr->Disks[0][raidPtr->numCol + r].dev,
313 cfgPtr->maxOutstandingDiskReqs, listp,
314 raidPtr->cleanupList);
315 if (rc)
316 return (rc);
317 }
318 return (0);
319 }
320 /* Enqueue a disk I/O
321 *
322 * Unfortunately, we have to do things differently in the different
323 * environments (simulator, user-level, kernel).
324 * At user level, all I/O is blocking, so we have 1 or more threads/disk
325 * and the thread that enqueues is different from the thread that dequeues.
326 * In the kernel, I/O is non-blocking and so we'd like to have multiple
327 * I/Os outstanding on the physical disks when possible.
328 *
329 * when any request arrives at a queue, we have two choices:
330 * dispatch it to the lower levels
331 * queue it up
332 *
333 * kernel rules for when to do what:
334 * locking request: queue empty => dispatch and lock queue,
335 * else queue it
336 * unlocking req : always dispatch it
337 * normal req : queue empty => dispatch it & set priority
338 * queue not full & priority is ok => dispatch it
339 * else queue it
340 *
341 * user-level rules:
342 * always enqueue. In the special case of an unlocking op, enqueue
343 * in a special way that will cause the unlocking op to be the next
344 * thing dequeued.
345 *
346 * simulator rules:
347 * Do the same as at user level, with the sleeps and wakeups suppressed.
348 */
349 void
350 rf_DiskIOEnqueue(queue, req, pri)
351 RF_DiskQueue_t *queue;
352 RF_DiskQueueData_t *req;
353 int pri;
354 {
355 RF_ETIMER_START(req->qtime);
356 RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
357 req->priority = pri;
358
359 if (rf_queueDebug && (req->numSector == 0)) {
360 printf("Warning: Enqueueing zero-sector access\n");
361 }
362 /*
363 * kernel
364 */
365 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
366 /* locking request */
367 if (RF_LOCKING_REQ(req)) {
368 if (RF_QUEUE_EMPTY(queue)) {
369 Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
370 RF_LOCK_QUEUE(queue);
371 rf_DispatchKernelIO(queue, req);
372 } else {
373 queue->queueLength++; /* increment count of number
374 * of requests waiting in this
375 * queue */
376 Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
377 req->queue = (void *) queue;
378 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
379 }
380 }
381 /* unlocking request */
382 else
383 if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock
384 * when this I/O completes */
385 Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
386 RF_ASSERT(RF_QUEUE_LOCKED(queue));
387 rf_DispatchKernelIO(queue, req);
388 }
389 /* normal request */
390 else
391 if (RF_OK_TO_DISPATCH(queue, req)) {
392 Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
393 rf_DispatchKernelIO(queue, req);
394 } else {
395 queue->queueLength++; /* increment count of
396 * number of requests
397 * waiting in this queue */
398 Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
399 req->queue = (void *) queue;
400 (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
401 }
402 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
403 }
404
405
406 /* get the next set of I/Os started, kernel version only */
407 void
408 rf_DiskIOComplete(queue, req, status)
409 RF_DiskQueue_t *queue;
410 RF_DiskQueueData_t *req;
411 int status;
412 {
413 int done = 0;
414
415 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
416
417 /* unlock the queue: (1) after an unlocking req completes (2) after a
418 * locking req fails */
419 if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
420 Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
421 RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
422 RF_UNLOCK_QUEUE(queue);
423 }
424 queue->numOutstanding--;
425 RF_ASSERT(queue->numOutstanding >= 0);
426
427 /* dispatch requests to the disk until we find one that we can't. */
428 /* no reason to continue once we've filled up the queue */
429 /* no reason to even start if the queue is locked */
430
431 while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
432 if (queue->nextLockingOp) {
433 req = queue->nextLockingOp;
434 queue->nextLockingOp = NULL;
435 Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
436 } else {
437 req = (queue->qPtr->Dequeue) (queue->qHdr);
438 if (req != NULL) {
439 Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
440 } else {
441 Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
442 }
443 }
444 if (req) {
445 queue->queueLength--; /* decrement count of number
446 * of requests waiting in this
447 * queue */
448 RF_ASSERT(queue->queueLength >= 0);
449 }
450 if (!req)
451 done = 1;
452 else
453 if (RF_LOCKING_REQ(req)) {
454 if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */
455 Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
456 RF_LOCK_QUEUE(queue);
457 rf_DispatchKernelIO(queue, req);
458 done = 1;
459 } else { /* put it aside to wait for
460 * the queue to drain */
461 Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
462 RF_ASSERT(queue->nextLockingOp == NULL);
463 queue->nextLockingOp = req;
464 done = 1;
465 }
466 } else
467 if (RF_UNLOCKING_REQ(req)) { /* should not happen:
468 * unlocking ops should
469 * not get queued */
470 RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for
471 * the future */
472 Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
473 rf_DispatchKernelIO(queue, req);
474 done = 1;
475 } else
476 if (RF_OK_TO_DISPATCH(queue, req)) {
477 Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
478 rf_DispatchKernelIO(queue, req);
479 } else { /* we can't dispatch it,
480 * so just re-enqueue
481 * it. */
482 /* potential trouble here if
483 * disk queues batch reqs */
484 Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
485 queue->queueLength++;
486 (queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
487 done = 1;
488 }
489 }
490
491 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
492 }
493 /* promotes accesses tagged with the given parityStripeID from low priority
494 * to normal priority. This promotion is optional, meaning that a queue
495 * need not implement it. If there is no promotion routine associated with
496 * a queue, this routine does nothing and returns -1.
