rf_engine.c revision 1.24 1 /* $NetBSD: rf_engine.c,v 1.24 2002/10/04 22:50:26 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II, Mark Holland, Rachad Youssef
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /****************************************************************************
30 * *
31 * engine.c -- code for DAG execution engine *
32 * *
33 * Modified to work as follows (holland): *
34 * A user-thread calls into DispatchDAG, which fires off the nodes that *
35 * are direct successors to the header node. DispatchDAG then returns, *
36 * and the rest of the I/O continues asynchronously. As each node *
37 * completes, the node execution function calls FinishNode(). FinishNode *
38 * scans the list of successors to the node and increments the antecedent *
39 * counts. Each node that becomes enabled is placed on a central node *
40 * queue. A dedicated dag-execution thread grabs nodes off of this *
41 * queue and fires them. *
42 * *
43 * NULL nodes are never fired. *
44 * *
45 * Terminator nodes are never fired, but rather cause the callback *
46 * associated with the DAG to be invoked. *
47 * *
48 * If a node fails, the dag either rolls forward to the completion or *
49 * rolls back, undoing previously-completed nodes and fails atomically. *
50 * The direction of recovery is determined by the location of the failed *
51 * node in the graph. If the failure occurred before the commit node in *
52 * the graph, backward recovery is used. Otherwise, forward recovery is *
53 * used. *
54 * *
55 ****************************************************************************/
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.24 2002/10/04 22:50:26 oster Exp $");
59
60 #include "rf_threadstuff.h"
61
62 #include <sys/errno.h>
63
64 #include "rf_dag.h"
65 #include "rf_engine.h"
66 #include "rf_etimer.h"
67 #include "rf_general.h"
68 #include "rf_dagutils.h"
69 #include "rf_shutdown.h"
70 #include "rf_raid.h"
71
72 static void DAGExecutionThread(RF_ThreadArg_t arg);
73 static void rf_RaidIOThread(RF_ThreadArg_t arg);
74
75 #define DO_INIT(_l_,_r_) { \
76 int _rc; \
77 _rc = rf_create_managed_mutex(_l_,&(_r_)->node_queue_mutex); \
78 if (_rc) { \
79 return(_rc); \
80 } \
81 _rc = rf_create_managed_cond(_l_,&(_r_)->node_queue_cond); \
82 if (_rc) { \
83 return(_rc); \
84 } \
85 }
86
87 /* synchronization primitives for this file. DO_WAIT should be enclosed in a while loop. */
88
89 #define DO_LOCK(_r_) \
90 do { \
91 ks = splbio(); \
92 RF_LOCK_MUTEX((_r_)->node_queue_mutex); \
93 } while (0)
94
95 #define DO_UNLOCK(_r_) \
96 do { \
97 RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \
98 splx(ks); \
99 } while (0)
100
101 #define DO_WAIT(_r_) \
102 RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex)
103
104 #define DO_SIGNAL(_r_) \
105 RF_BROADCAST_COND((_r_)->node_queue) /* XXX RF_SIGNAL_COND? */
106
107 static void rf_ShutdownEngine(void *);
108
109 static void
110 rf_ShutdownEngine(arg)
111 void *arg;
112 {
113 RF_Raid_t *raidPtr;
114 int ks;
115
116 raidPtr = (RF_Raid_t *) arg;
117
118 /* Tell the rf_RaidIOThread to shutdown */
119 simple_lock(&(raidPtr->iodone_lock));
120
121 raidPtr->shutdown_raidio = 1;
122 wakeup(&(raidPtr->iodone));
123
124 /* ...and wait for it to tell us it has finished */
125 while (raidPtr->shutdown_raidio)
126 ltsleep(&(raidPtr->shutdown_raidio), PRIBIO, "raidshutdown", 0,
127 &(raidPtr->iodone_lock));
128
129 simple_unlock(&(raidPtr->iodone_lock));
130
131 /* Now shut down the DAG execution engine. */
132 DO_LOCK(raidPtr);
133 raidPtr->shutdown_engine = 1;
134 DO_SIGNAL(raidPtr);
135 DO_UNLOCK(raidPtr);
136
137 }
138
139 int
140 rf_ConfigureEngine(
