rf_engine.c revision 1.10.2.5 1 /* $NetBSD: rf_engine.c,v 1.10.2.5 2002/10/18 02:43:48 nathanw Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II, Mark Holland, Rachad Youssef
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /****************************************************************************
30 * *
31 * engine.c -- code for DAG execution engine *
32 * *
33 * Modified to work as follows (holland): *
34 * A user-thread calls into DispatchDAG, which fires off the nodes that *
35 * are direct successors to the header node. DispatchDAG then returns, *
36 * and the rest of the I/O continues asynchronously. As each node *
37 * completes, the node execution function calls FinishNode(). FinishNode *
38 * scans the list of successors to the node and increments the antecedent *
39 * counts. Each node that becomes enabled is placed on a central node *
40 * queue. A dedicated dag-execution thread grabs nodes off of this *
41 * queue and fires them. *
42 * *
43 * NULL nodes are never fired. *
44 * *
45 * Terminator nodes are never fired, but rather cause the callback *
46 * associated with the DAG to be invoked. *
47 * *
48 * If a node fails, the dag either rolls forward to the completion or *
49 * rolls back, undoing previously-completed nodes and fails atomically. *
50 * The direction of recovery is determined by the location of the failed *
51 * node in the graph. If the failure occurred before the commit node in *
52 * the graph, backward recovery is used. Otherwise, forward recovery is *
53 * used. *
54 * *
55 ****************************************************************************/
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.10.2.5 2002/10/18 02:43:48 nathanw Exp $");
59
60 #include <sys/errno.h>
61
62 #include "rf_threadstuff.h"
63 #include "rf_dag.h"
64 #include "rf_engine.h"
65 #include "rf_etimer.h"
66 #include "rf_general.h"
67 #include "rf_dagutils.h"
68 #include "rf_shutdown.h"
69 #include "rf_raid.h"
70
71 static void rf_ShutdownEngine(void *);
72 static void DAGExecutionThread(RF_ThreadArg_t arg);
73 static void rf_RaidIOThread(RF_ThreadArg_t arg);
74
75 #define DO_INIT(_l_,_r_) { \
76 int _rc; \
77 _rc = rf_create_managed_mutex(_l_,&(_r_)->node_queue_mutex); \
78 if (_rc) { \
79 return(_rc); \
80 } \
81 _rc = rf_create_managed_cond(_l_,&(_r_)->node_queue_cond); \
82 if (_rc) { \
83 return(_rc); \
84 } \
85 }
86
87 /* synchronization primitives for this file. DO_WAIT should be enclosed in a while loop. */
88
89 #define DO_LOCK(_r_) \
90 do { \
91 ks = splbio(); \
92 RF_LOCK_MUTEX((_r_)->node_queue_mutex); \
93 } while (0)
94
95 #define DO_UNLOCK(_r_) \
96 do { \
97 RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \
98 splx(ks); \
99 } while (0)
100
101 #define DO_WAIT(_r_) \
102 RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex)
103
104 #define DO_SIGNAL(_r_) \
105 RF_BROADCAST_COND((_r_)->node_queue) /* XXX RF_SIGNAL_COND? */
106
107 static void
108 rf_ShutdownEngine(arg)
109 void *arg;
110 {
111 RF_Raid_t *raidPtr;
112 int ks;
113
114 raidPtr = (RF_Raid_t *) arg;
115
116 /* Tell the rf_RaidIOThread to shutdown */
117 simple_lock(&(raidPtr->iodone_lock));
118
119 raidPtr->shutdown_raidio = 1;
120 wakeup(&(raidPtr->iodone));
121
122 /* ...and wait for it to tell us it has finished */
123 while (raidPtr->shutdown_raidio)
124 ltsleep(&(raidPtr->shutdown_raidio), PRIBIO, "raidshutdown", 0,
125 &(raidPtr->iodone_lock));
126
127 simple_unlock(&(raidPtr->iodone_lock));
128
129 /* Now shut down the DAG execution engine. */
130 DO_LOCK(raidPtr);
131 raidPtr->shutdown_engine = 1;
132 DO_SIGNAL(raidPtr);
133 DO_UNLOCK(raidPtr);
134
135 }
136
137 int
138 rf_ConfigureEngine(
