Home | History | Annotate | Line # | Download | only in raidframe
rf_engine.c revision 1.26
      1 /*	$NetBSD: rf_engine.c,v 1.26 2003/12/29 05:22:16 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II, Mark Holland, Rachad Youssef
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************
     30  *                                                                          *
     31  * engine.c -- code for DAG execution engine                                *
     32  *                                                                          *
     33  * Modified to work as follows (holland):                                   *
     34  *   A user-thread calls into DispatchDAG, which fires off the nodes that   *
     35  *   are direct successors to the header node.  DispatchDAG then returns,   *
     36  *   and the rest of the I/O continues asynchronously.  As each node        *
     37  *   completes, the node execution function calls FinishNode().  FinishNode *
     38  *   scans the list of successors to the node and increments the antecedent *
     39  *   counts.  Each node that becomes enabled is placed on a central node    *
     40  *   queue.  A dedicated dag-execution thread grabs nodes off of this       *
     41  *   queue and fires them.                                                  *
     42  *                                                                          *
     43  *   NULL nodes are never fired.                                            *
     44  *                                                                          *
     45  *   Terminator nodes are never fired, but rather cause the callback        *
     46  *   associated with the DAG to be invoked.                                 *
     47  *                                                                          *
     48  *   If a node fails, the dag either rolls forward to the completion or     *
     49  *   rolls back, undoing previously-completed nodes and fails atomically.   *
     50  *   The direction of recovery is determined by the location of the failed  *
     51  *   node in the graph.  If the failure occurred before the commit node in   *
     52  *   the graph, backward recovery is used.  Otherwise, forward recovery is  *
     53  *   used.                                                                  *
     54  *                                                                          *
     55  ****************************************************************************/
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.26 2003/12/29 05:22:16 oster Exp $");
     59 
     60 #include <sys/errno.h>
     61 
     62 #include "rf_threadstuff.h"
     63 #include "rf_dag.h"
     64 #include "rf_engine.h"
     65 #include "rf_etimer.h"
     66 #include "rf_general.h"
     67 #include "rf_dagutils.h"
     68 #include "rf_shutdown.h"
     69 #include "rf_raid.h"
     70 
     71 static void rf_ShutdownEngine(void *);
     72 static void DAGExecutionThread(RF_ThreadArg_t arg);
     73 static void rf_RaidIOThread(RF_ThreadArg_t arg);
     74 
     75 #define DO_INIT(_l_,_r_) { \
     76   int _rc; \
     77   rf_mutex_init(&(_r_)->node_queue_mutex); \
     78   _rc = rf_create_managed_cond(_l_,&(_r_)->node_queue_cond); \
     79   if (_rc) { \
     80     return(_rc); \
     81   } \
     82 }
     83 
     84 /* synchronization primitives for this file.  DO_WAIT should be enclosed in a while loop. */
     85 
     86 #define DO_LOCK(_r_) \
     87 do { \
     88 	ks = splbio(); \
     89 	RF_LOCK_MUTEX((_r_)->node_queue_mutex); \
     90 } while (0)
     91 
     92 #define DO_UNLOCK(_r_) \
     93 do { \
     94 	RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \
     95 	splx(ks); \
