Home | History | Annotate | Line # | Download | only in raidframe
rf_engine.c revision 1.25.6.4
      1 /*	$NetBSD: rf_engine.c,v 1.25.6.4 2005/03/04 16:50:06 skrll Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II, Mark Holland, Rachad Youssef
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************
     30  *                                                                          *
     31  * engine.c -- code for DAG execution engine                                *
     32  *                                                                          *
     33  * Modified to work as follows (holland):                                   *
     34  *   A user-thread calls into DispatchDAG, which fires off the nodes that   *
     35  *   are direct successors to the header node.  DispatchDAG then returns,   *
     36  *   and the rest of the I/O continues asynchronously.  As each node        *
     37  *   completes, the node execution function calls FinishNode().  FinishNode *
     38  *   scans the list of successors to the node and increments the antecedent *
     39  *   counts.  Each node that becomes enabled is placed on a central node    *
     40  *   queue.  A dedicated dag-execution thread grabs nodes off of this       *
     41  *   queue and fires them.                                                  *
     42  *                                                                          *
     43  *   NULL nodes are never fired.                                            *
     44  *                                                                          *
     45  *   Terminator nodes are never fired, but rather cause the callback        *
     46  *   associated with the DAG to be invoked.                                 *
     47  *                                                                          *
     48  *   If a node fails, the dag either rolls forward to the completion or     *
     49  *   rolls back, undoing previously-completed nodes and fails atomically.   *
     50  *   The direction of recovery is determined by the location of the failed  *
     51  *   node in the graph.  If the failure occurred before the commit node in   *
     52  *   the graph, backward recovery is used.  Otherwise, forward recovery is  *
     53  *   used.                                                                  *
     54  *                                                                          *
     55  ****************************************************************************/
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.25.6.4 2005/03/04 16:50:06 skrll Exp $");
     59 
     60 #include <sys/errno.h>
     61 
     62 #include "rf_threadstuff.h"
     63 #include "rf_dag.h"
     64 #include "rf_engine.h"
     65 #include "rf_etimer.h"
     66 #include "rf_general.h"
     67 #include "rf_dagutils.h"
     68 #include "rf_shutdown.h"
     69 #include "rf_raid.h"
     70 
     71 static void rf_ShutdownEngine(void *);
     72 static void DAGExecutionThread(RF_ThreadArg_t arg);
     73 static void rf_RaidIOThread(RF_ThreadArg_t arg);
     74 
     75 /* synchronization primitives for this file.  DO_WAIT should be enclosed in a while loop. */
     76 
     77 #define DO_LOCK(_r_) \
     78 do { \
     79 	ks = splbio(); \
     80 	RF_LOCK_MUTEX((_r_)->node_queue_mutex); \
     81 } while (0)
     82 
     83 #define DO_UNLOCK(_r_) \
     84 do { \
     85 	RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \
     86 	splx(ks); \
     87 } while (0)
     88 
     89 #define	DO_WAIT(_r_) \
     90 	RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex)
     91 
     92 #define	DO_SIGNAL(_r_) \
     93 	RF_BROADCAST_COND((_r_)->node_queue)	/* XXX RF_SIGNAL_COND? */
     94 
     95 static void
     96 rf_ShutdownEngine(void *arg)
     97 {
     98 	RF_Raid_t *raidPtr;
     99 	int ks;
    100 
    101 	raidPtr = (RF_Raid_t *) arg;
    102 
    103 	/* Tell the rf_RaidIOThread to shutdown */
    104 	simple_lock(&(raidPtr->iodone_lock));
    105 
    106 	raidPtr->shutdown_raidio = 1;
    107 	wakeup(&(raidPtr->iodone));
    108 
    109 	/* ...and wait for it to tell us it has finished */
    110 	while (raidPtr->shutdown_raidio)
    111  		ltsleep(&(raidPtr->shutdown_raidio), PRIBIO, "raidshutdown", 0,
    112 			&(raidPtr->iodone_lock));
    113 