139 RF_ShutdownList_t ** listp,
140 RF_Raid_t * raidPtr,
141 RF_Config_t * cfgPtr)
142 {
143 int rc;
144
145 DO_INIT(listp, raidPtr);
146
147 raidPtr->node_queue = NULL;
148 raidPtr->dags_in_flight = 0;
149
150 rc = rf_init_managed_threadgroup(listp, &raidPtr->engine_tg);
151 if (rc)
152 return (rc);
153
154 /* we create the execution thread only once per system boot. no need
155 * to check return code b/c the kernel panics if it can't create the
156 * thread. */
157 if (rf_engineDebug) {
158 printf("raid%d: Creating engine thread\n", raidPtr->raidid);
159 }
160 if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
161 DAGExecutionThread, raidPtr,
162 "raid%d", raidPtr->raidid)) {
163 printf("raid%d: Unable to create engine thread\n",
164 raidPtr->raidid);
165 return (ENOMEM);
166 }
167 if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
168 rf_RaidIOThread, raidPtr,
169 "raidio%d", raidPtr->raidid)) {
170 printf("raid%d: Unable to create raidio thread\n",
171 raidPtr->raidid);
172 return (ENOMEM);
173 }
174 if (rf_engineDebug) {
175 printf("raid%d: Created engine thread\n", raidPtr->raidid);
176 }
177 RF_THREADGROUP_STARTED(&raidPtr->engine_tg);
178 /* XXX something is missing here... */
179 #ifdef debug
180 printf("Skipping the WAIT_START!!\n");
181 #endif
182 #if 0
183 RF_THREADGROUP_WAIT_START(&raidPtr->engine_tg);
184 #endif
185 /* engine thread is now running and waiting for work */
186 if (rf_engineDebug) {
187 printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
188 }
189 rc = rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
190 if (rc) {
191 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
192 rf_ShutdownEngine(NULL);
193 }
194 return (rc);
195 }
196
197 static int
198 BranchDone(RF_DagNode_t * node)
199 {
200 int i;
201
202 /* return true if forward execution is completed for a node and it's
203 * succedents */
204 switch (node->status) {
205 case rf_wait:
206 /* should never be called in this state */
207 RF_PANIC();
208 break;
209 case rf_fired:
210 /* node is currently executing, so we're not done */
211 return (RF_FALSE);
212 case rf_good:
213 /* for each succedent recursively check branch */
214 for (i = 0; i < node->numSuccedents; i++)
215 if (!BranchDone(node->succedents[i]))
216 return RF_FALSE;
217 return RF_TRUE; /* node and all succedent branches aren't in
218 * fired state */
219 case rf_bad:
220 /* succedents can't fire */
221 return (RF_TRUE);
222 case rf_recover:
223 /* should never be called in this state */
224 RF_PANIC();
225 break;
226 case rf_undone:
227 case rf_panic:
228 /* XXX need to fix this case */
229 /* for now, assume that we're done */
230 return (RF_TRUE);
231 default:
232 /* illegal node status */
233 RF_PANIC();
234 break;
235 }
236 }
237
238 static int
239 NodeReady(RF_DagNode_t * node)
240 {
241 int ready;
242
243 switch (node->dagHdr->status) {
244 case rf_enable:
245 case rf_rollForward:
246 if ((node->status == rf_wait) &&
247 (node->numAntecedents == node->numAntDone))
248 ready = RF_TRUE;
249 else
250 ready = RF_FALSE;
251 break;
252 case rf_rollBackward:
253 RF_ASSERT(node->numSuccDone <= node->numSuccedents);
254 RF_ASSERT(node->numSuccFired <= node->numSuccedents);
255 RF_ASSERT(node->numSuccFired <= node->numSuccDone);
256 if ((node->status == rf_good) &&
257 (node->numSuccDone == node->numSuccedents))
258 ready = RF_TRUE;
259 else
260 ready = RF_FALSE;
261 break;
262 default:
263 printf("Execution engine found illegal DAG status in NodeReady\n");
264 RF_PANIC();
265 break;
266 }
267
268 return (ready);
269 }
270
271
272
273 /* user context and dag-exec-thread context: Fire a node. The node's
274 * status field determines which function, do or undo, to be fired.
