rf_engine.c revision 1.29 1 /* $NetBSD: rf_engine.c,v 1.29 2003/12/30 21:59:03 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II, Mark Holland, Rachad Youssef
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /****************************************************************************
30 * *
31 * engine.c -- code for DAG execution engine *
32 * *
33 * Modified to work as follows (holland): *
34 * A user-thread calls into DispatchDAG, which fires off the nodes that *
35 * are direct successors to the header node. DispatchDAG then returns, *
36 * and the rest of the I/O continues asynchronously. As each node *
37 * completes, the node execution function calls FinishNode(). FinishNode *
38 * scans the list of successors to the node and increments the antecedent *
39 * counts. Each node that becomes enabled is placed on a central node *
40 * queue. A dedicated dag-execution thread grabs nodes off of this *
41 * queue and fires them. *
42 * *
43 * NULL nodes are never fired. *
44 * *
45 * Terminator nodes are never fired, but rather cause the callback *
46 * associated with the DAG to be invoked. *
47 * *
48 * If a node fails, the dag either rolls forward to the completion or *
49 * rolls back, undoing previously-completed nodes and fails atomically. *
50 * The direction of recovery is determined by the location of the failed *
51 * node in the graph. If the failure occurred before the commit node in *
52 * the graph, backward recovery is used. Otherwise, forward recovery is *
53 * used. *
54 * *
55 ****************************************************************************/
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.29 2003/12/30 21:59:03 oster Exp $");
59
60 #include <sys/errno.h>
61
62 #include "rf_threadstuff.h"
63 #include "rf_dag.h"
64 #include "rf_engine.h"
65 #include "rf_etimer.h"
66 #include "rf_general.h"
67 #include "rf_dagutils.h"
68 #include "rf_shutdown.h"
69 #include "rf_raid.h"
70
71 static void rf_ShutdownEngine(void *);
72 static void DAGExecutionThread(RF_ThreadArg_t arg);
73 static void rf_RaidIOThread(RF_ThreadArg_t arg);
74
75 /* synchronization primitives for this file. DO_WAIT should be enclosed in a while loop. */
76
77 #define DO_LOCK(_r_) \
78 do { \
79 ks = splbio(); \
80 RF_LOCK_MUTEX((_r_)->node_queue_mutex); \
81 } while (0)
82
83 #define DO_UNLOCK(_r_) \
84 do { \
85 RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \
86 splx(ks); \
87 } while (0)
88
89 #define DO_WAIT(_r_) \
90 RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex)
91
92 #define DO_SIGNAL(_r_) \
93 RF_BROADCAST_COND((_r_)->node_queue) /* XXX RF_SIGNAL_COND? */
94
95 static void
96 rf_ShutdownEngine(void *arg)
97 {
98 RF_Raid_t *raidPtr;
99 int ks;
100
101 raidPtr = (RF_Raid_t *) arg;
102
103 /* Tell the rf_RaidIOThread to shutdown */
104 simple_lock(&(raidPtr->iodone_lock));
105
106 raidPtr->shutdown_raidio = 1;
107 wakeup(&(raidPtr->iodone));
108
109 /* ...and wait for it to tell us it has finished */
110 while (raidPtr->shutdown_raidio)
111 ltsleep(&(raidPtr->shutdown_raidio), PRIBIO, "raidshutdown", 0,
112 &(raidPtr->iodone_lock));
113
114 simple_unlock(&(raidPtr->iodone_lock));
115
116 /* Now shut down the DAG execution engine. */
117 DO_LOCK(raidPtr);
118 raidPtr->shutdown_engine = 1;
119 DO_SIGNAL(raidPtr);
120 DO_UNLOCK(raidPtr);
121
122 }
123
124 int
125 rf_ConfigureEngine(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
126 RF_Config_t *cfgPtr)
127 {
128 int rc;
129
130 rf_mutex_init(&raidPtr->node_queue_mutex);
131 raidPtr->node_queue_cond = 0;
132 raidPtr->node_queue = NULL;
133 raidPtr->dags_in_flight = 0;
134
135 /* we create the execution thread only once per system boot. no need
136 * to check return code b/c the kernel panics if it can't create the
137 * thread. */
138 if (rf_engineDebug) {
139 printf("raid%d: Creating engine thread\n", raidPtr->raidid);
140 }
141 if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
142 DAGExecutionThread, raidPtr,
143 "raid%d", raidPtr->raidid)) {
144 printf("raid%d: Unable to create engine thread\n",
145 raidPtr->raidid);
146 return (ENOMEM);
147 }
148 if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
