Home | History | Annotate | Line # | Download | only in raidframe
rf_engine.c revision 1.27
      1 /*	$NetBSD: rf_engine.c,v 1.27 2003/12/29 05:48:13 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II, Mark Holland, Rachad Youssef
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************
     30  *                                                                          *
     31  * engine.c -- code for DAG execution engine                                *
     32  *                                                                          *
     33  * Modified to work as follows (holland):                                   *
     34  *   A user-thread calls into DispatchDAG, which fires off the nodes that   *
     35  *   are direct successors to the header node.  DispatchDAG then returns,   *
     36  *   and the rest of the I/O continues asynchronously.  As each node        *
     37  *   completes, the node execution function calls FinishNode().  FinishNode *
     38  *   scans the list of successors to the node and increments the antecedent *
     39  *   counts.  Each node that becomes enabled is placed on a central node    *
     40  *   queue.  A dedicated dag-execution thread grabs nodes off of this       *
     41  *   queue and fires them.                                                  *
     42  *                                                                          *
     43  *   NULL nodes are never fired.                                            *
     44  *                                                                          *
     45  *   Terminator nodes are never fired, but rather cause the callback        *
     46  *   associated with the DAG to be invoked.                                 *
     47  *                                                                          *
     48  *   If a node fails, the dag either rolls forward to the completion or     *
     49  *   rolls back, undoing previously-completed nodes and fails atomically.   *
     50  *   The direction of recovery is determined by the location of the failed  *
     51  *   node in the graph.  If the failure occurred before the commit node in   *
     52  *   the graph, backward recovery is used.  Otherwise, forward recovery is  *
     53  *   used.                                                                  *
     54  *                                                                          *
     55  ****************************************************************************/
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.27 2003/12/29 05:48:13 oster Exp $");
     59 
     60 #include <sys/errno.h>
     61 
     62 #include "rf_threadstuff.h"
     63 #include "rf_dag.h"
     64 #include "rf_engine.h"
     65 #include "rf_etimer.h"
     66 #include "rf_general.h"
     67 #include "rf_dagutils.h"
     68 #include "rf_shutdown.h"
     69 #include "rf_raid.h"
     70 
     71 static void rf_ShutdownEngine(void *);
     72 static void DAGExecutionThread(RF_ThreadArg_t arg);
     73 static void rf_RaidIOThread(RF_ThreadArg_t arg);
     74 
     75 /* synchronization primitives for this file.  DO_WAIT should be enclosed in a while loop. */
     76 
     77 #define DO_LOCK(_r_) \
     78 do { \
     79 	ks = splbio(); \
     80 	RF_LOCK_MUTEX((_r_)->node_queue_mutex); \
     81 } while (0)
     82 
     83 #define DO_UNLOCK(_r_) \
     84 do { \
     85 	RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \
     86 	splx(ks); \
     87 } while (0)
     88 
     89 #define	DO_WAIT(_r_) \
     90 	RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex)
     91 
     92 #define	DO_SIGNAL(_r_) \
     93 	RF_BROADCAST_COND((_r_)->node_queue)	/* XXX RF_SIGNAL_COND? */
     94 
     95 static void
     96 rf_ShutdownEngine(arg)
     97 	void   *arg;
     98 {
     99 	RF_Raid_t *raidPtr;
    100 	int ks;
    101 
    102 	raidPtr = (RF_Raid_t *) arg;
    103 
    104 	/* Tell the rf_RaidIOThread to shutdown */
    105 	simple_lock(&(raidPtr->iodone_lock));
    106 
    107 	raidPtr->shutdown_raidio = 1;
    108 	wakeup(&(raidPtr->iodone));
    109 
    110 	/* ...and wait for it to tell us it has finished */
    111 	while (raidPtr->shutdown_raidio)
    112  		ltsleep(&(raidPtr->shutdown_raidio), PRIBIO, "raidshutdown", 0,
    113 			&(raidPtr->iodone_lock));
    114 
    115 	simple_unlock(&(raidPtr->iodone_lock));
    116 
    117  	/* Now shut down the DAG execution engine. */
    118  	DO_LOCK(raidPtr);
    119   	raidPtr->shutdown_engine = 1;
    120   	DO_SIGNAL(raidPtr);
    121  	DO_UNLOCK(raidPtr);
    122 