     96 } while (0)
     97 
     98 #define	DO_WAIT(_r_) \
     99 	RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex)
    100 
    101 #define	DO_SIGNAL(_r_) \
    102 	RF_BROADCAST_COND((_r_)->node_queue)	/* XXX RF_SIGNAL_COND? */
    103 
    104 static void
    105 rf_ShutdownEngine(arg)
    106 	void   *arg;
    107 {
    108 	RF_Raid_t *raidPtr;
    109 	int ks;
    110 
    111 	raidPtr = (RF_Raid_t *) arg;
    112 
    113 	/* Tell the rf_RaidIOThread to shutdown */
    114 	simple_lock(&(raidPtr->iodone_lock));
    115 
    116 	raidPtr->shutdown_raidio = 1;
    117 	wakeup(&(raidPtr->iodone));
    118 
    119 	/* ...and wait for it to tell us it has finished */
    120 	while (raidPtr->shutdown_raidio)
    121  		ltsleep(&(raidPtr->shutdown_raidio), PRIBIO, "raidshutdown", 0,
    122 			&(raidPtr->iodone_lock));
    123 
    124 	simple_unlock(&(raidPtr->iodone_lock));
    125 
    126  	/* Now shut down the DAG execution engine. */
    127  	DO_LOCK(raidPtr);
    128   	raidPtr->shutdown_engine = 1;
    129   	DO_SIGNAL(raidPtr);
    130  	DO_UNLOCK(raidPtr);
    131 
    132 }
    133 
    134 int
    135 rf_ConfigureEngine(
    136     RF_ShutdownList_t ** listp,
    137     RF_Raid_t * raidPtr,
    138     RF_Config_t * cfgPtr)
    139 {
    140 	int     rc;
    141 
    142 	DO_INIT(listp, raidPtr);
    143 
    144 	raidPtr->node_queue = NULL;
    145 	raidPtr->dags_in_flight = 0;
    146 
    147 	rc = rf_init_managed_threadgroup(listp, &raidPtr->engine_tg);
    148 	if (rc)
    149 		return (rc);
    150 
    151 	/* we create the execution thread only once per system boot. no need
    152 	 * to check return code b/c the kernel panics if it can't create the
    153 	 * thread. */
    154 	if (rf_engineDebug) {
    155 		printf("raid%d: Creating engine thread\n", raidPtr->raidid);
    156 	}
    157 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
    158 				    DAGExecutionThread, raidPtr,
    159 				    "raid%d", raidPtr->raidid)) {
    160 		printf("raid%d: Unable to create engine thread\n",
    161 		       raidPtr->raidid);
    162 		return (ENOMEM);
    163 	}
    164 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
    165 				    rf_RaidIOThread, raidPtr,
    166 				    "raidio%d", raidPtr->raidid)) {
    167 		printf("raid%d: Unable to create raidio thread\n",
    168 		       raidPtr->raidid);
    169 		return (ENOMEM);
    170 	}
    171 	if (rf_engineDebug) {
    172 		printf("raid%d: Created engine thread\n", raidPtr->raidid);
    173 	}
    174 	RF_THREADGROUP_STARTED(&raidPtr->engine_tg);
    175 	/* XXX something is missing here... */
    176 #ifdef debug
    177 	printf("Skipping the WAIT_START!!\n");
    178 #endif
    179 #if 0
    180 	RF_THREADGROUP_WAIT_START(&raidPtr->engine_tg);
    181 #endif
    182 	/* engine thread is now running and waiting for work */
    183 	if (rf_engineDebug) {
    184 		printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
    185 	}
    186 	rc = rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
    187 	if (rc) {
    188 		rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
    189 		rf_ShutdownEngine(NULL);
    190 	}
    191 	return (rc);
    192 }
    193 
    194 static int
    195 BranchDone(RF_DagNode_t * node)
    196 {
    197 	int     i;
    198 
    199 	/* return true if forward execution is completed for a node and it's
    200 	 * succedents */
    201 	switch (node->status) {
    202 	case rf_wait:
    203 		/* should never be called in this state */
    204 		RF_PANIC();
    205 		break;
    206 	case rf_fired:
    207 		/* node is currently executing, so we're not done */
    208 		return (RF_FALSE);
    209 	case rf_good:
    210 		/* for each succedent recursively check branch */