275 * This routine assumes that the node's status field has alread been
276 * set to "fired" or "recover" to indicate the direction of execution.
277 */
278 static void
279 FireNode(RF_DagNode_t * node)
280 {
281 switch (node->status) {
282 case rf_fired:
283 /* fire the do function of a node */
284 if (rf_engineDebug) {
285 printf("raid%d: Firing node 0x%lx (%s)\n",
286 node->dagHdr->raidPtr->raidid,
287 (unsigned long) node, node->name);
288 }
289 if (node->flags & RF_DAGNODE_FLAG_YIELD) {
290 #if defined(__NetBSD__) && defined(_KERNEL)
291 /* thread_block(); */
292 /* printf("Need to block the thread here...\n"); */
293 /* XXX thread_block is actually mentioned in
294 * /usr/include/vm/vm_extern.h */
295 #else
296 thread_block();
297 #endif
298 }
299 (*(node->doFunc)) (node);
300 break;
301 case rf_recover:
302 /* fire the undo function of a node */
303 if (rf_engineDebug) {
304 printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
305 node->dagHdr->raidPtr->raidid,
306 (unsigned long) node, node->name);
307 }
308 if (node->flags & RF_DAGNODE_FLAG_YIELD)
309 #if defined(__NetBSD__) && defined(_KERNEL)
310 /* thread_block(); */
311 /* printf("Need to block the thread here...\n"); */
312 /* XXX thread_block is actually mentioned in
313 * /usr/include/vm/vm_extern.h */
314 #else
315 thread_block();
316 #endif
317 (*(node->undoFunc)) (node);
318 break;
319 default:
320 RF_PANIC();
321 break;
322 }
323 }
324
325
326
327 /* user context:
328 * Attempt to fire each node in a linear array.
329 * The entire list is fired atomically.
330 */
331 static void
332 FireNodeArray(
333 int numNodes,
334 RF_DagNode_t ** nodeList)
335 {
336 RF_DagStatus_t dstat;
337 RF_DagNode_t *node;
338 int i, j;
339
340 /* first, mark all nodes which are ready to be fired */
341 for (i = 0; i < numNodes; i++) {
342 node = nodeList[i];
343 dstat = node->dagHdr->status;
344 RF_ASSERT((node->status == rf_wait) ||
345 (node->status == rf_good));
346 if (NodeReady(node)) {
347 if ((dstat == rf_enable) ||
348 (dstat == rf_rollForward)) {
349 RF_ASSERT(node->status == rf_wait);
350 if (node->commitNode)
351 node->dagHdr->numCommits++;
352 node->status = rf_fired;
353 for (j = 0; j < node->numAntecedents; j++)
354 node->antecedents[j]->numSuccFired++;
355 } else {
356 RF_ASSERT(dstat == rf_rollBackward);
357 RF_ASSERT(node->status == rf_good);
358 /* only one commit node per graph */
359 RF_ASSERT(node->commitNode == RF_FALSE);
360 node->status = rf_recover;
361 }
362 }
363 }
364 /* now, fire the nodes */
365 for (i = 0; i < numNodes; i++) {
366 if ((nodeList[i]->status == rf_fired) ||
367 (nodeList[i]->status == rf_recover))
368 FireNode(nodeList[i]);
369 }
370 }
371
372
373 /* user context:
374 * Attempt to fire each node in a linked list.
375 * The entire list is fired atomically.