    123 }
    124 
    125 int
    126 rf_ConfigureEngine(
    127     RF_ShutdownList_t ** listp,
    128     RF_Raid_t * raidPtr,
    129     RF_Config_t * cfgPtr)
    130 {
    131 	int     rc;
    132 
    133 	rf_mutex_init(&raidPtr->node_queue_mutex);
    134 	raidPtr->node_queue_cond = 0;
    135 	raidPtr->node_queue = NULL;
    136 	raidPtr->dags_in_flight = 0;
    137 
    138 	rc = rf_init_managed_threadgroup(listp, &raidPtr->engine_tg);
    139 	if (rc)
    140 		return (rc);
    141 
    142 	/* we create the execution thread only once per system boot. no need
    143 	 * to check return code b/c the kernel panics if it can't create the
    144 	 * thread. */
    145 	if (rf_engineDebug) {
    146 		printf("raid%d: Creating engine thread\n", raidPtr->raidid);
    147 	}
    148 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
    149 				    DAGExecutionThread, raidPtr,
    150 				    "raid%d", raidPtr->raidid)) {
    151 		printf("raid%d: Unable to create engine thread\n",
    152 		       raidPtr->raidid);
    153 		return (ENOMEM);
    154 	}
    155 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
    156 				    rf_RaidIOThread, raidPtr,
    157 				    "raidio%d", raidPtr->raidid)) {
    158 		printf("raid%d: Unable to create raidio thread\n",
    159 		       raidPtr->raidid);
    160 		return (ENOMEM);
    161 	}
    162 	if (rf_engineDebug) {
    163 		printf("raid%d: Created engine thread\n", raidPtr->raidid);
    164 	}
    165 	RF_THREADGROUP_STARTED(&raidPtr->engine_tg);
    166 	/* XXX something is missing here... */
    167 #ifdef debug
    168 	printf("Skipping the WAIT_START!!\n");
    169 #endif
    170 #if 0
    171 	RF_THREADGROUP_WAIT_START(&raidPtr->engine_tg);
    172 #endif
    173 	/* engine thread is now running and waiting for work */
    174 	if (rf_engineDebug) {
    175 		printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
    176 	}
    177 	rc = rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
    178 	if (rc) {
    179 		rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
    180 		rf_ShutdownEngine(NULL);
    181 	}
    182 	return (rc);
    183 }
    184 
    185 static int
    186 BranchDone(RF_DagNode_t * node)
    187 {
    188 	int     i;
    189 
    190 	/* return true if forward execution is completed for a node and it's
    191 	 * succedents */
    192 	switch (node->status) {
    193 	case rf_wait:
    194 		/* should never be called in this state */
    195 		RF_PANIC();
    196 		break;
    197 	case rf_fired:
    198 		/* node is currently executing, so we're not done */
    199 		return (RF_FALSE);
    200 	case rf_good:
    201 		/* for each succedent recursively check branch */
    202 		for (i = 0; i < node->numSuccedents; i++)
    203 			if (!BranchDone(node->succedents[i]))
    204 				return RF_FALSE;
    205 		return RF_TRUE;	/* node and all succedent branches aren't in
    206 				 * fired state */
    207 	case rf_bad:
    208 		/* succedents can't fire */
    209 		return (RF_TRUE);
    210 	case rf_recover:
    211 		/* should never be called in this state */
    212 		RF_PANIC();
    213 		break;
    214 	case rf_undone:
    215 	case rf_panic:
    216 		/* XXX need to fix this case */
    217 		/* for now, assume that we're done */
    218 		return (RF_TRUE);
    219 	default:
    220 		/* illegal node status */
    221 		RF_PANIC();
    222 		break;
    223 	}
    224 }
    225 
    226 static int
    227 NodeReady(RF_DagNode_t * node)
    228 {
    229 	int     ready;
    230 
    231 	switch (node->dagHdr->status) {
    232 	case rf_enable:
    233 	case rf_rollForward:
    234 		if ((node->status == rf_wait) &&
    235 		    (node->numAntecedents == node->numAntDone))
    236 			ready = RF_TRUE;
    237 		else
    238 			ready = RF_FALSE;
    239 		break;
    240 	case rf_rollBackward:
    241 		RF_ASSERT(node->numSuccDone <= node->numSuccedents);
    242 		RF_ASSERT(node->numSuccFired <= node->numSuccedents);
    243 		RF_ASSERT(node->numSuccFired <= node->numSuccDone);
    244 		if ((node->status == rf_good) &&
    245 		    (node->numSuccDone == node->numSuccedents))
    246 			ready = RF_TRUE;
    247 		else
    248 			ready = RF_FALSE;
    249 		break;
    250 	default:
    251 		printf("Execution engine found illegal DAG status in NodeReady\n");
    252 		RF_PANIC();
    253 		break;
    254 	}
    255 
    256 	return (ready);
    257 }
    258 
    259 
    260 
    261 /* user context and dag-exec-thread context: Fire a node.  The node's
    262  * status field determines which function, do or undo, to be fired.