    114 	simple_unlock(&(raidPtr->iodone_lock));
    115 
    116  	/* Now shut down the DAG execution engine. */
    117  	DO_LOCK(raidPtr);
    118   	raidPtr->shutdown_engine = 1;
    119   	DO_SIGNAL(raidPtr);
    120  	DO_UNLOCK(raidPtr);
    121 
    122 }
    123 
    124 int
    125 rf_ConfigureEngine(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
    126 		   RF_Config_t *cfgPtr)
    127 {
    128 
    129 	rf_mutex_init(&raidPtr->node_queue_mutex);
    130 	raidPtr->node_queue = NULL;
    131 	raidPtr->dags_in_flight = 0;
    132 
    133 	/* we create the execution thread only once per system boot. no need
    134 	 * to check return code b/c the kernel panics if it can't create the
    135 	 * thread. */
    136 #if RF_DEBUG_ENGINE
    137 	if (rf_engineDebug) {
    138 		printf("raid%d: Creating engine thread\n", raidPtr->raidid);
    139 	}
    140 #endif
    141 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
    142 				    DAGExecutionThread, raidPtr,
    143 				    "raid%d", raidPtr->raidid)) {
    144 		printf("raid%d: Unable to create engine thread\n",
    145 		       raidPtr->raidid);
    146 		return (ENOMEM);
    147 	}
    148 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
    149 				    rf_RaidIOThread, raidPtr,
    150 				    "raidio%d", raidPtr->raidid)) {
    151 		printf("raid%d: Unable to create raidio thread\n",
    152 		       raidPtr->raidid);
    153 		return (ENOMEM);
    154 	}
    155 #if RF_DEBUG_ENGINE
    156 	if (rf_engineDebug) {
    157 		printf("raid%d: Created engine thread\n", raidPtr->raidid);
    158 	}
    159 #endif
    160 
    161 	/* engine thread is now running and waiting for work */
    162 #if RF_DEBUG_ENGINE
    163 	if (rf_engineDebug) {
    164 		printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
    165 	}
    166 #endif
    167 	rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
    168 
    169 	return (0);
    170 }
    171 
    172 static int
    173 BranchDone(RF_DagNode_t *node)
    174 {
    175 	int     i;
    176 
    177 	/* return true if forward execution is completed for a node and it's
    178 	 * succedents */
    179 	switch (node->status) {
    180 	case rf_wait:
    181 		/* should never be called in this state */
    182 		RF_PANIC();
    183 		break;
    184 	case rf_fired:
    185 		/* node is currently executing, so we're not done */
    186 		return (RF_FALSE);
    187 	case rf_good:
    188 		/* for each succedent recursively check branch */
    189 		for (i = 0; i < node->numSuccedents; i++)
    190 			if (!BranchDone(node->succedents[i]))
    191 				return RF_FALSE;
    192 		return RF_TRUE;	/* node and all succedent branches aren't in
    193 				 * fired state */
    194 	case rf_bad:
    195 		/* succedents can't fire */
    196 		return (RF_TRUE);
    197 	case rf_recover:
    198 		/* should never be called in this state */
    199 		RF_PANIC();
    200 		break;
    201 	case rf_undone:
    202 	case rf_panic:
    203 		/* XXX need to fix this case */
    204 		/* for now, assume that we're done */
    205 		return (RF_TRUE);
    206 	default:
    207 		/* illegal node status */
    208 		RF_PANIC();
    209 		break;
    210 	}
    211 }
    212 
    213 static int
    214 NodeReady(RF_DagNode_t *node)
    215 {
    216 	int     ready;
    217 
    218 	switch (node->dagHdr->status) {
    219 	case rf_enable:
    220 	case rf_rollForward:
    221 		if ((node->status == rf_wait) &&
    222 		    (node->numAntecedents == node->numAntDone))
    223 			ready = RF_TRUE;
    224 		else
    225 			ready = RF_FALSE;
    226 		break;
    227 	case rf_rollBackward:
    228 		RF_ASSERT(node->numSuccDone <= node->numSuccedents);
    229 		RF_ASSERT(node->numSuccFired <= node->numSuccedents);
    230 		RF_ASSERT(node->numSuccFired <= node->numSuccDone);
    231 		if ((node->status == rf_good) &&
    232 		    (node->numSuccDone == node->numSuccedents))
    233 			ready = RF_TRUE;
    234 		else
    235 			ready = RF_FALSE;
    236 		break;
    237 	default:
    238 		printf("Execution engine found illegal DAG status in NodeReady\n");
    239 		RF_PANIC();
    240 		break;
    241 	}
    242 
    243 	return (ready);
    244 }
    245 
    246 
    247 
    248 /* user context and dag-exec-thread context: Fire a node.  The node's
    249  * status field determines which function, do or undo, to be fired.