141 RF_ShutdownList_t ** listp,
142 RF_Raid_t * raidPtr,
143 RF_Config_t * cfgPtr)
144 {
145 int rc;
146
147 DO_INIT(listp, raidPtr);
148
149 raidPtr->node_queue = NULL;
150 raidPtr->dags_in_flight = 0;
151
152 rc = rf_init_managed_threadgroup(listp, &raidPtr->engine_tg);
153 if (rc)
154 return (rc);
155
156 /* we create the execution thread only once per system boot. no need
157 * to check return code b/c the kernel panics if it can't create the
158 * thread. */
159 if (rf_engineDebug) {
160 printf("raid%d: Creating engine thread\n", raidPtr->raidid);
161 }
162 if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
163 DAGExecutionThread, raidPtr,
164 "raid%d", raidPtr->raidid)) {
165 RF_ERRORMSG("RAIDFRAME: Unable to create engine thread\n");
166 return (ENOMEM);
167 }
168 if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
169 rf_RaidIOThread, raidPtr,
170 "raidio%d", raidPtr->raidid)) {
171 printf("raid%d: Unable to create raidio thread\n",
172 raidPtr->raidid);
173 return (ENOMEM);
174 }
175 if (rf_engineDebug) {
176 printf("raid%d: Created engine thread\n", raidPtr->raidid);
177 }
178 RF_THREADGROUP_STARTED(&raidPtr->engine_tg);
179 /* XXX something is missing here... */
180 #ifdef debug
181 printf("Skipping the WAIT_START!!\n");
182 #endif
183 #if 0
184 RF_THREADGROUP_WAIT_START(&raidPtr->engine_tg);
185 #endif
186 /* engine thread is now running and waiting for work */
187 if (rf_engineDebug) {
188 printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
189 }
190 rc = rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
191 if (rc) {
192 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
193 rf_ShutdownEngine(NULL);
194 }
195 return (rc);
196 }
197
198 static int
199 BranchDone(RF_DagNode_t * node)
200 {
201 int i;
202
203 /* return true if forward execution is completed for a node and it's
204 * succedents */
205 switch (node->status) {
206 case rf_wait:
207 /* should never be called in this state */
208 RF_PANIC();
209 break;
210 case rf_fired:
211 /* node is currently executing, so we're not done */
212 return (RF_FALSE);
213 case rf_good:
214 /* for each succedent recursively check branch */
215 for (i = 0; i < node->numSuccedents; i++)
216 if (!BranchDone(node->succedents[i]))
217 return RF_FALSE;
218 return RF_TRUE; /* node and all succedent branches aren't in
219 * fired state */
220 case rf_bad:
221 /* succedents can't fire */
222 return (RF_TRUE);
223 case rf_recover:
224 /* should never be called in this state */
225 RF_PANIC();
226 break;
227 case rf_undone:
228 case rf_panic:
229 /* XXX need to fix this case */
230 /* for now, assume that we're done */
231 return (RF_TRUE);
232 default:
233 /* illegal node status */
234 RF_PANIC();
235 break;
236 }
237 }
238
239 static int
240 NodeReady(RF_DagNode_t * node)
241 {
242 int ready;
243
244 switch (node->dagHdr->status) {
245 case rf_enable:
246 case rf_rollForward:
247 if ((node->status == rf_wait) &&
248 (node->numAntecedents == node->numAntDone))
249 ready = RF_TRUE;
250 else
251 ready = RF_FALSE;
252 break;
253 case rf_rollBackward:
254 RF_ASSERT(node->numSuccDone <= node->numSuccedents);
255 RF_ASSERT(node->numSuccFired <= node->numSuccedents);
256 RF_ASSERT(node->numSuccFired <= node->numSuccDone);
257 if ((node->status == rf_good) &&
258 (node->numSuccDone == node->numSuccedents))
259 ready = RF_TRUE;
260 else
261 ready = RF_FALSE;
262 break;
263 default:
264 printf("Execution engine found illegal DAG status in NodeReady\n");
265 RF_PANIC();
266 break;
267 }
268
269 return (ready);
270 }
271
272
273
274 /* user context and dag-exec-thread context: Fire a node. The node's
275 * status field determines which function, do or undo, to be fired.