    263  * This routine assumes that the node's status field has alread been
    264  * set to "fired" or "recover" to indicate the direction of execution.
    265  */
    266 static void
    267 FireNode(RF_DagNode_t * node)
    268 {
    269 	switch (node->status) {
    270 	case rf_fired:
    271 		/* fire the do function of a node */
    272 		if (rf_engineDebug) {
    273 			printf("raid%d: Firing node 0x%lx (%s)\n",
    274 			       node->dagHdr->raidPtr->raidid,
    275 			       (unsigned long) node, node->name);
    276 		}
    277 		if (node->flags & RF_DAGNODE_FLAG_YIELD) {
    278 #if defined(__NetBSD__) && defined(_KERNEL)
    279 			/* thread_block(); */
    280 			/* printf("Need to block the thread here...\n");  */
    281 			/* XXX thread_block is actually mentioned in
    282 			 * /usr/include/vm/vm_extern.h */
    283 #else
    284 			thread_block();
    285 #endif
    286 		}
    287 		(*(node->doFunc)) (node);
    288 		break;
    289 	case rf_recover:
    290 		/* fire the undo function of a node */
    291 		if (rf_engineDebug) {
    292 			printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
    293 			       node->dagHdr->raidPtr->raidid,
    294 			       (unsigned long) node, node->name);
    295 		}
    296 		if (node->flags & RF_DAGNODE_FLAG_YIELD)
    297 #if defined(__NetBSD__) && defined(_KERNEL)
    298 			/* thread_block(); */
    299 			/* printf("Need to block the thread here...\n"); */
    300 			/* XXX thread_block is actually mentioned in
    301 			 * /usr/include/vm/vm_extern.h */
    302 #else
    303 			thread_block();
    304 #endif
    305 		(*(node->undoFunc)) (node);
    306 		break;
    307 	default:
    308 		RF_PANIC();
    309 		break;
    310 	}
    311 }
    312 
    313 
    314 
    315 /* user context:
    316  * Attempt to fire each node in a linear array.
    317  * The entire list is fired atomically.
    318  */
    319 static void
    320 FireNodeArray(
    321     int numNodes,
    322     RF_DagNode_t ** nodeList)
    323 {
    324 	RF_DagStatus_t dstat;
    325 	RF_DagNode_t *node;
    326 	int     i, j;
    327 
    328 	/* first, mark all nodes which are ready to be fired */
    329 	for (i = 0; i < numNodes; i++) {
    330 		node = nodeList[i];
    331 		dstat = node->dagHdr->status;
    332 		RF_ASSERT((node->status == rf_wait) ||
    333 			  (node->status == rf_good));
    334 		if (NodeReady(node)) {
    335 			if ((dstat == rf_enable) ||
    336 			    (dstat == rf_rollForward)) {
    337 				RF_ASSERT(node->status == rf_wait);
    338 				if (node->commitNode)
    339 					node->dagHdr->numCommits++;
    340 				node->status = rf_fired;
    341 				for (j = 0; j < node->numAntecedents; j++)
    342 					node->antecedents[j]->numSuccFired++;
    343 			} else {
    344 				RF_ASSERT(dstat == rf_rollBackward);
    345 				RF_ASSERT(node->status == rf_good);
    346 				/* only one commit node per graph */
    347 				RF_ASSERT(node->commitNode == RF_FALSE);
    348 				node->status = rf_recover;
    349 			}
    350 		}
    351 	}
    352 	/* now, fire the nodes */
    353 	for (i = 0; i < numNodes; i++) {
    354 		if ((nodeList[i]->status == rf_fired) ||
    355 		    (nodeList[i]->status == rf_recover))
    356 			FireNode(nodeList[i]);
    357 	}
    358 }
    359 
    360 
    361 /* user context:
    362  * Attempt to fire each node in a linked list.