376 */
377 static void
378 FireNodeList(RF_DagNode_t * nodeList)
379 {
380 RF_DagNode_t *node, *next;
381 RF_DagStatus_t dstat;
382 int j;
383
384 if (nodeList) {
385 /* first, mark all nodes which are ready to be fired */
386 for (node = nodeList; node; node = next) {
387 next = node->next;
388 dstat = node->dagHdr->status;
389 RF_ASSERT((node->status == rf_wait) ||
390 (node->status == rf_good));
391 if (NodeReady(node)) {
392 if ((dstat == rf_enable) ||
393 (dstat == rf_rollForward)) {
394 RF_ASSERT(node->status == rf_wait);
395 if (node->commitNode)
396 node->dagHdr->numCommits++;
397 node->status = rf_fired;
398 for (j = 0; j < node->numAntecedents; j++)
399 node->antecedents[j]->numSuccFired++;
400 } else {
401 RF_ASSERT(dstat == rf_rollBackward);
402 RF_ASSERT(node->status == rf_good);
403 /* only one commit node per graph */
404 RF_ASSERT(node->commitNode == RF_FALSE);
405 node->status = rf_recover;
406 }
407 }
408 }
409 /* now, fire the nodes */
410 for (node = nodeList; node; node = next) {
411 next = node->next;
412 if ((node->status == rf_fired) ||
413 (node->status == rf_recover))
414 FireNode(node);
415 }
416 }
417 }
418 /* interrupt context:
419 * for each succedent
420 * propagate required results from node to succedent
421 * increment succedent's numAntDone
422 * place newly-enable nodes on node queue for firing
423 *
424 * To save context switches, we don't place NIL nodes on the node queue,
425 * but rather just process them as if they had fired. Note that NIL nodes
426 * that are the direct successors of the header will actually get fired by
427 * DispatchDAG, which is fine because no context switches are involved.
428 *
429 * Important: when running at user level, this can be called by any
430 * disk thread, and so the increment and check of the antecedent count
431 * must be locked. I used the node queue mutex and locked down the
432 * entire function, but this is certainly overkill.
433 */
434 static void
435 PropagateResults(
436 RF_DagNode_t * node,
437 int context)
438 {
439 RF_DagNode_t *s, *a;
440 RF_Raid_t *raidPtr;
441 int i, ks;
442 RF_DagNode_t *finishlist = NULL; /* a list of NIL nodes to be
443 * finished */
444 RF_DagNode_t *skiplist = NULL; /* list of nodes with failed truedata
445 * antecedents */
446 RF_DagNode_t *firelist = NULL; /* a list of nodes to be fired */
447 RF_DagNode_t *q = NULL, *qh = NULL, *next;
448 int j, skipNode;
449
450 raidPtr = node->dagHdr->raidPtr;
451
452 DO_LOCK(raidPtr);
453
454 /* debug - validate fire counts */
455 for (i = 0; i < node->numAntecedents; i++) {
456 a = *(node->antecedents + i);
457 RF_ASSERT(a->numSuccFired >= a->numSuccDone);
458 RF_ASSERT(a->numSuccFired <= a->numSuccedents);
459 a->numSuccDone++;
460 }
461
462 switch (node->dagHdr->status) {
463 case rf_enable:
464 case rf_rollForward:
465 for (i = 0; i < node->numSuccedents; i++) {
466 s = *(node->succedents + i);
467 RF_ASSERT(s->status == rf_wait);
468 (s->numAntDone)++;
469 if (s->numAntDone == s->numAntecedents) {
470 /* look for NIL nodes */
471 if (s->doFunc == rf_NullNodeFunc) {
472 /* don't fire NIL nodes, just process
473 * them */
474 s->next = finishlist;
475 finishlist = s;
476 } else {
477 /* look to see if the node is to be
478 * skipped */
479 skipNode = RF_FALSE;
480 for (j = 0; j < s->numAntecedents; j++)
481 if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
482 skipNode = RF_TRUE;
483 if (skipNode) {
484 /* this node has one or more
485 * failed true data
486 * dependencies, so skip it */
487 s->next = skiplist;
488 skiplist = s;
489 } else
490 /* add s to list of nodes (q)
491 * to execute */
492 if (context != RF_INTR_CONTEXT) {