276 * This routine assumes that the node's status field has alread been
277 * set to "fired" or "recover" to indicate the direction of execution.
278 */
279 static void
280 FireNode(RF_DagNode_t * node)
281 {
282 switch (node->status) {
283 case rf_fired:
284 /* fire the do function of a node */
285 if (rf_engineDebug) {
286 printf("raid%d: Firing node 0x%lx (%s)\n",
287 node->dagHdr->raidPtr->raidid,
288 (unsigned long) node, node->name);
289 }
290 if (node->flags & RF_DAGNODE_FLAG_YIELD) {
291 #if defined(__NetBSD__) && defined(_KERNEL)
292 /* thread_block(); */
293 /* printf("Need to block the thread here...\n"); */
294 /* XXX thread_block is actually mentioned in
295 * /usr/include/vm/vm_extern.h */
296 #else
297 thread_block();
298 #endif
299 }
300 (*(node->doFunc)) (node);
301 break;
302 case rf_recover:
303 /* fire the undo function of a node */
304 if (rf_engineDebug) {
305 printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
306 node->dagHdr->raidPtr->raidid,
307 (unsigned long) node, node->name);
308 }
309 if (node->flags & RF_DAGNODE_FLAG_YIELD)
310 #if defined(__NetBSD__) && defined(_KERNEL)
311 /* thread_block(); */
312 /* printf("Need to block the thread here...\n"); */
313 /* XXX thread_block is actually mentioned in
314 * /usr/include/vm/vm_extern.h */
315 #else
316 thread_block();
317 #endif
318 (*(node->undoFunc)) (node);
319 break;
320 default:
321 RF_PANIC();
322 break;
323 }
324 }
325
326
327
328 /* user context:
329 * Attempt to fire each node in a linear array.
330 * The entire list is fired atomically.
331 */
332 static void
333 FireNodeArray(
334 int numNodes,
335 RF_DagNode_t ** nodeList)
336 {
337 RF_DagStatus_t dstat;
338 RF_DagNode_t *node;
339 int i, j;
340
341 /* first, mark all nodes which are ready to be fired */
342 for (i = 0; i < numNodes; i++) {
343 node = nodeList[i];
344 dstat = node->dagHdr->status;
345 RF_ASSERT((node->status == rf_wait) ||
346 (node->status == rf_good));
347 if (NodeReady(node)) {
348 if ((dstat == rf_enable) ||
349 (dstat == rf_rollForward)) {
350 RF_ASSERT(node->status == rf_wait);
351 if (node->commitNode)
352 node->dagHdr->numCommits++;
353 node->status = rf_fired;
354 for (j = 0; j < node->numAntecedents; j++)
355 node->antecedents[j]->numSuccFired++;
356 } else {
357 RF_ASSERT(dstat == rf_rollBackward);
358 RF_ASSERT(node->status == rf_good);
359 /* only one commit node per graph */
360 RF_ASSERT(node->commitNode == RF_FALSE);
361 node->status = rf_recover;
362 }
363 }
364 }
365 /* now, fire the nodes */
366 for (i = 0; i < numNodes; i++) {
367 if ((nodeList[i]->status == rf_fired) ||
368 (nodeList[i]->status == rf_recover))
369 FireNode(nodeList[i]);
370 }
371 }
372
373
374 /* user context:
375 * Attempt to fire each node in a linked list.
376 * The entire list is fired atomically.