    363  * The entire list is fired atomically.
    364  */
    365 static void
    366 FireNodeList(RF_DagNode_t * nodeList)
    367 {
    368 	RF_DagNode_t *node, *next;
    369 	RF_DagStatus_t dstat;
    370 	int     j;
    371 
    372 	if (nodeList) {
    373 		/* first, mark all nodes which are ready to be fired */
    374 		for (node = nodeList; node; node = next) {
    375 			next = node->next;
    376 			dstat = node->dagHdr->status;
    377 			RF_ASSERT((node->status == rf_wait) ||
    378 				  (node->status == rf_good));
    379 			if (NodeReady(node)) {
    380 				if ((dstat == rf_enable) ||
    381 				    (dstat == rf_rollForward)) {
    382 					RF_ASSERT(node->status == rf_wait);
    383 					if (node->commitNode)
    384 						node->dagHdr->numCommits++;
    385 					node->status = rf_fired;
    386 					for (j = 0; j < node->numAntecedents; j++)
    387 						node->antecedents[j]->numSuccFired++;
    388 				} else {
    389 					RF_ASSERT(dstat == rf_rollBackward);
    390 					RF_ASSERT(node->status == rf_good);
    391 					/* only one commit node per graph */
    392 					RF_ASSERT(node->commitNode == RF_FALSE);
    393 					node->status = rf_recover;
    394 				}
    395 			}
    396 		}
    397 		/* now, fire the nodes */
    398 		for (node = nodeList; node; node = next) {
    399 			next = node->next;
    400 			if ((node->status == rf_fired) ||
    401 			    (node->status == rf_recover))
    402 				FireNode(node);
    403 		}
    404 	}
    405 }
    406 /* interrupt context:
    407  * for each succedent
    408  *    propagate required results from node to succedent
    409  *    increment succedent's numAntDone
    410  *    place newly-enable nodes on node queue for firing
    411  *
    412  * To save context switches, we don't place NIL nodes on the node queue,
    413  * but rather just process them as if they had fired.  Note that NIL nodes
    414  * that are the direct successors of the header will actually get fired by
    415  * DispatchDAG, which is fine because no context switches are involved.
    416  *
    417  * Important:  when running at user level, this can be called by any
    418  * disk thread, and so the increment and check of the antecedent count
    419  * must be locked.  I used the node queue mutex and locked down the
    420  * entire function, but this is certainly overkill.