493 /* we only have to
494 * enqueue if we're at
495 * intr context */
496 /* put node on
497 a list to
498 be fired
499 after we
500 unlock */
501 s->next = firelist;
502 firelist = s;
503 } else {
504 /* enqueue the
505 node for
506 the dag
507 exec thread
508 to fire */
509 RF_ASSERT(NodeReady(s));
510 if (q) {
511 q->next = s;
512 q = s;
513 } else {
514 qh = q = s;
515 qh->next = NULL;
516 }
517 }
518 }
519 }
520 }
521
522 if (q) {
523 /* xfer our local list of nodes to the node queue */
524 q->next = raidPtr->node_queue;
525 raidPtr->node_queue = qh;
526 DO_SIGNAL(raidPtr);
527 }
528 DO_UNLOCK(raidPtr);
529
530 for (; skiplist; skiplist = next) {
531 next = skiplist->next;
532 skiplist->status = rf_skipped;
533 for (i = 0; i < skiplist->numAntecedents; i++) {
534 skiplist->antecedents[i]->numSuccFired++;
535 }
536 if (skiplist->commitNode) {
537 skiplist->dagHdr->numCommits++;
538 }
539 rf_FinishNode(skiplist, context);
540 }
541 for (; finishlist; finishlist = next) {
542 /* NIL nodes: no need to fire them */
543 next = finishlist->next;
544 finishlist->status = rf_good;
545 for (i = 0; i < finishlist->numAntecedents; i++) {
546 finishlist->antecedents[i]->numSuccFired++;
547 }
548 if (finishlist->commitNode)
549 finishlist->dagHdr->numCommits++;
550 /*
551 * Okay, here we're calling rf_FinishNode() on
552 * nodes that have the null function as their
553 * work proc. Such a node could be the
554 * terminal node in a DAG. If so, it will
555 * cause the DAG to complete, which will in
556 * turn free memory used by the DAG, which
557 * includes the node in question. Thus, we
558 * must avoid referencing the node at all
559 * after calling rf_FinishNode() on it. */
560 rf_FinishNode(finishlist, context); /* recursive call */
561 }
562 /* fire all nodes in firelist */
563 FireNodeList(firelist);
564 break;
565
566 case rf_rollBackward:
567 for (i = 0; i < node->numAntecedents; i++) {
568 a = *(node->antecedents + i);
569 RF_ASSERT(a->status == rf_good);
570 RF_ASSERT(a->numSuccDone <= a->numSuccedents);
571 RF_ASSERT(a->numSuccDone <= a->numSuccFired);
572
573 if (a->numSuccDone == a->numSuccFired) {
574 if (a->undoFunc == rf_NullNodeFunc) {
575 /* don't fire NIL nodes, just process
576 * them */
577 a->next = finishlist;
578 finishlist = a;
579 } else {
580 if (context != RF_INTR_CONTEXT) {
581 /* we only have to enqueue if
582 * we're at intr context */
583 /* put node on a list to be
584 fired after we unlock */
585 a->next = firelist;
586
587 firelist = a;
588 } else {
589 /* enqueue the node for the
590 dag exec thread to fire */
591 RF_ASSERT(NodeReady(a));
592 if (q) {
593 q->next = a;
594 q = a;
595 } else {
596 qh = q = a;
597 qh->next = NULL;
598 }
599 }
600 }
601 }
602 }
603 if (q) {
604 /* xfer our local list of nodes to the node queue */
605 q->next = raidPtr->node_queue;
606 raidPtr->node_queue = qh;
607 DO_SIGNAL(raidPtr);
608 }
609 DO_UNLOCK(raidPtr);
610 for (; finishlist; finishlist = next) {
611 /* NIL nodes: no need to fire them */
612 next = finishlist->next;
613 finishlist->status = rf_good;
614 /*
615 * Okay, here we're calling rf_FinishNode() on
616 * nodes that have the null function as their
617 * work proc. Such a node could be the first
618 * node in a DAG. If so, it will cause the DAG
619 * to complete, which will in turn free memory
620 * used by the DAG, which includes the node in
621 * question. Thus, we must avoid referencing
622 * the node at all after calling
623 * rf_FinishNode() on it. */
624 rf_FinishNode(finishlist, context); /* recursive call */
625 }
626 /* fire all nodes in firelist */
627 FireNodeList(firelist);
628
629 break;