    211 		for (i = 0; i < node->numSuccedents; i++)
    212 			if (!BranchDone(node->succedents[i]))
    213 				return RF_FALSE;
    214 		return RF_TRUE;	/* node and all succedent branches aren't in
    215 				 * fired state */
    216 	case rf_bad:
    217 		/* succedents can't fire */
    218 		return (RF_TRUE);
    219 	case rf_recover:
    220 		/* should never be called in this state */
    221 		RF_PANIC();
    222 		break;
    223 	case rf_undone:
    224 	case rf_panic:
    225 		/* XXX need to fix this case */
    226 		/* for now, assume that we're done */
    227 		return (RF_TRUE);
    228 	default:
    229 		/* illegal node status */
    230 		RF_PANIC();
    231 		break;
    232 	}
    233 }
    234 
    235 static int
    236 NodeReady(RF_DagNode_t * node)
    237 {
    238 	int     ready;
    239 
    240 	switch (node->dagHdr->status) {
    241 	case rf_enable:
    242 	case rf_rollForward:
    243 		if ((node->status == rf_wait) &&
    244 		    (node->numAntecedents == node->numAntDone))
    245 			ready = RF_TRUE;
    246 		else
    247 			ready = RF_FALSE;
    248 		break;
    249 	case rf_rollBackward:
    250 		RF_ASSERT(node->numSuccDone <= node->numSuccedents);
    251 		RF_ASSERT(node->numSuccFired <= node->numSuccedents);
    252 		RF_ASSERT(node->numSuccFired <= node->numSuccDone);
    253 		if ((node->status == rf_good) &&
    254 		    (node->numSuccDone == node->numSuccedents))
    255 			ready = RF_TRUE;
    256 		else
    257 			ready = RF_FALSE;
    258 		break;
    259 	default:
    260 		printf("Execution engine found illegal DAG status in NodeReady\n");
    261 		RF_PANIC();
    262 		break;
    263 	}
    264 
    265 	return (ready);
    266 }
    267 
    268 
    269 
    270 /* user context and dag-exec-thread context: Fire a node.  The node's
    271  * status field determines which function, do or undo, to be fired.
    272  * This routine assumes that the node's status field has alread been
    273  * set to "fired" or "recover" to indicate the direction of execution.
    274  */
    275 static void
    276 FireNode(RF_DagNode_t * node)
    277 {
    278 	switch (node->status) {
    279 	case rf_fired:
    280 		/* fire the do function of a node */
    281 		if (rf_engineDebug) {
    282 			printf("raid%d: Firing node 0x%lx (%s)\n",
    283 			       node->dagHdr->raidPtr->raidid,
    284 			       (unsigned long) node, node->name);
    285 		}
    286 		if (node->flags & RF_DAGNODE_FLAG_YIELD) {
    287 #if defined(__NetBSD__) && defined(_KERNEL)
    288 			/* thread_block(); */
    289 			/* printf("Need to block the thread here...\n");  */
    290 			/* XXX thread_block is actually mentioned in
    291 			 * /usr/include/vm/vm_extern.h */
    292 #else
    293 			thread_block();
    294 #endif
    295 		}
    296 		(*(node->doFunc)) (node);
    297 		break;
    298 	case rf_recover:
    299 		/* fire the undo function of a node */
    300 		if (rf_engineDebug) {
    301 			printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
    302 			       node->dagHdr->raidPtr->raidid,
    303 			       (unsigned long) node, node->name);
    304 		}
    305 		if (node->flags & RF_DAGNODE_FLAG_YIELD)
    306 #if defined(__NetBSD__) && defined(_KERNEL)
    307 			/* thread_block(); */
    308 			/* printf("Need to block the thread here...\n"); */
    309 			/* XXX thread_block is actually mentioned in
    310 			 * /usr/include/vm/vm_extern.h */
    311 #else
    312 			thread_block();
    313 #endif
    314 		(*(node->undoFunc)) (node);
    315 		break;
    316 	default:
    317 		RF_PANIC();
    318 		break;
    319 	}
    320 }
    321 
    322 
    323 
    324 /* user context:
    325  * Attempt to fire each node in a linear array.
    326  * The entire list is fired atomically.