    421  */
    422 static void
    423 PropagateResults(
    424     RF_DagNode_t * node,
    425     int context)
    426 {
    427 	RF_DagNode_t *s, *a;
    428 	RF_Raid_t *raidPtr;
    429 	int     i, ks;
    430 	RF_DagNode_t *finishlist = NULL;	/* a list of NIL nodes to be
    431 						 * finished */
    432 	RF_DagNode_t *skiplist = NULL;	/* list of nodes with failed truedata
    433 					 * antecedents */
    434 	RF_DagNode_t *firelist = NULL;	/* a list of nodes to be fired */
    435 	RF_DagNode_t *q = NULL, *qh = NULL, *next;
    436 	int     j, skipNode;
    437 
    438 	raidPtr = node->dagHdr->raidPtr;
    439 
    440 	DO_LOCK(raidPtr);
    441 
    442 	/* debug - validate fire counts */
    443 	for (i = 0; i < node->numAntecedents; i++) {
    444 		a = *(node->antecedents + i);
    445 		RF_ASSERT(a->numSuccFired >= a->numSuccDone);
    446 		RF_ASSERT(a->numSuccFired <= a->numSuccedents);
    447 		a->numSuccDone++;
    448 	}
    449 
    450 	switch (node->dagHdr->status) {
    451 	case rf_enable:
    452 	case rf_rollForward:
    453 		for (i = 0; i < node->numSuccedents; i++) {
    454 			s = *(node->succedents + i);
    455 			RF_ASSERT(s->status == rf_wait);
    456 			(s->numAntDone)++;
    457 			if (s->numAntDone == s->numAntecedents) {
    458 				/* look for NIL nodes */
    459 				if (s->doFunc == rf_NullNodeFunc) {
    460 					/* don't fire NIL nodes, just process
    461 					 * them */
    462 					s->next = finishlist;
    463 					finishlist = s;
    464 				} else {
    465 					/* look to see if the node is to be
    466 					 * skipped */
    467 					skipNode = RF_FALSE;
    468 					for (j = 0; j < s->numAntecedents; j++)
    469 						if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
    470 							skipNode = RF_TRUE;
    471 					if (skipNode) {
    472 						/* this node has one or more
    473 						 * failed true data
    474 						 * dependencies, so skip it */
    475 						s->next = skiplist;
    476 						skiplist = s;
    477 					} else
    478 						/* add s to list of nodes (q)
    479 						 * to execute */
    480 						if (context != RF_INTR_CONTEXT) {
    481 							/* we only have to
    482 							 * enqueue if we're at
    483 							 * intr context */
    484 							/* put node on
    485                                                            a list to
    486                                                            be fired
    487                                                            after we
    488                                                            unlock */
    489 							s->next = firelist;
    490 							firelist = s;
    491 						} else {
    492 							/* enqueue the
    493 							   node for
    494 							   the dag
    495 							   exec thread
    496 							   to fire */
    497 							RF_ASSERT(NodeReady(s));
    498 							if (q) {
    499 								q->next = s;
    500 								q = s;
    501 							} else {
    502 								qh = q = s;
    503 								qh->next = NULL;
    504 							}
    505 						}
    506 				}
    507 			}
    508 		}
    509 
    510 		if (q) {
    511 			/* xfer our local list of nodes to the node queue */
    512 			q->next = raidPtr->node_queue;
    513 			raidPtr->node_queue = qh;
    514 			DO_SIGNAL(raidPtr);
    515 		}
    516 		DO_UNLOCK(raidPtr);
    517 
    518 		for (; skiplist; skiplist = next) {
    519 			next = skiplist->next;
    520 			skiplist->status = rf_skipped;
    521 			for (i = 0; i < skiplist->numAntecedents; i++) {
    522 				skiplist->antecedents[i]->numSuccFired++;
    523 			}
    524 			if (skiplist->commitNode) {
    525 				skiplist->dagHdr->numCommits++;
    526 			}
    527 			rf_FinishNode(skiplist, context);
    528 		}
    529 		for (; finishlist; finishlist = next) {
    530 			/* NIL nodes: no need to fire them */
    531 			next = finishlist->next;
    532 			finishlist->status = rf_good;
    533 			for (i = 0; i < finishlist->numAntecedents; i++) {
    534 				finishlist->antecedents[i]->numSuccFired++;
    535 			}
    536 			if (finishlist->commitNode)
    537 				finishlist->dagHdr->numCommits++;
    538 			/*
    539 		         * Okay, here we're calling rf_FinishNode() on
    540 		         * nodes that have the null function as their
    541 		         * work proc. Such a node could be the
    542 		         * terminal node in a DAG. If so, it will
    543 		         * cause the DAG to complete, which will in
    544 		         * turn free memory used by the DAG, which
    545 		         * includes the node in question. Thus, we