377 */
378 static void
379 FireNodeList(RF_DagNode_t * nodeList)
380 {
381 RF_DagNode_t *node, *next;
382 RF_DagStatus_t dstat;
383 int j;
384
385 if (nodeList) {
386 /* first, mark all nodes which are ready to be fired */
387 for (node = nodeList; node; node = next) {
388 next = node->next;
389 dstat = node->dagHdr->status;
390 RF_ASSERT((node->status == rf_wait) ||
391 (node->status == rf_good));
392 if (NodeReady(node)) {
393 if ((dstat == rf_enable) ||
394 (dstat == rf_rollForward)) {
395 RF_ASSERT(node->status == rf_wait);
396 if (node->commitNode)
397 node->dagHdr->numCommits++;
398 node->status = rf_fired;
399 for (j = 0; j < node->numAntecedents; j++)
400 node->antecedents[j]->numSuccFired++;
401 } else {
402 RF_ASSERT(dstat == rf_rollBackward);
403 RF_ASSERT(node->status == rf_good);
404 /* only one commit node per graph */
405 RF_ASSERT(node->commitNode == RF_FALSE);
406 node->status = rf_recover;
407 }
408 }
409 }
410 /* now, fire the nodes */
411 for (node = nodeList; node; node = next) {
412 next = node->next;
413 if ((node->status == rf_fired) ||
414 (node->status == rf_recover))
415 FireNode(node);
416 }
417 }
418 }
419 /* interrupt context:
420 * for each succedent
421 * propagate required results from node to succedent
422 * increment succedent's numAntDone
423 * place newly-enable nodes on node queue for firing
424 *
425 * To save context switches, we don't place NIL nodes on the node queue,
426 * but rather just process them as if they had fired. Note that NIL nodes
427 * that are the direct successors of the header will actually get fired by
428 * DispatchDAG, which is fine because no context switches are involved.
429 *
430 * Important: when running at user level, this can be called by any
431 * disk thread, and so the increment and check of the antecedent count
432 * must be locked. I used the node queue mutex and locked down the
433 * entire function, but this is certainly overkill.
434 */
435 static void
436 PropagateResults(
437 RF_DagNode_t * node,
438 int context)
439 {
440 RF_DagNode_t *s, *a;
441 RF_Raid_t *raidPtr;
442 int i, ks;
443 RF_DagNode_t *finishlist = NULL; /* a list of NIL nodes to be
444 * finished */
445 RF_DagNode_t *skiplist = NULL; /* list of nodes with failed truedata
446 * antecedents */
447 RF_DagNode_t *firelist = NULL; /* a list of nodes to be fired */
448 RF_DagNode_t *q = NULL, *qh = NULL, *next;
449 int j, skipNode;
450
451 raidPtr = node->dagHdr->raidPtr;
452
453 DO_LOCK(raidPtr);
454
455 /* debug - validate fire counts */
456 for (i = 0; i < node->numAntecedents; i++) {
457 a = *(node->antecedents + i);
458 RF_ASSERT(a->numSuccFired >= a->numSuccDone);
459 RF_ASSERT(a->numSuccFired <= a->numSuccedents);
460 a->numSuccDone++;
461 }
462
463 switch (node->dagHdr->status) {
464 case rf_enable:
465 case rf_rollForward:
466 for (i = 0; i < node->numSuccedents; i++) {
467 s = *(node->succedents + i);
468 RF_ASSERT(s->status == rf_wait);
469 (s->numAntDone)++;
470 if (s->numAntDone == s->numAntecedents) {
471 /* look for NIL nodes */
472 if (s->doFunc == rf_NullNodeFunc) {
473 /* don't fire NIL nodes, just process
474 * them */
475 s->next = finishlist;
476 finishlist = s;
477 } else {
478 /* look to see if the node is to be
479 * skipped */
480 skipNode = RF_FALSE;
481 for (j = 0; j < s->numAntecedents; j++)
482 if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
483 skipNode = RF_TRUE;
484 if (skipNode) {
485 /* this node has one or more
486 * failed true data
487 * dependencies, so skip it */
488 s->next = skiplist;
489 skiplist = s;
490 } else
491 /* add s to list of nodes (q)
492 * to execute */
493 if (context != RF_INTR_CONTEXT) {