149 rf_RaidIOThread, raidPtr,
150 "raidio%d", raidPtr->raidid)) {
151 printf("raid%d: Unable to create raidio thread\n",
152 raidPtr->raidid);
153 return (ENOMEM);
154 }
155 if (rf_engineDebug) {
156 printf("raid%d: Created engine thread\n", raidPtr->raidid);
157 }
158
159 /* engine thread is now running and waiting for work */
160 if (rf_engineDebug) {
161 printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
162 }
163 rc = rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
164 if (rc) {
165 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
166 rf_ShutdownEngine(NULL);
167 }
168 return (rc);
169 }
170
171 static int
172 BranchDone(RF_DagNode_t *node)
173 {
174 int i;
175
176 /* return true if forward execution is completed for a node and it's
177 * succedents */
178 switch (node->status) {
179 case rf_wait:
180 /* should never be called in this state */
181 RF_PANIC();
182 break;
183 case rf_fired:
184 /* node is currently executing, so we're not done */
185 return (RF_FALSE);
186 case rf_good:
187 /* for each succedent recursively check branch */
188 for (i = 0; i < node->numSuccedents; i++)
189 if (!BranchDone(node->succedents[i]))
190 return RF_FALSE;
191 return RF_TRUE; /* node and all succedent branches aren't in
192 * fired state */
193 case rf_bad:
194 /* succedents can't fire */
195 return (RF_TRUE);
196 case rf_recover:
197 /* should never be called in this state */
198 RF_PANIC();
199 break;
200 case rf_undone:
201 case rf_panic:
202 /* XXX need to fix this case */
203 /* for now, assume that we're done */
204 return (RF_TRUE);
205 default:
206 /* illegal node status */
207 RF_PANIC();
208 break;
209 }
210 }
211
212 static int
213 NodeReady(RF_DagNode_t *node)
214 {
215 int ready;
216
217 switch (node->dagHdr->status) {
218 case rf_enable:
219 case rf_rollForward:
220 if ((node->status == rf_wait) &&
221 (node->numAntecedents == node->numAntDone))
222 ready = RF_TRUE;
223 else
224 ready = RF_FALSE;
225 break;
226 case rf_rollBackward:
227 RF_ASSERT(node->numSuccDone <= node->numSuccedents);
228 RF_ASSERT(node->numSuccFired <= node->numSuccedents);
229 RF_ASSERT(node->numSuccFired <= node->numSuccDone);
230 if ((node->status == rf_good) &&
231 (node->numSuccDone == node->numSuccedents))
232 ready = RF_TRUE;
233 else
234 ready = RF_FALSE;
235 break;
236 default:
237 printf("Execution engine found illegal DAG status in NodeReady\n");
238 RF_PANIC();
239 break;
240 }
241
242 return (ready);
243 }
244
245
246
247 /* user context and dag-exec-thread context: Fire a node. The node's
248 * status field determines which function, do or undo, to be fired.
249 * This routine assumes that the node's status field has alread been
250 * set to "fired" or "recover" to indicate the direction of execution.
251 */
252 static void
253 FireNode(RF_DagNode_t *node)
254 {
255 switch (node->status) {
256 case rf_fired:
257 /* fire the do function of a node */
258 if (rf_engineDebug) {
259 printf("raid%d: Firing node 0x%lx (%s)\n",
260 node->dagHdr->raidPtr->raidid,
261 (unsigned long) node, node->name);
262 }
263 if (node->flags & RF_DAGNODE_FLAG_YIELD) {
264 #if defined(__NetBSD__) && defined(_KERNEL)
265 /* thread_block(); */
266 /* printf("Need to block the thread here...\n"); */
267 /* XXX thread_block is actually mentioned in
268 * /usr/include/vm/vm_extern.h */
269 #else
270 thread_block();
271 #endif
272 }
273 (*(node->doFunc)) (node);
274 break;
275 case rf_recover:
276 /* fire the undo function of a node */
277 if (rf_engineDebug) {
278 printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
279 node->dagHdr->raidPtr->raidid,
280 (unsigned long) node, node->name);
281 }
282 if (node->flags & RF_DAGNODE_FLAG_YIELD)
283 #if defined(__NetBSD__) && defined(_KERNEL)
284 /* thread_block(); */
285 /* printf("Need to block the thread here...\n"); */
286 /* XXX thread_block is actually mentioned in
287 * /usr/include/vm/vm_extern.h */
288 #else
289 thread_block();
290 #endif
291 (*(node->undoFunc)) (node);
292 break;
293 default:
294 RF_PANIC();
295 break;
296 }
297 }
298
299
300
301 /* user context:
302 * Attempt to fire each node in a linear array.