    546 		         * must avoid referencing the node at all
    547 		         * after calling rf_FinishNode() on it.  */
    548 			rf_FinishNode(finishlist, context);	/* recursive call */
    549 		}
    550 		/* fire all nodes in firelist */
    551 		FireNodeList(firelist);
    552 		break;
    553 
    554 	case rf_rollBackward:
    555 		for (i = 0; i < node->numAntecedents; i++) {
    556 			a = *(node->antecedents + i);
    557 			RF_ASSERT(a->status == rf_good);
    558 			RF_ASSERT(a->numSuccDone <= a->numSuccedents);
    559 			RF_ASSERT(a->numSuccDone <= a->numSuccFired);
    560 
    561 			if (a->numSuccDone == a->numSuccFired) {
    562 				if (a->undoFunc == rf_NullNodeFunc) {
    563 					/* don't fire NIL nodes, just process
    564 					 * them */
    565 					a->next = finishlist;
    566 					finishlist = a;
    567 				} else {
    568 					if (context != RF_INTR_CONTEXT) {
    569 						/* we only have to enqueue if
    570 						 * we're at intr context */
    571 						/* put node on a list to be
    572 						   fired after we unlock */
    573 						a->next = firelist;
    574 
    575 						firelist = a;
    576 					} else {
    577 						/* enqueue the node for the
    578 						   dag exec thread to fire */
    579 						RF_ASSERT(NodeReady(a));
    580 						if (q) {
    581 							q->next = a;
    582 							q = a;
    583 						} else {
    584 							qh = q = a;
    585 							qh->next = NULL;
    586 						}
    587 					}
    588 				}
    589 			}
    590 		}
    591 		if (q) {
    592 			/* xfer our local list of nodes to the node queue */
    593 			q->next = raidPtr->node_queue;
    594 			raidPtr->node_queue = qh;
    595 			DO_SIGNAL(raidPtr);
    596 		}
    597 		DO_UNLOCK(raidPtr);
    598 		for (; finishlist; finishlist = next) {
    599 			/* NIL nodes: no need to fire them */
    600 			next = finishlist->next;
    601 			finishlist->status = rf_good;
    602 			/*
    603 		         * Okay, here we're calling rf_FinishNode() on
    604 		         * nodes that have the null function as their
    605 		         * work proc. Such a node could be the first
    606 		         * node in a DAG. If so, it will cause the DAG
    607 		         * to complete, which will in turn free memory
    608 		         * used by the DAG, which includes the node in
    609 		         * question. Thus, we must avoid referencing
    610 		         * the node at all after calling
    611 		         * rf_FinishNode() on it.  */
    612 			rf_FinishNode(finishlist, context);	/* recursive call */
    613 		}
    614 		/* fire all nodes in firelist */
    615 		FireNodeList(firelist);
    616 
    617 		break;
    618 	default:
    619 		printf("Engine found illegal DAG status in PropagateResults()\n");
    620 		RF_PANIC();
    621 		break;
    622 	}
    623 }
    624 
    625 
    626 
    627 /*
    628  * Process a fired node which has completed
    629  */
    630 static void
    631 ProcessNode(
    632     RF_DagNode_t * node,
    633     int context)
    634 {
    635 	RF_Raid_t *raidPtr;
    636 
    637 	raidPtr = node->dagHdr->raidPtr;
    638 
    639 	switch (node->status) {
    640 	case rf_good:
    641 		/* normal case, don't need to do anything */
    642 		break;
    643 	case rf_bad:
    644 		if ((node->dagHdr->numCommits > 0) ||
    645 		    (node->dagHdr->numCommitNodes == 0)) {
    646 			/* crossed commit barrier */
    647 			node->dagHdr->status = rf_rollForward;
    648 			if (rf_engineDebug || 1) {
    649 				printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
    650 			}
    651 		} else {
    652 			/* never reached commit barrier */
    653 			node->dagHdr->status = rf_rollBackward;
    654 			if (rf_engineDebug || 1) {
    655 				printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
    656 			}
    657 		}
    658 		break;
    659 	case rf_undone:
    660 		/* normal rollBackward case, don't need to do anything */
    661 		break;
    662 	case rf_panic:
    663 		/* an undo node failed!!! */
    664 		printf("UNDO of a node failed!!!/n");
    665 		break;
    666 	default:
    667 		printf("node finished execution with an illegal status!!!\n");
    668 		RF_PANIC();
    669 		break;
    670 	}
    671 
    672 	/* enqueue node's succedents (antecedents if rollBackward) for
    673 	 * execution */
    674 	PropagateResults(node, context);
    675 }
    676 
    677 
    678 
    679 /* user context or dag-exec-thread context:
    680  * This is the first step in post-processing a newly-completed node.