    250  * This routine assumes that the node's status field has alread been
    251  * set to "fired" or "recover" to indicate the direction of execution.
    252  */
    253 static void
    254 FireNode(RF_DagNode_t *node)
    255 {
    256 	switch (node->status) {
    257 	case rf_fired:
    258 		/* fire the do function of a node */
    259 #if RF_DEBUG_ENGINE
    260 		if (rf_engineDebug) {
    261 			printf("raid%d: Firing node 0x%lx (%s)\n",
    262 			       node->dagHdr->raidPtr->raidid,
    263 			       (unsigned long) node, node->name);
    264 		}
    265 #endif
    266 		if (node->flags & RF_DAGNODE_FLAG_YIELD) {
    267 #if defined(__NetBSD__) && defined(_KERNEL)
    268 			/* thread_block(); */
    269 			/* printf("Need to block the thread here...\n");  */
    270 			/* XXX thread_block is actually mentioned in
    271 			 * /usr/include/vm/vm_extern.h */
    272 #else
    273 			thread_block();
    274 #endif
    275 		}
    276 		(*(node->doFunc)) (node);
    277 		break;
    278 	case rf_recover:
    279 		/* fire the undo function of a node */
    280 #if RF_DEBUG_ENGINE
    281 		if (rf_engineDebug) {
    282 			printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
    283 			       node->dagHdr->raidPtr->raidid,
    284 			       (unsigned long) node, node->name);
    285 		}
    286 #endif
    287 		if (node->flags & RF_DAGNODE_FLAG_YIELD)
    288 #if defined(__NetBSD__) && defined(_KERNEL)
    289 			/* thread_block(); */
    290 			/* printf("Need to block the thread here...\n"); */
    291 			/* XXX thread_block is actually mentioned in
    292 			 * /usr/include/vm/vm_extern.h */
    293 #else
    294 			thread_block();
    295 #endif
    296 		(*(node->undoFunc)) (node);
    297 		break;
    298 	default:
    299 		RF_PANIC();
    300 		break;
    301 	}
    302 }
    303 
    304 
    305 
    306 /* user context:
    307  * Attempt to fire each node in a linear array.
    308  * The entire list is fired atomically.
    309  */
    310 static void
    311 FireNodeArray(int numNodes, RF_DagNode_t **nodeList)
    312 {
    313 	RF_DagStatus_t dstat;
    314 	RF_DagNode_t *node;
    315 	int     i, j;
    316 
    317 	/* first, mark all nodes which are ready to be fired */
    318 	for (i = 0; i < numNodes; i++) {
    319 		node = nodeList[i];
    320 		dstat = node->dagHdr->status;
    321 		RF_ASSERT((node->status == rf_wait) ||
    322 			  (node->status == rf_good));
    323 		if (NodeReady(node)) {
    324 			if ((dstat == rf_enable) ||
    325 			    (dstat == rf_rollForward)) {
    326 				RF_ASSERT(node->status == rf_wait);
    327 				if (node->commitNode)
    328 					node->dagHdr->numCommits++;
    329 				node->status = rf_fired;
    330 				for (j = 0; j < node->numAntecedents; j++)
    331 					node->antecedents[j]->numSuccFired++;
    332 			} else {
    333 				RF_ASSERT(dstat == rf_rollBackward);
    334 				RF_ASSERT(node->status == rf_good);
    335 				/* only one commit node per graph */
    336 				RF_ASSERT(node->commitNode == RF_FALSE);
    337 				node->status = rf_recover;
    338 			}
    339 		}
    340 	}
    341 	/* now, fire the nodes */
    342 	for (i = 0; i < numNodes; i++) {
    343 		if ((nodeList[i]->status == rf_fired) ||
    344 		    (nodeList[i]->status == rf_recover))
    345 			FireNode(nodeList[i]);
    346 	}
    347 }
    348 
    349 
    350 /* user context:
    351  * Attempt to fire each node in a linked list.