    327  */
    328 static void
    329 FireNodeArray(
    330     int numNodes,
    331     RF_DagNode_t ** nodeList)
    332 {
    333 	RF_DagStatus_t dstat;
    334 	RF_DagNode_t *node;
    335 	int     i, j;
    336 
    337 	/* first, mark all nodes which are ready to be fired */
    338 	for (i = 0; i < numNodes; i++) {
    339 		node = nodeList[i];
    340 		dstat = node->dagHdr->status;
    341 		RF_ASSERT((node->status == rf_wait) ||
    342 			  (node->status == rf_good));
    343 		if (NodeReady(node)) {
    344 			if ((dstat == rf_enable) ||
    345 			    (dstat == rf_rollForward)) {
    346 				RF_ASSERT(node->status == rf_wait);
    347 				if (node->commitNode)
    348 					node->dagHdr->numCommits++;
    349 				node->status = rf_fired;
    350 				for (j = 0; j < node->numAntecedents; j++)
    351 					node->antecedents[j]->numSuccFired++;
    352 			} else {
    353 				RF_ASSERT(dstat == rf_rollBackward);
    354 				RF_ASSERT(node->status == rf_good);
    355 				/* only one commit node per graph */
    356 				RF_ASSERT(node->commitNode == RF_FALSE);
    357 				node->status = rf_recover;
    358 			}
    359 		}
    360 	}
    361 	/* now, fire the nodes */
    362 	for (i = 0; i < numNodes; i++) {
    363 		if ((nodeList[i]->status == rf_fired) ||
    364 		    (nodeList[i]->status == rf_recover))
    365 			FireNode(nodeList[i]);
    366 	}
    367 }
    368 
    369 
    370 /* user context:
    371  * Attempt to fire each node in a linked list.
    372  * The entire list is fired atomically.
    373  */
    374 static void
    375 FireNodeList(RF_DagNode_t * nodeList)
    376 {
    377 	RF_DagNode_t *node, *next;
    378 	RF_DagStatus_t dstat;
    379 	int     j;
    380 
    381 	if (nodeList) {
    382 		/* first, mark all nodes which are ready to be fired */
    383 		for (node = nodeList; node; node = next) {
    384 			next = node->next;
    385 			dstat = node->dagHdr->status;
    386 			RF_ASSERT((node->status == rf_wait) ||
    387 				  (node->status == rf_good));
    388 			if (NodeReady(node)) {
    389 				if ((dstat == rf_enable) ||
    390 				    (dstat == rf_rollForward)) {
    391 					RF_ASSERT(node->status == rf_wait);
    392 					if (node->commitNode)
    393 						node->dagHdr->numCommits++;
    394 					node->status = rf_fired;
    395 					for (j = 0; j < node->numAntecedents; j++)
    396 						node->antecedents[j]->numSuccFired++;
    397 				} else {
    398 					RF_ASSERT(dstat == rf_rollBackward);
    399 					RF_ASSERT(node->status == rf_good);
    400 					/* only one commit node per graph */
    401 					RF_ASSERT(node->commitNode == RF_FALSE);
    402 					node->status = rf_recover;
    403 				}
    404 			}
    405 		}
    406 		/* now, fire the nodes */
    407 		for (node = nodeList; node; node = next) {
    408 			next = node->next;
    409 			if ((node->status == rf_fired) ||
    410 			    (node->status == rf_recover))
    411 				FireNode(node);
    412 		}
    413 	}
    414 }
    415 /* interrupt context:
    416  * for each succedent
    417  *    propagate required results from node to succedent
    418  *    increment succedent's numAntDone
    419  *    place newly-enable nodes on node queue for firing
    420  *
    421  * To save context switches, we don't place NIL nodes on the node queue,
    422  * but rather just process them as if they had fired.  Note that NIL nodes
    423  * that are the direct successors of the header will actually get fired by
    424  * DispatchDAG, which is fine because no context switches are involved.
    425  *
    426  * Important:  when running at user level, this can be called by any
    427  * disk thread, and so the increment and check of the antecedent count
    428  * must be locked.  I used the node queue mutex and locked down the
    429  * entire function, but this is certainly overkill.