    681  * This routine is called by each node execution function to mark the node
    682  * as complete and fire off any successors that have been enabled.
    683  */
    684 int
    685 rf_FinishNode(
    686     RF_DagNode_t * node,
    687     int context)
    688 {
    689 	int     retcode = RF_FALSE;
    690 	node->dagHdr->numNodesCompleted++;
    691 	ProcessNode(node, context);
    692 
    693 	return (retcode);
    694 }
    695 
    696 
    697 /* user context: submit dag for execution, return non-zero if we have
    698  * to wait for completion.  if and only if we return non-zero, we'll
    699  * cause cbFunc to get invoked with cbArg when the DAG has completed.
    700  *
    701  * for now we always return 1.  If the DAG does not cause any I/O,
    702  * then the callback may get invoked before DispatchDAG returns.
    703  * There's code in state 5 of ContinueRaidAccess to handle this.
    704  *
    705  * All we do here is fire the direct successors of the header node.
    706  * The DAG execution thread does the rest of the dag processing.  */
    707 int
    708 rf_DispatchDAG(
    709     RF_DagHeader_t * dag,
    710     void (*cbFunc) (void *),
    711     void *cbArg)
    712 {
    713 	RF_Raid_t *raidPtr;
    714 
    715 	raidPtr = dag->raidPtr;
    716 	if (dag->tracerec) {
    717 		RF_ETIMER_START(dag->tracerec->timer);
    718 	}
    719 #if DEBUG
    720 #if RF_DEBUG_VALIDATE_DAG
    721 	if (rf_engineDebug || rf_validateDAGDebug) {
    722 		if (rf_ValidateDAG(dag))
    723 			RF_PANIC();
    724 	}
    725 #endif
    726 #endif
    727 	if (rf_engineDebug) {
    728 		printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
    729 	}
    730 	raidPtr->dags_in_flight++;	/* debug only:  blow off proper
    731 					 * locking */
    732 	dag->cbFunc = cbFunc;
    733 	dag->cbArg = cbArg;
    734 	dag->numNodesCompleted = 0;
    735 	dag->status = rf_enable;
    736 	FireNodeArray(dag->numSuccedents, dag->succedents);
    737 	return (1);
    738 }
    739 /* dedicated kernel thread: the thread that handles all DAG node
    740  * firing.  To minimize locking and unlocking, we grab a copy of the
    741  * entire node queue and then set the node queue to NULL before doing
    742  * any firing of nodes.  This way we only have to release the lock
    743  * once.  Of course, it's probably rare that there's more than one
    744  * node in the queue at any one time, but it sometimes happens.