303 * The entire list is fired atomically.
304 */
305 static void
306 FireNodeArray(int numNodes, RF_DagNode_t **nodeList)
307 {
308 RF_DagStatus_t dstat;
309 RF_DagNode_t *node;
310 int i, j;
311
312 /* first, mark all nodes which are ready to be fired */
313 for (i = 0; i < numNodes; i++) {
314 node = nodeList[i];
315 dstat = node->dagHdr->status;
316 RF_ASSERT((node->status == rf_wait) ||
317 (node->status == rf_good));
318 if (NodeReady(node)) {
319 if ((dstat == rf_enable) ||
320 (dstat == rf_rollForward)) {
321 RF_ASSERT(node->status == rf_wait);
322 if (node->commitNode)
323 node->dagHdr->numCommits++;
324 node->status = rf_fired;
325 for (j = 0; j < node->numAntecedents; j++)
326 node->antecedents[j]->numSuccFired++;
327 } else {
328 RF_ASSERT(dstat == rf_rollBackward);
329 RF_ASSERT(node->status == rf_good);
330 /* only one commit node per graph */
331 RF_ASSERT(node->commitNode == RF_FALSE);
332 node->status = rf_recover;
333 }
334 }
335 }
336 /* now, fire the nodes */
337 for (i = 0; i < numNodes; i++) {
338 if ((nodeList[i]->status == rf_fired) ||
339 (nodeList[i]->status == rf_recover))
340 FireNode(nodeList[i]);
341 }
342 }
343
344
345 /* user context:
346 * Attempt to fire each node in a linked list.
347 * The entire list is fired atomically.
348 */
349 static void
350 FireNodeList(RF_DagNode_t *nodeList)
351 {
352 RF_DagNode_t *node, *next;
353 RF_DagStatus_t dstat;
354 int j;
355
356 if (nodeList) {
357 /* first, mark all nodes which are ready to be fired */
358 for (node = nodeList; node; node = next) {
359 next = node->next;
360 dstat = node->dagHdr->status;
361 RF_ASSERT((node->status == rf_wait) ||
362 (node->status == rf_good));
363 if (NodeReady(node)) {
364 if ((dstat == rf_enable) ||
365 (dstat == rf_rollForward)) {
366 RF_ASSERT(node->status == rf_wait);
367 if (node->commitNode)
368 node->dagHdr->numCommits++;
369 node->status = rf_fired;
370 for (j = 0; j < node->numAntecedents; j++)
371 node->antecedents[j]->numSuccFired++;
372 } else {
373 RF_ASSERT(dstat == rf_rollBackward);
374 RF_ASSERT(node->status == rf_good);
375 /* only one commit node per graph */
376 RF_ASSERT(node->commitNode == RF_FALSE);
377 node->status = rf_recover;
378 }
379 }
380 }
381 /* now, fire the nodes */
382 for (node = nodeList; node; node = next) {
383 next = node->next;
384 if ((node->status == rf_fired) ||
385 (node->status == rf_recover))
386 FireNode(node);
387 }
388 }
389 }
390 /* interrupt context:
391 * for each succedent
392 * propagate required results from node to succedent
393 * increment succedent's numAntDone
394 * place newly-enable nodes on node queue for firing
395 *
396 * To save context switches, we don't place NIL nodes on the node queue,
397 * but rather just process them as if they had fired. Note that NIL nodes
398 * that are the direct successors of the header will actually get fired by
399 * DispatchDAG, which is fine because no context switches are involved.
400 *
401 * Important: when running at user level, this can be called by any
402 * disk thread, and so the increment and check of the antecedent count
403 * must be locked. I used the node queue mutex and locked down the
404 * entire function, but this is certainly overkill.