    430  */
    431 static void
    432 PropagateResults(
    433     RF_DagNode_t * node,
    434     int context)
    435 {
    436 	RF_DagNode_t *s, *a;
    437 	RF_Raid_t *raidPtr;
    438 	int     i, ks;
    439 	RF_DagNode_t *finishlist = NULL;	/* a list of NIL nodes to be
    440 						 * finished */
    441 	RF_DagNode_t *skiplist = NULL;	/* list of nodes with failed truedata
    442 					 * antecedents */
    443 	RF_DagNode_t *firelist = NULL;	/* a list of nodes to be fired */
    444 	RF_DagNode_t *q = NULL, *qh = NULL, *next;
    445 	int     j, skipNode;
    446 
    447 	raidPtr = node->dagHdr->raidPtr;
    448 
    449 	DO_LOCK(raidPtr);
    450 
    451 	/* debug - validate fire counts */
    452 	for (i = 0; i < node->numAntecedents; i++) {
    453 		a = *(node->antecedents + i);
    454 		RF_ASSERT(a->numSuccFired >= a->numSuccDone);
    455 		RF_ASSERT(a->numSuccFired <= a->numSuccedents);
    456 		a->numSuccDone++;
    457 	}
    458 
    459 	switch (node->dagHdr->status) {
    460 	case rf_enable:
    461 	case rf_rollForward:
    462 		for (i = 0; i < node->numSuccedents; i++) {
    463 			s = *(node->succedents + i);
    464 			RF_ASSERT(s->status == rf_wait);
    465 			(s->numAntDone)++;
    466 			if (s->numAntDone == s->numAntecedents) {
    467 				/* look for NIL nodes */
    468 				if (s->doFunc == rf_NullNodeFunc) {
    469 					/* don't fire NIL nodes, just process
    470 					 * them */
    471 					s->next = finishlist;
    472 					finishlist = s;
    473 				} else {
    474 					/* look to see if the node is to be
    475 					 * skipped */
    476 					skipNode = RF_FALSE;
    477 					for (j = 0; j < s->numAntecedents; j++)
    478 						if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
    479 							skipNode = RF_TRUE;
    480 					if (skipNode) {
    481 						/* this node has one or more
    482 						 * failed true data
    483 						 * dependencies, so skip it */
    484 						s->next = skiplist;
    485 						skiplist = s;
    486 					} else
    487 						/* add s to list of nodes (q)
    488 						 * to execute */
    489 						if (context != RF_INTR_CONTEXT) {
    490 							/* we only have to
    491 							 * enqueue if we're at
    492 							 * intr context */
    493 							/* put node on
    494                                                            a list to
    495                                                            be fired
    496                                                            after we
    497                                                            unlock */
    498 							s->next = firelist;
    499 							firelist = s;
    500 						} else {
    501 							/* enqueue the
    502 							   node for
    503 							   the dag
    504 							   exec thread
    505 							   to fire */
    506 							RF_ASSERT(NodeReady(s));
    507 							if (q) {
    508 								q->next = s;
    509 								q = s;
    510 							} else {
    511 								qh = q = s;
    512 								qh->next = NULL;
    513 							}
    514 						}
    515 				}
    516 			}
    517 		}
    518 
    519 		if (q) {
    520 			/* xfer our local list of nodes to the node queue */
    521 			q->next = raidPtr->node_queue;
    522 			raidPtr->node_queue = qh;
    523 			DO_SIGNAL(raidPtr);
    524 		}
    525 		DO_UNLOCK(raidPtr);
    526 
    527 		for (; skiplist; skiplist = next) {
    528 			next = skiplist->next;
    529 			skiplist->status = rf_skipped;
    530 			for (i = 0; i < skiplist->numAntecedents; i++) {
    531 				skiplist->antecedents[i]->numSuccFired++;
    532 			}
    533 			if (skiplist->commitNode) {
    534 				skiplist->dagHdr->numCommits++;
    535 			}
    536 			rf_FinishNode(skiplist, context);
    537 		}
    538 		for (; finishlist; finishlist = next) {
    539 			/* NIL nodes: no need to fire them */
    540 			next = finishlist->next;
    541 			finishlist->status = rf_good;
    542 			for (i = 0; i < finishlist->numAntecedents; i++) {
    543 				finishlist->antecedents[i]->numSuccFired++;
    544 			}
    545 			if (finishlist->commitNode)
    546 				finishlist->dagHdr->numCommits++;
    547 			/*
    548 		         * Okay, here we're calling rf_FinishNode() on
    549 		         * nodes that have the null function as their
    550 		         * work proc. Such a node could be the
    551 		         * terminal node in a DAG. If so, it will
    552 		         * cause the DAG to complete, which will in
    553 		         * turn free memory used by the DAG, which
    554 		         * includes the node in question. Thus, we