497 */
498 int
499 rf_DiskIOPromote(queue, parityStripeID, which_ru)
500 RF_DiskQueue_t *queue;
501 RF_StripeNum_t parityStripeID;
502 RF_ReconUnitNum_t which_ru;
503 {
504 int retval;
505
506 if (!queue->qPtr->Promote)
507 return (-1);
508 RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
509 retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
510 RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
511 return (retval);
512 }
513
514 RF_DiskQueueData_t *
515 rf_CreateDiskQueueData(
516 RF_IoType_t typ,
517 RF_SectorNum_t ssect,
518 RF_SectorCount_t nsect,
519 caddr_t buf,
520 RF_StripeNum_t parityStripeID,
521 RF_ReconUnitNum_t which_ru,
522 int (*wakeF) (void *, int),
523 void *arg,
524 RF_DiskQueueData_t * next,
525 RF_AccTraceEntry_t * tracerec,
526 void *raidPtr,
527 RF_DiskQueueDataFlags_t flags,
528 void *kb_proc)
529 {
530 RF_DiskQueueData_t *p;
531
532 RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
533
534 p->sectorOffset = ssect + rf_protectedSectors;
535 p->numSector = nsect;
536 p->type = typ;
537 p->buf = buf;
538 p->parityStripeID = parityStripeID;
539 p->which_ru = which_ru;
540 p->CompleteFunc = wakeF;
541 p->argument = arg;
542 p->next = next;
543 p->tracerec = tracerec;
544 p->priority = RF_IO_NORMAL_PRIORITY;
545 p->AuxFunc = NULL;
546 p->buf2 = NULL;
547 p->raidPtr = raidPtr;
548 p->flags = flags;
549 p->b_proc = kb_proc;
550 return (p);
551 }
552
553 RF_DiskQueueData_t *
554 rf_CreateDiskQueueDataFull(
555 RF_IoType_t typ,
556 RF_SectorNum_t ssect,
557 RF_SectorCount_t nsect,
558 caddr_t buf,
559 RF_StripeNum_t parityStripeID,
560 RF_ReconUnitNum_t which_ru,
561 int (*wakeF) (void *, int),
562 void *arg,
563 RF_DiskQueueData_t * next,
564 RF_AccTraceEntry_t * tracerec,
565 int priority,
566 int (*AuxFunc) (void *,...),
567 caddr_t buf2,
568 void *raidPtr,
569 RF_DiskQueueDataFlags_t flags,
570 void *kb_proc)
571 {
572 RF_DiskQueueData_t *p;
573
574 RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
575
576 p->sectorOffset = ssect + rf_protectedSectors;
577 p->numSector = nsect;
578 p->type = typ;
579 p->buf = buf;
580 p->parityStripeID = parityStripeID;
581 p->which_ru = which_ru;
582 p->CompleteFunc = wakeF;
583 p->argument = arg;
584 p->next = next;
585 p->tracerec = tracerec;
586 p->priority = priority;
587 p->AuxFunc = AuxFunc;
588 p->buf2 = buf2;
589 p->raidPtr = raidPtr;
590 p->flags = flags;
591 p->b_proc = kb_proc;
592 return (p);
593 }
594
595 void
596 rf_FreeDiskQueueData(p)
597 RF_DiskQueueData_t *p;
598 {
599 RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
600 }
601