494 /* we only have to
495 * enqueue if we're at
496 * intr context */
497 s->next = firelist; /* put node on a list to
498 * be fired after we
499 * unlock */
500 firelist = s;
501 } else { /* enqueue the node for
502 * the dag exec thread
503 * to fire */
504 RF_ASSERT(NodeReady(s));
505 if (q) {
506 q->next = s;
507 q = s;
508 } else {
509 qh = q = s;
510 qh->next = NULL;
511 }
512 }
513 }
514 }
515 }
516
517 if (q) {
518 /* xfer our local list of nodes to the node queue */
519 q->next = raidPtr->node_queue;
520 raidPtr->node_queue = qh;
521 DO_SIGNAL(raidPtr);
522 }
523 DO_UNLOCK(raidPtr);
524
525 for (; skiplist; skiplist = next) {
526 next = skiplist->next;
527 skiplist->status = rf_skipped;
528 for (i = 0; i < skiplist->numAntecedents; i++) {
529 skiplist->antecedents[i]->numSuccFired++;
530 }
531 if (skiplist->commitNode) {
532 skiplist->dagHdr->numCommits++;
533 }
534 rf_FinishNode(skiplist, context);
535 }
536 for (; finishlist; finishlist = next) {
537 /* NIL nodes: no need to fire them */
538 next = finishlist->next;
539 finishlist->status = rf_good;
540 for (i = 0; i < finishlist->numAntecedents; i++) {
541 finishlist->antecedents[i]->numSuccFired++;
542 }
543 if (finishlist->commitNode)
544 finishlist->dagHdr->numCommits++;
545 /*
546 * Okay, here we're calling rf_FinishNode() on
547 * nodes that have the null function as their
548 * work proc. Such a node could be the
549 * terminal node in a DAG. If so, it will
550 * cause the DAG to complete, which will in
551 * turn free memory used by the DAG, which
552 * includes the node in question. Thus, we
553 * must avoid referencing the node at all
554 * after calling rf_FinishNode() on it. */
555 rf_FinishNode(finishlist, context); /* recursive call */
556 }
557 /* fire all nodes in firelist */
558 FireNodeList(firelist);
559 break;
560
561 case rf_rollBackward:
562 for (i = 0; i < node->numAntecedents; i++) {
563 a = *(node->antecedents + i);
564 RF_ASSERT(a->status == rf_good);
565 RF_ASSERT(a->numSuccDone <= a->numSuccedents);
566 RF_ASSERT(a->numSuccDone <= a->numSuccFired);
567
568 if (a->numSuccDone == a->numSuccFired) {
569 if (a->undoFunc == rf_NullNodeFunc) {
570 /* don't fire NIL nodes, just process
571 * them */
572 a->next = finishlist;
573 finishlist = a;
574 } else {
575 if (context != RF_INTR_CONTEXT) {
576 /* we only have to enqueue if
577 * we're at intr context */
578 /* put node on a list to be
579 fired after we unlock */
580 a->next = firelist;
581
582 firelist = a;
583 } else {
584 /* enqueue the node for the
585 dag exec thread to fire */
586 RF_ASSERT(NodeReady(a));
587 if (q) {
588 q->next = a;
589 q = a;
590 } else {
591 qh = q = a;
592 qh->next = NULL;
593 }
594 }
595 }
596 }
597 }
598 if (q) {
599 /* xfer our local list of nodes to the node queue */
600 q->next = raidPtr->node_queue;
601 raidPtr->node_queue = qh;
602 DO_SIGNAL(raidPtr);
603 }
604 DO_UNLOCK(raidPtr);
605 for (; finishlist; finishlist = next) {
606 /* NIL nodes: no need to fire them */
607 next = finishlist->next;
608 finishlist->status = rf_good;
609 /*
610 * Okay, here we're calling rf_FinishNode() on
611 * nodes that have the null function as their
612 * work proc. Such a node could be the first
613 * node in a DAG. If so, it will cause the DAG
614 * to complete, which will in turn free memory
615 * used by the DAG, which includes the node in
616 * question. Thus, we must avoid referencing
617 * the node at all after calling
618 * rf_FinishNode() on it. */
619 rf_FinishNode(finishlist, context); /* recursive call */
620 }
621 /* fire all nodes in firelist */
622 FireNodeList(firelist);
623
624 break;