    555 		         * must avoid referencing the node at all
    556 		         * after calling rf_FinishNode() on it.  */
    557 			rf_FinishNode(finishlist, context);	/* recursive call */
    558 		}
    559 		/* fire all nodes in firelist */
    560 		FireNodeList(firelist);
    561 		break;
    562 
    563 	case rf_rollBackward:
    564 		for (i = 0; i < node->numAntecedents; i++) {
    565 			a = *(node->antecedents + i);
    566 			RF_ASSERT(a->status == rf_good);
    567 			RF_ASSERT(a->numSuccDone <= a->numSuccedents);
    568 			RF_ASSERT(a->numSuccDone <= a->numSuccFired);
    569 
    570 			if (a->numSuccDone == a->numSuccFired) {
    571 				if (a->undoFunc == rf_NullNodeFunc) {
    572 					/* don't fire NIL nodes, just process
    573 					 * them */
    574 					a->next = finishlist;
    575 					finishlist = a;
    576 				} else {
    577 					if (context != RF_INTR_CONTEXT) {
    578 						/* we only have to enqueue if
    579 						 * we're at intr context */
    580 						/* put node on a list to be
    581 						   fired after we unlock */
    582 						a->next = firelist;
    583 
    584 						firelist = a;
    585 					} else {
    586 						/* enqueue the node for the
    587 						   dag exec thread to fire */
    588 						RF_ASSERT(NodeReady(a));
    589 						if (q) {
    590 							q->next = a;
    591 							q = a;
    592 						} else {
    593 							qh = q = a;
    594 							qh->next = NULL;
    595 						}
    596 					}
    597 				}
    598 			}
    599 		}
    600 		if (q) {
    601 			/* xfer our local list of nodes to the node queue */
    602 			q->next = raidPtr->node_queue;
    603 			raidPtr->node_queue = qh;
    604 			DO_SIGNAL(raidPtr);
    605 		}
    606 		DO_UNLOCK(raidPtr);
    607 		for (; finishlist; finishlist = next) {
    608 			/* NIL nodes: no need to fire them */
    609 			next = finishlist->next;
    610 			finishlist->status = rf_good;
    611 			/*
    612 		         * Okay, here we're calling rf_FinishNode() on
    613 		         * nodes that have the null function as their
    614 		         * work proc. Such a node could be the first
    615 		         * node in a DAG. If so, it will cause the DAG
    616 		         * to complete, which will in turn free memory
    617 		         * used by the DAG, which includes the node in
    618 		         * question. Thus, we must avoid referencing
    619 		         * the node at all after calling
    620 		         * rf_FinishNode() on it.  */
    621 			rf_FinishNode(finishlist, context);	/* recursive call */
    622 		}
    623 		/* fire all nodes in firelist */
    624 		FireNodeList(firelist);
    625 
    626 		break;
    627 	default:
    628 		printf("Engine found illegal DAG status in PropagateResults()\n");
    629 		RF_PANIC();
    630 		break;
    631 	}
    632 }
    633 
    634 
    635 
    636 /*
    637  * Process a fired node which has completed
    638  */
    639 static void
    640 ProcessNode(
    641     RF_DagNode_t * node,
    642     int context)
    643 {
    644 	RF_Raid_t *raidPtr;
    645 
    646 	raidPtr = node->dagHdr->raidPtr;
    647 
    648 	switch (node->status) {
    649 	case rf_good:
    650 		/* normal case, don't need to do anything */
    651 		break;
    652 	case rf_bad:
    653 		if ((node->dagHdr->numCommits > 0) ||
    654 		    (node->dagHdr->numCommitNodes == 0)) {
    655 			/* crossed commit barrier */
    656 			node->dagHdr->status = rf_rollForward;
    657 			if (rf_engineDebug || 1) {
    658 				printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
    659 			}
    660 		} else {
    661 			/* never reached commit barrier */
    662 			node->dagHdr->status = rf_rollBackward;
    663 			if (rf_engineDebug || 1) {
    664 				printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
    665 			}
    666 		}
    667 		break;
    668 	case rf_undone:
    669 		/* normal rollBackward case, don't need to do anything */
    670 		break;
    671 	case rf_panic:
    672 		/* an undo node failed!!! */
    673 		printf("UNDO of a node failed!!!/n");
    674 		break;
    675 	default:
    676 		printf("node finished execution with an illegal status!!!\n");
    677 		RF_PANIC();
    678 		break;
    679 	}
    680 
    681 	/* enqueue node's succedents (antecedents if rollBackward) for
    682 	 * execution */
    683 	PropagateResults(node, context);
    684 }
    685 
    686 
    687 
    688 /* user context or dag-exec-thread context:
    689  * This is the first step in post-processing a newly-completed node.