    352  * The entire list is fired atomically.
    353  */
    354 static void
    355 FireNodeList(RF_DagNode_t *nodeList)
    356 {
    357 	RF_DagNode_t *node, *next;
    358 	RF_DagStatus_t dstat;
    359 	int     j;
    360 
    361 	if (nodeList) {
    362 		/* first, mark all nodes which are ready to be fired */
    363 		for (node = nodeList; node; node = next) {
    364 			next = node->next;
    365 			dstat = node->dagHdr->status;
    366 			RF_ASSERT((node->status == rf_wait) ||
    367 				  (node->status == rf_good));
    368 			if (NodeReady(node)) {
    369 				if ((dstat == rf_enable) ||
    370 				    (dstat == rf_rollForward)) {
    371 					RF_ASSERT(node->status == rf_wait);
    372 					if (node->commitNode)
    373 						node->dagHdr->numCommits++;
    374 					node->status = rf_fired;
    375 					for (j = 0; j < node->numAntecedents; j++)
    376 						node->antecedents[j]->numSuccFired++;
    377 				} else {
    378 					RF_ASSERT(dstat == rf_rollBackward);
    379 					RF_ASSERT(node->status == rf_good);
    380 					/* only one commit node per graph */
    381 					RF_ASSERT(node->commitNode == RF_FALSE);
    382 					node->status = rf_recover;
    383 				}
    384 			}
    385 		}
    386 		/* now, fire the nodes */
    387 		for (node = nodeList; node; node = next) {
    388 			next = node->next;
    389 			if ((node->status == rf_fired) ||
    390 			    (node->status == rf_recover))
    391 				FireNode(node);
    392 		}
    393 	}
    394 }
    395 /* interrupt context:
    396  * for each succedent
    397  *    propagate required results from node to succedent
    398  *    increment succedent's numAntDone
    399  *    place newly-enable nodes on node queue for firing
    400  *
    401  * To save context switches, we don't place NIL nodes on the node queue,
    402  * but rather just process them as if they had fired.  Note that NIL nodes
    403  * that are the direct successors of the header will actually get fired by
    404  * DispatchDAG, which is fine because no context switches are involved.
    405  *
    406  * Important:  when running at user level, this can be called by any
    407  * disk thread, and so the increment and check of the antecedent count
    408  * must be locked.  I used the node queue mutex and locked down the
    409  * entire function, but this is certainly overkill.