630 default:
631 printf("Engine found illegal DAG status in PropagateResults()\n");
632 RF_PANIC();
633 break;
634 }
635 }
636
637
638
639 /*
640 * Process a fired node which has completed
641 */
642 static void
643 ProcessNode(
644 RF_DagNode_t * node,
645 int context)
646 {
647 RF_Raid_t *raidPtr;
648
649 raidPtr = node->dagHdr->raidPtr;
650
651 switch (node->status) {
652 case rf_good:
653 /* normal case, don't need to do anything */
654 break;
655 case rf_bad:
656 if ((node->dagHdr->numCommits > 0) ||
657 (node->dagHdr->numCommitNodes == 0)) {
658 /* crossed commit barrier */
659 node->dagHdr->status = rf_rollForward;
660 if (rf_engineDebug || 1) {
661 printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
662 }
663 } else {
664 /* never reached commit barrier */
665 node->dagHdr->status = rf_rollBackward;
666 if (rf_engineDebug || 1) {
667 printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
668 }
669 }
670 break;
671 case rf_undone:
672 /* normal rollBackward case, don't need to do anything */
673 break;
674 case rf_panic:
675 /* an undo node failed!!! */
676 printf("UNDO of a node failed!!!/n");
677 break;
678 default:
679 printf("node finished execution with an illegal status!!!\n");
680 RF_PANIC();
681 break;
682 }
683
684 /* enqueue node's succedents (antecedents if rollBackward) for
685 * execution */
686 PropagateResults(node, context);
687 }
688
689
690
691 /* user context or dag-exec-thread context:
692 * This is the first step in post-processing a newly-completed node.
693 * This routine is called by each node execution function to mark the node
694 * as complete and fire off any successors that have been enabled.
695 */
696 int
697 rf_FinishNode(
698 RF_DagNode_t * node,
699 int context)
700 {
701 int retcode = RF_FALSE;
702 node->dagHdr->numNodesCompleted++;
703 ProcessNode(node, context);
704
705 return (retcode);
706 }
707
708
709 /* user context: submit dag for execution, return non-zero if we have
710 * to wait for completion. if and only if we return non-zero, we'll
711 * cause cbFunc to get invoked with cbArg when the DAG has completed.
712 *
713 * for now we always return 1. If the DAG does not cause any I/O,
714 * then the callback may get invoked before DispatchDAG returns.
715 * There's code in state 5 of ContinueRaidAccess to handle this.
716 *
717 * All we do here is fire the direct successors of the header node.
718 * The DAG execution thread does the rest of the dag processing. */
719 int
720 rf_DispatchDAG(
721 RF_DagHeader_t * dag,
722 void (*cbFunc) (void *),
723 void *cbArg)
724 {
725 RF_Raid_t *raidPtr;
726
727 raidPtr = dag->raidPtr;
728 if (dag->tracerec) {
729 RF_ETIMER_START(dag->tracerec->timer);
730 }
731 #if DEBUG
732 #if RF_DEBUG_VALIDATE_DAG
733 if (rf_engineDebug || rf_validateDAGDebug) {
734 if (rf_ValidateDAG(dag))
735 RF_PANIC();
736 }
737 #endif
738 #endif
739 if (rf_engineDebug) {
740 printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
741 }
742 raidPtr->dags_in_flight++; /* debug only: blow off proper
743 * locking */
744 dag->cbFunc = cbFunc;
745 dag->cbArg = cbArg;
746 dag->numNodesCompleted = 0;
747 dag->status = rf_enable;
748 FireNodeArray(dag->numSuccedents, dag->succedents);
749 return (1);
750 }
751 /* dedicated kernel thread: the thread that handles all DAG node
752 * firing. To minimize locking and unlocking, we grab a copy of the
753 * entire node queue and then set the node queue to NULL before doing
754 * any firing of nodes. This way we only have to release the lock
755 * once. Of course, it's probably rare that there's more than one
756 * node in the queue at any one time, but it sometimes happens.