    690  * This routine is called by each node execution function to mark the node
    691  * as complete and fire off any successors that have been enabled.
    692  */
    693 int
    694 rf_FinishNode(
    695     RF_DagNode_t * node,
    696     int context)
    697 {
    698 	int     retcode = RF_FALSE;
    699 	node->dagHdr->numNodesCompleted++;
    700 	ProcessNode(node, context);
    701 
    702 	return (retcode);
    703 }
    704 
    705 
    706 /* user context: submit dag for execution, return non-zero if we have
    707  * to wait for completion.  if and only if we return non-zero, we'll
    708  * cause cbFunc to get invoked with cbArg when the DAG has completed.
    709  *
    710  * for now we always return 1.  If the DAG does not cause any I/O,
    711  * then the callback may get invoked before DispatchDAG returns.
    712  * There's code in state 5 of ContinueRaidAccess to handle this.
    713  *
    714  * All we do here is fire the direct successors of the header node.
    715  * The DAG execution thread does the rest of the dag processing.  */
    716 int
    717 rf_DispatchDAG(
    718     RF_DagHeader_t * dag,
    719     void (*cbFunc) (void *),
    720     void *cbArg)
    721 {
    722 	RF_Raid_t *raidPtr;
    723 
    724 	raidPtr = dag->raidPtr;
    725 	if (dag->tracerec) {
    726 		RF_ETIMER_START(dag->tracerec->timer);
    727 	}
    728 #if DEBUG
    729 #if RF_DEBUG_VALIDATE_DAG
    730 	if (rf_engineDebug || rf_validateDAGDebug) {
    731 		if (rf_ValidateDAG(dag))
    732 			RF_PANIC();
    733 	}
    734 #endif
    735 #endif
    736 	if (rf_engineDebug) {
    737 		printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
    738 	}
    739 	raidPtr->dags_in_flight++;	/* debug only:  blow off proper
    740 					 * locking */
    741 	dag->cbFunc = cbFunc;
    742 	dag->cbArg = cbArg;
    743 	dag->numNodesCompleted = 0;
    744 	dag->status = rf_enable;
    745 	FireNodeArray(dag->numSuccedents, dag->succedents);
    746 	return (1);
    747 }
    748 /* dedicated kernel thread: the thread that handles all DAG node
    749  * firing.  To minimize locking and unlocking, we grab a copy of the
    750  * entire node queue and then set the node queue to NULL before doing
    751  * any firing of nodes.  This way we only have to release the lock
    752  * once.  Of course, it's probably rare that there's more than one
    753  * node in the queue at any one time, but it sometimes happens.