    410  */
    411 static void
    412 PropagateResults(RF_DagNode_t *node, int context)
    413 {
    414 	RF_DagNode_t *s, *a;
    415 	RF_Raid_t *raidPtr;
    416 	int     i, ks;
    417 	RF_DagNode_t *finishlist = NULL;	/* a list of NIL nodes to be
    418 						 * finished */
    419 	RF_DagNode_t *skiplist = NULL;	/* list of nodes with failed truedata
    420 					 * antecedents */
    421 	RF_DagNode_t *firelist = NULL;	/* a list of nodes to be fired */
    422 	RF_DagNode_t *q = NULL, *qh = NULL, *next;
    423 	int     j, skipNode;
    424 
    425 	raidPtr = node->dagHdr->raidPtr;
    426 
    427 	DO_LOCK(raidPtr);
    428 
    429 	/* debug - validate fire counts */
    430 	for (i = 0; i < node->numAntecedents; i++) {
    431 		a = *(node->antecedents + i);
    432 		RF_ASSERT(a->numSuccFired >= a->numSuccDone);
    433 		RF_ASSERT(a->numSuccFired <= a->numSuccedents);
    434 		a->numSuccDone++;
    435 	}
    436 
    437 	switch (node->dagHdr->status) {
    438 	case rf_enable:
    439 	case rf_rollForward:
    440 		for (i = 0; i < node->numSuccedents; i++) {
    441 			s = *(node->succedents + i);
    442 			RF_ASSERT(s->status == rf_wait);
    443 			(s->numAntDone)++;
    444 			if (s->numAntDone == s->numAntecedents) {
    445 				/* look for NIL nodes */
    446 				if (s->doFunc == rf_NullNodeFunc) {
    447 					/* don't fire NIL nodes, just process
    448 					 * them */
    449 					s->next = finishlist;
    450 					finishlist = s;
    451 				} else {
    452 					/* look to see if the node is to be
    453 					 * skipped */
    454 					skipNode = RF_FALSE;
    455 					for (j = 0; j < s->numAntecedents; j++)
    456 						if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
    457 							skipNode = RF_TRUE;
    458 					if (skipNode) {
    459 						/* this node has one or more
    460 						 * failed true data
    461 						 * dependencies, so skip it */
    462 						s->next = skiplist;
    463 						skiplist = s;
    464 					} else
    465 						/* add s to list of nodes (q)
    466 						 * to execute */
    467 						if (context != RF_INTR_CONTEXT) {
    468 							/* we only have to
    469 							 * enqueue if we're at
    470 							 * intr context */
    471 							/* put node on
    472                                                            a list to
    473                                                            be fired
    474                                                            after we
    475                                                            unlock */
    476 							s->next = firelist;
    477 							firelist = s;
    478 						} else {
    479 							/* enqueue the
    480 							   node for
    481 							   the dag
    482 							   exec thread
    483 							   to fire */
    484 							RF_ASSERT(NodeReady(s));
    485 							if (q) {
    486 								q->next = s;
    487 								q = s;
    488 							} else {
    489 								qh = q = s;
    490 								qh->next = NULL;
    491 							}
    492 						}
    493 				}
    494 			}
    495 		}
    496 
    497 		if (q) {
    498 			/* xfer our local list of nodes to the node queue */
    499 			q->next = raidPtr->node_queue;
    500 			raidPtr->node_queue = qh;
    501 			DO_SIGNAL(raidPtr);
    502 		}
    503 		DO_UNLOCK(raidPtr);
    504 
    505 		for (; skiplist; skiplist = next) {
    506 			next = skiplist->next;
    507 			skiplist->status = rf_skipped;
    508 			for (i = 0; i < skiplist->numAntecedents; i++) {
    509 				skiplist->antecedents[i]->numSuccFired++;
    510 			}
    511 			if (skiplist->commitNode) {
    512 				skiplist->dagHdr->numCommits++;
    513 			}
    514 			rf_FinishNode(skiplist, context);
    515 		}
    516 		for (; finishlist; finishlist = next) {
    517 			/* NIL nodes: no need to fire them */
    518 			next = finishlist->next;
    519 			finishlist->status = rf_good;
    520 			for (i = 0; i < finishlist->numAntecedents; i++) {
    521 				finishlist->antecedents[i]->numSuccFired++;
    522 			}
    523 			if (finishlist->commitNode)
    524 				finishlist->dagHdr->numCommits++;
    525 			/*
    526 		         * Okay, here we're calling rf_FinishNode() on
    527 		         * nodes that have the null function as their
    528 		         * work proc. Such a node could be the
    529 		         * terminal node in a DAG. If so, it will
    530 		         * cause the DAG to complete, which will in
    531 		         * turn free memory used by the DAG, which
    532 		         * includes the node in question. Thus, we