757 */
758
759 static void
760 DAGExecutionThread(RF_ThreadArg_t arg)
761 {
762 RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
763 RF_Raid_t *raidPtr;
764 int ks;
765 int s;
766
767 raidPtr = (RF_Raid_t *) arg;
768
769 if (rf_engineDebug) {
770 printf("raid%d: Engine thread is running\n", raidPtr->raidid);
771 }
772
773 s = splbio();
774
775 RF_THREADGROUP_RUNNING(&raidPtr->engine_tg);
776
777 DO_LOCK(raidPtr);
778 while (!raidPtr->shutdown_engine) {
779
780 while (raidPtr->node_queue != NULL) {
781 local_nq = raidPtr->node_queue;
782 fire_nq = NULL;
783 term_nq = NULL;
784 raidPtr->node_queue = NULL;
785 DO_UNLOCK(raidPtr);
786
787 /* first, strip out the terminal nodes */
788 while (local_nq) {
789 nd = local_nq;
790 local_nq = local_nq->next;
791 switch (nd->dagHdr->status) {
792 case rf_enable:
793 case rf_rollForward:
794 if (nd->numSuccedents == 0) {
795 /* end of the dag, add to
796 * callback list */
797 nd->next = term_nq;
798 term_nq = nd;
799 } else {
800 /* not the end, add to the
801 * fire queue */
802 nd->next = fire_nq;
803 fire_nq = nd;
804 }
805 break;
806 case rf_rollBackward:
807 if (nd->numAntecedents == 0) {
808 /* end of the dag, add to the
809 * callback list */
810 nd->next = term_nq;
811 term_nq = nd;
812 } else {
813 /* not the end, add to the
814 * fire queue */
815 nd->next = fire_nq;
816 fire_nq = nd;
817 }
818 break;
819 default:
820 RF_PANIC();
821 break;
822 }
823 }
824
825 /* execute callback of dags which have reached the
826 * terminal node */
827 while (term_nq) {
828 nd = term_nq;
829 term_nq = term_nq->next;
830 nd->next = NULL;
831 (nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
832 raidPtr->dags_in_flight--; /* debug only */
833 }
834
835 /* fire remaining nodes */
836 FireNodeList(fire_nq);
837
838 DO_LOCK(raidPtr);
839 }
840 while (!raidPtr->shutdown_engine &&
841 raidPtr->node_queue == NULL) {
842 DO_WAIT(raidPtr);
843 }
844 }
845 DO_UNLOCK(raidPtr);
846
847 RF_THREADGROUP_DONE(&raidPtr->engine_tg);
848
849 splx(s);
850 kthread_exit(0);
851 }
852
853 /*
854 * rf_RaidIOThread() -- When I/O to a component completes,
855 * KernelWakeupFunc() puts the completed request onto raidPtr->iodone
856 * TAILQ. This function looks after requests on that queue by calling
857 * rf_DiskIOComplete() for the request, and by calling any required
858 * CompleteFunc for the request.
859 */
860
861 static void
862 rf_RaidIOThread(RF_ThreadArg_t arg)
863 {
864 RF_Raid_t *raidPtr;
865 RF_DiskQueueData_t *req;
866 int s;
867
868 raidPtr = (RF_Raid_t *) arg;
869
870 s = splbio();
871 simple_lock(&(raidPtr->iodone_lock));
872
873 while (!raidPtr->shutdown_raidio) {
874 /* if there is nothing to do, then snooze. */
875 if (TAILQ_EMPTY(&(raidPtr->iodone))) {
876 ltsleep(&(raidPtr->iodone), PRIBIO, "raidiow", 0,
877 &(raidPtr->iodone_lock));
878 }
879
880 /* See what I/Os, if any, have arrived */
881 while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
882 TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
883 simple_unlock(&(raidPtr->iodone_lock));
884 rf_DiskIOComplete(req->queue, req, req->error);
885 (req->CompleteFunc) (req->argument, req->error);
886 simple_lock(&(raidPtr->iodone_lock));
887 }
888 }
889
890 /* Let rf_ShutdownEngine know that we're done... */
891 raidPtr->shutdown_raidio = 0;
892 wakeup(&(raidPtr->shutdown_raidio));
893
894 simple_unlock(&(raidPtr->iodone_lock));
895 splx(s);
896
897 kthread_exit(0);
898 }
899