    745  */
    746 
    747 static void
    748 DAGExecutionThread(RF_ThreadArg_t arg)
    749 {
    750 	RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
    751 	RF_Raid_t *raidPtr;
    752 	int     ks;
    753 	int     s;
    754 
    755 	raidPtr = (RF_Raid_t *) arg;
    756 
    757 	if (rf_engineDebug) {
    758 		printf("raid%d: Engine thread is running\n", raidPtr->raidid);
    759 	}
    760 
    761 	s = splbio();
    762 
    763 	RF_THREADGROUP_RUNNING(&raidPtr->engine_tg);
    764 
    765 	DO_LOCK(raidPtr);
    766 	while (!raidPtr->shutdown_engine) {
    767 
    768 		while (raidPtr->node_queue != NULL) {
    769 			local_nq = raidPtr->node_queue;
    770 			fire_nq = NULL;
    771 			term_nq = NULL;
    772 			raidPtr->node_queue = NULL;
    773 			DO_UNLOCK(raidPtr);
    774 
    775 			/* first, strip out the terminal nodes */
    776 			while (local_nq) {
    777 				nd = local_nq;
    778 				local_nq = local_nq->next;
    779 				switch (nd->dagHdr->status) {
    780 				case rf_enable:
    781 				case rf_rollForward:
    782 					if (nd->numSuccedents == 0) {
    783 						/* end of the dag, add to
    784 						 * callback list */
    785 						nd->next = term_nq;
    786 						term_nq = nd;
    787 					} else {
    788 						/* not the end, add to the
    789 						 * fire queue */
    790 						nd->next = fire_nq;
    791 						fire_nq = nd;
    792 					}
    793 					break;
    794 				case rf_rollBackward:
    795 					if (nd->numAntecedents == 0) {
    796 						/* end of the dag, add to the
    797 						 * callback list */
    798 						nd->next = term_nq;
    799 						term_nq = nd;
    800 					} else {
    801 						/* not the end, add to the
    802 						 * fire queue */
    803 						nd->next = fire_nq;
    804 						fire_nq = nd;
    805 					}
    806 					break;
    807 				default:
    808 					RF_PANIC();
    809 					break;
    810 				}
    811 			}
    812 
    813 			/* execute callback of dags which have reached the
    814 			 * terminal node */
    815 			while (term_nq) {
    816 				nd = term_nq;
    817 				term_nq = term_nq->next;
    818 				nd->next = NULL;
    819 				(nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
    820 				raidPtr->dags_in_flight--;	/* debug only */
    821 			}
    822 
    823 			/* fire remaining nodes */
    824 			FireNodeList(fire_nq);
    825 
    826 			DO_LOCK(raidPtr);
    827 		}
    828 		while (!raidPtr->shutdown_engine &&
    829 		       raidPtr->node_queue == NULL) {
    830 			DO_WAIT(raidPtr);
    831 		}
    832 	}
    833 	DO_UNLOCK(raidPtr);
    834 
    835 	RF_THREADGROUP_DONE(&raidPtr->engine_tg);
    836 
    837 	splx(s);
    838 	kthread_exit(0);
    839 }
    840 
    841 /*
    842  * rf_RaidIOThread() -- When I/O to a component completes,
    843  * KernelWakeupFunc() puts the completed request onto raidPtr->iodone
    844  * TAILQ.  This function looks after requests on that queue by calling
    845  * rf_DiskIOComplete() for the request, and by calling any required
    846  * CompleteFunc for the request.
    847  */
    848 
    849 static void
    850 rf_RaidIOThread(RF_ThreadArg_t arg)
    851 {
    852 	RF_Raid_t *raidPtr;
    853 	RF_DiskQueueData_t *req;
    854 	int s;
    855 
    856 	raidPtr = (RF_Raid_t *) arg;
    857 
    858 	s = splbio();
    859 	simple_lock(&(raidPtr->iodone_lock));
    860 
    861 	while (!raidPtr->shutdown_raidio) {
    862 		/* if there is nothing to do, then snooze. */
    863 		if (TAILQ_EMPTY(&(raidPtr->iodone))) {
    864 			ltsleep(&(raidPtr->iodone), PRIBIO, "raidiow", 0,
    865 				&(raidPtr->iodone_lock));
    866 		}
    867 
    868 		/* See what I/Os, if any, have arrived */
    869 		while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
    870 			TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
    871 			simple_unlock(&(raidPtr->iodone_lock));
    872 			rf_DiskIOComplete(req->queue, req, req->error);
    873 			(req->CompleteFunc) (req->argument, req->error);
    874 			simple_lock(&(raidPtr->iodone_lock));
    875 		}
    876 	}
    877 
    878 	/* Let rf_ShutdownEngine know that we're done... */
    879 	raidPtr->shutdown_raidio = 0;
    880 	wakeup(&(raidPtr->shutdown_raidio));
    881 
    882 	simple_unlock(&(raidPtr->iodone_lock));
    883 	splx(s);
    884 
    885 	kthread_exit(0);
    886 }
    887