    533 		         * must avoid referencing the node at all
    534 		         * after calling rf_FinishNode() on it.  */
    535 			rf_FinishNode(finishlist, context);	/* recursive call */
    536 		}
    537 		/* fire all nodes in firelist */
    538 		FireNodeList(firelist);
    539 		break;
    540 
    541 	case rf_rollBackward:
    542 		for (i = 0; i < node->numAntecedents; i++) {
    543 			a = *(node->antecedents + i);
    544 			RF_ASSERT(a->status == rf_good);
    545 			RF_ASSERT(a->numSuccDone <= a->numSuccedents);
    546 			RF_ASSERT(a->numSuccDone <= a->numSuccFired);
    547 
    548 			if (a->numSuccDone == a->numSuccFired) {
    549 				if (a->undoFunc == rf_NullNodeFunc) {
    550 					/* don't fire NIL nodes, just process
    551 					 * them */
    552 					a->next = finishlist;
    553 					finishlist = a;
    554 				} else {
    555 					if (context != RF_INTR_CONTEXT) {
    556 						/* we only have to enqueue if
    557 						 * we're at intr context */
    558 						/* put node on a list to be
    559 						   fired after we unlock */
    560 						a->next = firelist;
    561 
    562 						firelist = a;
    563 					} else {
    564 						/* enqueue the node for the
    565 						   dag exec thread to fire */
    566 						RF_ASSERT(NodeReady(a));
    567 						if (q) {
    568 							q->next = a;
    569 							q = a;
    570 						} else {
    571 							qh = q = a;
    572 							qh->next = NULL;
    573 						}
    574 					}
    575 				}
    576 			}
    577 		}
    578 		if (q) {
    579 			/* xfer our local list of nodes to the node queue */
    580 			q->next = raidPtr->node_queue;
    581 			raidPtr->node_queue = qh;
    582 			DO_SIGNAL(raidPtr);
    583 		}
    584 		DO_UNLOCK(raidPtr);
    585 		for (; finishlist; finishlist = next) {
    586 			/* NIL nodes: no need to fire them */
    587 			next = finishlist->next;
    588 			finishlist->status = rf_good;
    589 			/*
    590 		         * Okay, here we're calling rf_FinishNode() on
    591 		         * nodes that have the null function as their
    592 		         * work proc. Such a node could be the first
    593 		         * node in a DAG. If so, it will cause the DAG
    594 		         * to complete, which will in turn free memory
    595 		         * used by the DAG, which includes the node in
    596 		         * question. Thus, we must avoid referencing
    597 		         * the node at all after calling
    598 		         * rf_FinishNode() on it.  */
    599 			rf_FinishNode(finishlist, context);	/* recursive call */
    600 		}
    601 		/* fire all nodes in firelist */
    602 		FireNodeList(firelist);
    603 
    604 		break;
    605 	default:
    606 		printf("Engine found illegal DAG status in PropagateResults()\n");
    607 		RF_PANIC();
    608 		break;
    609 	}
    610 }
    611 
    612 
    613 
    614 /*
    615  * Process a fired node which has completed
    616  */
    617 static void
    618 ProcessNode(RF_DagNode_t *node, int context)
    619 {
    620 	RF_Raid_t *raidPtr;
    621 
    622 	raidPtr = node->dagHdr->raidPtr;
    623 
    624 	switch (node->status) {
    625 	case rf_good:
    626 		/* normal case, don't need to do anything */
    627 		break;
    628 	case rf_bad:
    629 		if ((node->dagHdr->numCommits > 0) ||
    630 		    (node->dagHdr->numCommitNodes == 0)) {
    631 			/* crossed commit barrier */
    632 			node->dagHdr->status = rf_rollForward;
    633 #if RF_DEBUG_ENGINE
    634 			if (rf_engineDebug) {
    635 				printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
    636 			}
    637 #endif
    638 		} else {
    639 			/* never reached commit barrier */
    640 			node->dagHdr->status = rf_rollBackward;
    641 #if RF_DEBUG_ENGINE
    642 			if (rf_engineDebug) {
    643 				printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
    644 			}
    645 #endif
    646 		}
    647 		break;
    648 	case rf_undone:
    649 		/* normal rollBackward case, don't need to do anything */
    650 		break;
    651 	case rf_panic:
    652 		/* an undo node failed!!! */
    653 		printf("UNDO of a node failed!!!/n");
    654 		break;
    655 	default:
    656 		printf("node finished execution with an illegal status!!!\n");
    657 		RF_PANIC();
    658 		break;
    659 	}
    660 
    661 	/* enqueue node's succedents (antecedents if rollBackward) for
    662 	 * execution */
    663 	PropagateResults(node, context);
    664 }
    665 
    666 
    667 
    668 /* user context or dag-exec-thread context:
    669  * This is the first step in post-processing a newly-completed node.