    754  */
    755 
    756 static void
    757 DAGExecutionThread(RF_ThreadArg_t arg)
    758 {
    759 	RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
    760 	RF_Raid_t *raidPtr;
    761 	int     ks;
    762 	int     s;
    763 
    764 	raidPtr = (RF_Raid_t *) arg;
    765 
    766 	if (rf_engineDebug) {
    767 		printf("raid%d: Engine thread is running\n", raidPtr->raidid);
    768 	}
    769 
    770 	s = splbio();
    771 
    772 	RF_THREADGROUP_RUNNING(&raidPtr->engine_tg);
    773 
    774 	DO_LOCK(raidPtr);
    775 	while (!raidPtr->shutdown_engine) {
    776 
    777 		while (raidPtr->node_queue != NULL) {
    778 			local_nq = raidPtr->node_queue;
    779 			fire_nq = NULL;
    780 			term_nq = NULL;
    781 			raidPtr->node_queue = NULL;
    782 			DO_UNLOCK(raidPtr);
    783 
    784 			/* first, strip out the terminal nodes */
    785 			while (local_nq) {
    786 				nd = local_nq;
    787 				local_nq = local_nq->next;
    788 				switch (nd->dagHdr->status) {
    789 				case rf_enable:
    790 				case rf_rollForward:
    791 					if (nd->numSuccedents == 0) {
    792 						/* end of the dag, add to
    793 						 * callback list */
    794 						nd->next = term_nq;
    795 						term_nq = nd;
    796 					} else {
    797 						/* not the end, add to the
    798 						 * fire queue */
    799 						nd->next = fire_nq;
    800 						fire_nq = nd;
    801 					}
    802 					break;
    803 				case rf_rollBackward:
    804 					if (nd->numAntecedents == 0) {
    805 						/* end of the dag, add to the
    806 						 * callback list */
    807 						nd->next = term_nq;
    808 						term_nq = nd;
    809 					} else {
    810 						/* not the end, add to the
    811 						 * fire queue */
    812 						nd->next = fire_nq;
    813 						fire_nq = nd;
    814 					}
    815 					break;
    816 				default:
    817 					RF_PANIC();
    818 					break;
    819 				}
    820 			}
    821 
    822 			/* execute callback of dags which have reached the
    823 			 * terminal node */
    824 			while (term_nq) {
    825 				nd = term_nq;
    826 				term_nq = term_nq->next;
    827 				nd->next = NULL;
    828 				(nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
    829 				raidPtr->dags_in_flight--;	/* debug only */
    830 			}
    831 
    832 			/* fire remaining nodes */
    833 			FireNodeList(fire_nq);
    834 
    835 			DO_LOCK(raidPtr);
    836 		}
    837 		while (!raidPtr->shutdown_engine &&
    838 		       raidPtr->node_queue == NULL) {
    839 			DO_WAIT(raidPtr);
    840 		}
    841 	}
    842 	DO_UNLOCK(raidPtr);
    843 
    844 	RF_THREADGROUP_DONE(&raidPtr->engine_tg);
    845 
    846 	splx(s);
    847 	kthread_exit(0);
    848 }
    849 
    850 /*
    851  * rf_RaidIOThread() -- When I/O to a component completes,
    852  * KernelWakeupFunc() puts the completed request onto raidPtr->iodone
    853  * TAILQ.  This function looks after requests on that queue by calling
    854  * rf_DiskIOComplete() for the request, and by calling any required
    855  * CompleteFunc for the request.
    856  */
    857 
    858 static void
    859 rf_RaidIOThread(RF_ThreadArg_t arg)
    860 {
    861 	RF_Raid_t *raidPtr;
    862 	RF_DiskQueueData_t *req;
    863 	int s;
    864 
    865 	raidPtr = (RF_Raid_t *) arg;
    866 
    867 	s = splbio();
    868 	simple_lock(&(raidPtr->iodone_lock));
    869 
    870 	while (!raidPtr->shutdown_raidio) {
    871 		/* if there is nothing to do, then snooze. */
    872 		if (TAILQ_EMPTY(&(raidPtr->iodone))) {
    873 			ltsleep(&(raidPtr->iodone), PRIBIO, "raidiow", 0,
    874 				&(raidPtr->iodone_lock));
    875 		}
    876 
    877 		/* See what I/Os, if any, have arrived */
    878 		while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
    879 			TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
    880 			simple_unlock(&(raidPtr->iodone_lock));
    881 			rf_DiskIOComplete(req->queue, req, req->error);
    882 			(req->CompleteFunc) (req->argument, req->error);
    883 			simple_lock(&(raidPtr->iodone_lock));
    884 		}
    885 	}
    886 
    887 	/* Let rf_ShutdownEngine know that we're done... */
    888 	raidPtr->shutdown_raidio = 0;
    889 	wakeup(&(raidPtr->shutdown_raidio));
    890 
    891 	simple_unlock(&(raidPtr->iodone_lock));
    892 	splx(s);
    893 
    894 	kthread_exit(0);
    895 }
    896