625 default:
626 printf("Engine found illegal DAG status in PropagateResults()\n");
627 RF_PANIC();
628 break;
629 }
630 }
631
632
633
634 /*
635 * Process a fired node which has completed
636 */
637 static void
638 ProcessNode(
639 RF_DagNode_t * node,
640 int context)
641 {
642 RF_Raid_t *raidPtr;
643
644 raidPtr = node->dagHdr->raidPtr;
645
646 switch (node->status) {
647 case rf_good:
648 /* normal case, don't need to do anything */
649 break;
650 case rf_bad:
651 if ((node->dagHdr->numCommits > 0) ||
652 (node->dagHdr->numCommitNodes == 0)) {
653 /* crossed commit barrier */
654 node->dagHdr->status = rf_rollForward;
655 if (rf_engineDebug || 1) {
656 printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
657 }
658 } else {
659 /* never reached commit barrier */
660 node->dagHdr->status = rf_rollBackward;
661 if (rf_engineDebug || 1) {
662 printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
663 }
664 }
665 break;
666 case rf_undone:
667 /* normal rollBackward case, don't need to do anything */
668 break;
669 case rf_panic:
670 /* an undo node failed!!! */
671 printf("UNDO of a node failed!!!/n");
672 break;
673 default:
674 printf("node finished execution with an illegal status!!!\n");
675 RF_PANIC();
676 break;
677 }
678
679 /* enqueue node's succedents (antecedents if rollBackward) for
680 * execution */
681 PropagateResults(node, context);
682 }
683
684
685
686 /* user context or dag-exec-thread context:
687 * This is the first step in post-processing a newly-completed node.
688 * This routine is called by each node execution function to mark the node
689 * as complete and fire off any successors that have been enabled.
690 */
691 int
692 rf_FinishNode(
693 RF_DagNode_t * node,
694 int context)
695 {
696 int retcode = RF_FALSE;
697 node->dagHdr->numNodesCompleted++;
698 ProcessNode(node, context);
699
700 return (retcode);
701 }
702
703
704 /* user context: submit dag for execution, return non-zero if we have
705 * to wait for completion. if and only if we return non-zero, we'll
706 * cause cbFunc to get invoked with cbArg when the DAG has completed.
707 *
708 * for now we always return 1. If the DAG does not cause any I/O,
709 * then the callback may get invoked before DispatchDAG returns.
710 * There's code in state 5 of ContinueRaidAccess to handle this.
711 *
712 * All we do here is fire the direct successors of the header node.
713 * The DAG execution thread does the rest of the dag processing. */
714 int
715 rf_DispatchDAG(
716 RF_DagHeader_t * dag,
717 void (*cbFunc) (void *),
718 void *cbArg)
719 {
720 RF_Raid_t *raidPtr;
721
722 raidPtr = dag->raidPtr;
723 if (dag->tracerec) {
724 RF_ETIMER_START(dag->tracerec->timer);
725 }
726 #if DEBUG
727 #if RF_DEBUG_VALIDATE_DAG
728 if (rf_engineDebug || rf_validateDAGDebug) {
729 if (rf_ValidateDAG(dag))
730 RF_PANIC();
731 }
732 #endif
733 #endif
734 if (rf_engineDebug) {
735 printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
736 }
737 raidPtr->dags_in_flight++; /* debug only: blow off proper
738 * locking */
739 dag->cbFunc = cbFunc;
740 dag->cbArg = cbArg;
741 dag->numNodesCompleted = 0;
742 dag->status = rf_enable;
743 FireNodeArray(dag->numSuccedents, dag->succedents);
744 return (1);
745 }
746 /* dedicated kernel thread: the thread that handles all DAG node
747 * firing. To minimize locking and unlocking, we grab a copy of the
748 * entire node queue and then set the node queue to NULL before doing
749 * any firing of nodes. This way we only have to release the lock
750 * once. Of course, it's probably rare that there's more than one
751 * node in the queue at any one time, but it sometimes happens.