    670  * This routine is called by each node execution function to mark the node
    671  * as complete and fire off any successors that have been enabled.
    672  */
    673 int
    674 rf_FinishNode(RF_DagNode_t *node, int context)
    675 {
    676 	int     retcode = RF_FALSE;
    677 	node->dagHdr->numNodesCompleted++;
    678 	ProcessNode(node, context);
    679 
    680 	return (retcode);
    681 }
    682 
    683 
    684 /* user context: submit dag for execution, return non-zero if we have
    685  * to wait for completion.  if and only if we return non-zero, we'll
    686  * cause cbFunc to get invoked with cbArg when the DAG has completed.
    687  *
    688  * for now we always return 1.  If the DAG does not cause any I/O,
    689  * then the callback may get invoked before DispatchDAG returns.
    690  * There's code in state 5 of ContinueRaidAccess to handle this.
    691  *
    692  * All we do here is fire the direct successors of the header node.
    693  * The DAG execution thread does the rest of the dag processing.  */
    694 int
    695 rf_DispatchDAG(RF_DagHeader_t *dag, void (*cbFunc) (void *),
    696 	       void *cbArg)
    697 {
    698 	RF_Raid_t *raidPtr;
    699 
    700 	raidPtr = dag->raidPtr;
    701 #if RF_ACC_TRACE > 0
    702 	if (dag->tracerec) {
    703 		RF_ETIMER_START(dag->tracerec->timer);
    704 	}
    705 #endif
    706 #if DEBUG
    707 #if RF_DEBUG_VALIDATE_DAG
    708 	if (rf_engineDebug || rf_validateDAGDebug) {
    709 		if (rf_ValidateDAG(dag))
    710 			RF_PANIC();
    711 	}
    712 #endif
    713 #endif
    714 #if RF_DEBUG_ENGINE
    715 	if (rf_engineDebug) {
    716 		printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
    717 	}
    718 #endif
    719 	raidPtr->dags_in_flight++;	/* debug only:  blow off proper
    720 					 * locking */
    721 	dag->cbFunc = cbFunc;
    722 	dag->cbArg = cbArg;
    723 	dag->numNodesCompleted = 0;
    724 	dag->status = rf_enable;
    725 	FireNodeArray(dag->numSuccedents, dag->succedents);
    726 	return (1);
    727 }
    728 /* dedicated kernel thread: the thread that handles all DAG node
    729  * firing.  To minimize locking and unlocking, we grab a copy of the
    730  * entire node queue and then set the node queue to NULL before doing
    731  * any firing of nodes.  This way we only have to release the lock
    732  * once.  Of course, it's probably rare that there's more than one
    733  * node in the queue at any one time, but it sometimes happens.