752 */
753
754 static void
755 DAGExecutionThread(RF_ThreadArg_t arg)
756 {
757 RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
758 RF_Raid_t *raidPtr;
759 int ks;
760 int s;
761
762 raidPtr = (RF_Raid_t *) arg;
763
764 if (rf_engineDebug) {
765 printf("raid%d: Engine thread is running\n", raidPtr->raidid);
766 }
767
768 s = splbio();
769
770 RF_THREADGROUP_RUNNING(&raidPtr->engine_tg);
771
772 DO_LOCK(raidPtr);
773 while (!raidPtr->shutdown_engine) {
774
775 while (raidPtr->node_queue != NULL) {
776 local_nq = raidPtr->node_queue;
777 fire_nq = NULL;
778 term_nq = NULL;
779 raidPtr->node_queue = NULL;
780 DO_UNLOCK(raidPtr);
781
782 /* first, strip out the terminal nodes */
783 while (local_nq) {
784 nd = local_nq;
785 local_nq = local_nq->next;
786 switch (nd->dagHdr->status) {
787 case rf_enable:
788 case rf_rollForward:
789 if (nd->numSuccedents == 0) {
790 /* end of the dag, add to
791 * callback list */
792 nd->next = term_nq;
793 term_nq = nd;
794 } else {
795 /* not the end, add to the
796 * fire queue */
797 nd->next = fire_nq;
798 fire_nq = nd;
799 }
800 break;
801 case rf_rollBackward:
802 if (nd->numAntecedents == 0) {
803 /* end of the dag, add to the
804 * callback list */
805 nd->next = term_nq;
806 term_nq = nd;
807 } else {
808 /* not the end, add to the
809 * fire queue */
810 nd->next = fire_nq;
811 fire_nq = nd;
812 }
813 break;
814 default:
815 RF_PANIC();
816 break;
817 }
818 }
819
820 /* execute callback of dags which have reached the
821 * terminal node */
822 while (term_nq) {
823 nd = term_nq;
824 term_nq = term_nq->next;
825 nd->next = NULL;
826 (nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
827 raidPtr->dags_in_flight--; /* debug only */
828 }
829
830 /* fire remaining nodes */
831 FireNodeList(fire_nq);
832
833 DO_LOCK(raidPtr);
834 }
835 while (!raidPtr->shutdown_engine &&
836 raidPtr->node_queue == NULL) {
837 DO_WAIT(raidPtr);
838 }
839 }
840 DO_UNLOCK(raidPtr);
841
842 RF_THREADGROUP_DONE(&raidPtr->engine_tg);
843
844 splx(s);
845 kthread_exit(0);
846 }
847
848 /*
849 * rf_RaidIOThread() -- When I/O to a component completes,
850 * KernelWakeupFunc() puts the completed request onto raidPtr->iodone
851 * TAILQ. This function looks after requests on that queue by calling
852 * rf_DiskIOComplete() for the request, and by calling any required
853 * CompleteFunc for the request.
854 */
855
856 static void
857 rf_RaidIOThread(RF_ThreadArg_t arg)
858 {
859 RF_Raid_t *raidPtr;
860 RF_DiskQueueData_t *req;
861 int s;
862
863 raidPtr = (RF_Raid_t *) arg;
864
865 s = splbio();
866 simple_lock(&(raidPtr->iodone_lock));
867
868 while (!raidPtr->shutdown_raidio) {
869 /* if there is nothing to do, then snooze. */
870 if (TAILQ_EMPTY(&(raidPtr->iodone))) {
871 ltsleep(&(raidPtr->iodone), PRIBIO, "raidiow", 0,
872 &(raidPtr->iodone_lock));
873 }
874
875 /* See what I/Os, if any, have arrived */
876 while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
877 TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
878 simple_unlock(&(raidPtr->iodone_lock));
879 rf_DiskIOComplete(req->queue, req, req->error);
880 (req->CompleteFunc) (req->argument, req->error);
881 simple_lock(&(raidPtr->iodone_lock));
882 }
883 }
884
885 /* Let rf_ShutdownEngine know that we're done... */
886 raidPtr->shutdown_raidio = 0;
887 wakeup(&(raidPtr->shutdown_raidio));
888
889 simple_unlock(&(raidPtr->iodone_lock));
890 splx(s);
891
892 kthread_exit(0);
893 }
894