    734  */
    735 
    736 static void
    737 DAGExecutionThread(RF_ThreadArg_t arg)
    738 {
    739 	RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
    740 	RF_Raid_t *raidPtr;
    741 	int     ks;
    742 	int     s;
    743 
    744 	raidPtr = (RF_Raid_t *) arg;
    745 
    746 #if RF_DEBUG_ENGINE
    747 	if (rf_engineDebug) {
    748 		printf("raid%d: Engine thread is running\n", raidPtr->raidid);
    749 	}
    750 #endif
    751 	s = splbio();
    752 
    753 	DO_LOCK(raidPtr);
    754 	while (!raidPtr->shutdown_engine) {
    755 
    756 		while (raidPtr->node_queue != NULL) {
    757 			local_nq = raidPtr->node_queue;
    758 			fire_nq = NULL;
    759 			term_nq = NULL;
    760 			raidPtr->node_queue = NULL;
    761 			DO_UNLOCK(raidPtr);
    762 
    763 			/* first, strip out the terminal nodes */
    764 			while (local_nq) {
    765 				nd = local_nq;
    766 				local_nq = local_nq->next;
    767 				switch (nd->dagHdr->status) {
    768 				case rf_enable:
    769 				case rf_rollForward:
    770 					if (nd->numSuccedents == 0) {
    771 						/* end of the dag, add to
    772 						 * callback list */
    773 						nd->next = term_nq;
    774 						term_nq = nd;
    775 					} else {
    776 						/* not the end, add to the
    777 						 * fire queue */
    778 						nd->next = fire_nq;
    779 						fire_nq = nd;
    780 					}
    781 					break;
    782 				case rf_rollBackward:
    783 					if (nd->numAntecedents == 0) {
    784 						/* end of the dag, add to the
    785 						 * callback list */
    786 						nd->next = term_nq;
    787 						term_nq = nd;
    788 					} else {
    789 						/* not the end, add to the
    790 						 * fire queue */
    791 						nd->next = fire_nq;
    792 						fire_nq = nd;
    793 					}
    794 					break;
    795 				default:
    796 					RF_PANIC();
    797 					break;
    798 				}
    799 			}
    800 
    801 			/* execute callback of dags which have reached the
    802 			 * terminal node */
    803 			while (term_nq) {
    804 				nd = term_nq;
    805 				term_nq = term_nq->next;
    806 				nd->next = NULL;
    807 				(nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
    808 				raidPtr->dags_in_flight--;	/* debug only */
    809 			}
    810 
    811 			/* fire remaining nodes */
    812 			FireNodeList(fire_nq);
    813 
    814 			DO_LOCK(raidPtr);
    815 		}
    816 		while (!raidPtr->shutdown_engine &&
    817 		       raidPtr->node_queue == NULL) {
    818 			DO_WAIT(raidPtr);
    819 		}
    820 	}
    821 	DO_UNLOCK(raidPtr);
    822 
    823 	splx(s);
    824 	kthread_exit(0);
    825 }
    826 
    827 /*
    828  * rf_RaidIOThread() -- When I/O to a component completes,
    829  * KernelWakeupFunc() puts the completed request onto raidPtr->iodone
    830  * TAILQ.  This function looks after requests on that queue by calling
    831  * rf_DiskIOComplete() for the request, and by calling any required
    832  * CompleteFunc for the request.
    833  */
    834 
    835 static void
    836 rf_RaidIOThread(RF_ThreadArg_t arg)
    837 {
    838 	RF_Raid_t *raidPtr;
    839 	RF_DiskQueueData_t *req;
    840 	int s;
    841 
    842 	raidPtr = (RF_Raid_t *) arg;
    843 
    844 	s = splbio();
    845 	simple_lock(&(raidPtr->iodone_lock));
    846 
    847 	while (!raidPtr->shutdown_raidio) {
    848 		/* if there is nothing to do, then snooze. */
    849 		if (TAILQ_EMPTY(&(raidPtr->iodone))) {
    850 			ltsleep(&(raidPtr->iodone), PRIBIO, "raidiow", 0,
    851 				&(raidPtr->iodone_lock));
    852 		}
    853 
    854 		/* See what I/Os, if any, have arrived */
    855 		while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
    856 			TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
    857 			simple_unlock(&(raidPtr->iodone_lock));
    858 			rf_DiskIOComplete(req->queue, req, req->error);
    859 			(req->CompleteFunc) (req->argument, req->error);
    860 			simple_lock(&(raidPtr->iodone_lock));
    861 		}
    862 	}
    863 
    864 	/* Let rf_ShutdownEngine know that we're done... */
    865 	raidPtr->shutdown_raidio = 0;
    866 	wakeup(&(raidPtr->shutdown_raidio));
    867 
    868 	simple_unlock(&(raidPtr->iodone_lock));
    869 	splx(s);
    870 
    871 	kthread_exit(0);
    872 }
    873