405 */
406 static void
407 PropagateResults(RF_DagNode_t *node, int context)
408 {
409 RF_DagNode_t *s, *a;
410 RF_Raid_t *raidPtr;
411 int i, ks;
412 RF_DagNode_t *finishlist = NULL; /* a list of NIL nodes to be
413 * finished */
414 RF_DagNode_t *skiplist = NULL; /* list of nodes with failed truedata
415 * antecedents */
416 RF_DagNode_t *firelist = NULL; /* a list of nodes to be fired */
417 RF_DagNode_t *q = NULL, *qh = NULL, *next;
418 int j, skipNode;
419
420 raidPtr = node->dagHdr->raidPtr;
421
422 DO_LOCK(raidPtr);
423
424 /* debug - validate fire counts */
425 for (i = 0; i < node->numAntecedents; i++) {
426 a = *(node->antecedents + i);
427 RF_ASSERT(a->numSuccFired >= a->numSuccDone);
428 RF_ASSERT(a->numSuccFired <= a->numSuccedents);
429 a->numSuccDone++;
430 }
431
432 switch (node->dagHdr->status) {
433 case rf_enable:
434 case rf_rollForward:
435 for (i = 0; i < node->numSuccedents; i++) {
436 s = *(node->succedents + i);
437 RF_ASSERT(s->status == rf_wait);
438 (s->numAntDone)++;
439 if (s->numAntDone == s->numAntecedents) {
440 /* look for NIL nodes */
441 if (s->doFunc == rf_NullNodeFunc) {
442 /* don't fire NIL nodes, just process
443 * them */
444 s->next = finishlist;
445 finishlist = s;
446 } else {
447 /* look to see if the node is to be
448 * skipped */
449 skipNode = RF_FALSE;
450 for (j = 0; j < s->numAntecedents; j++)
451 if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
452 skipNode = RF_TRUE;
453 if (skipNode) {
454 /* this node has one or more
455 * failed true data
456 * dependencies, so skip it */
457 s->next = skiplist;
458 skiplist = s;
459 } else
460 /* add s to list of nodes (q)
461 * to execute */
462 if (context != RF_INTR_CONTEXT) {
463 /* we only have to
464 * enqueue if we're at
465 * intr context */
466 /* put node on
467 a list to
468 be fired
469 after we
470 unlock */
471 s->next = firelist;
472 firelist = s;
473 } else {
474 /* enqueue the
475 node for
476 the dag
477 exec thread
478 to fire */
479 RF_ASSERT(NodeReady(s));
480 if (q) {
481 q->next = s;
482 q = s;
483 } else {
484 qh = q = s;
485 qh->next = NULL;
486 }
487 }
488 }
489 }
490 }
491
492 if (q) {
493 /* xfer our local list of nodes to the node queue */
494 q->next = raidPtr->node_queue;
495 raidPtr->node_queue = qh;
496 DO_SIGNAL(raidPtr);
497 }
498 DO_UNLOCK(raidPtr);
499
500 for (; skiplist; skiplist = next) {
501 next = skiplist->next;
502 skiplist->status = rf_skipped;
503 for (i = 0; i < skiplist->numAntecedents; i++) {
504 skiplist->antecedents[i]->numSuccFired++;
505 }
506 if (skiplist->commitNode) {
507 skiplist->dagHdr->numCommits++;
508 }
509 rf_FinishNode(skiplist, context);
510 }
511 for (; finishlist; finishlist = next) {
512 /* NIL nodes: no need to fire them */
513 next = finishlist->next;
514 finishlist->status = rf_good;
515 for (i = 0; i < finishlist->numAntecedents; i++) {
516 finishlist->antecedents[i]->numSuccFired++;
517 }
518 if (finishlist->commitNode)
519 finishlist->dagHdr->numCommits++;
520 /*
521 * Okay, here we're calling rf_FinishNode() on
522 * nodes that have the null function as their
523 * work proc. Such a node could be the
524 * terminal node in a DAG. If so, it will
525 * cause the DAG to complete, which will in
526 * turn free memory used by the DAG, which
527 * includes the node in question. Thus, we
528 * must avoid referencing the node at all
529 * after calling rf_FinishNode() on it. */
530 rf_FinishNode(finishlist, context); /* recursive call */
531 }
532 /* fire all nodes in firelist */
533 FireNodeList(firelist);
534 break;
535
536 case rf_rollBackward:
537 for (i = 0; i < node->numAntecedents; i++) {
538 a = *(node->antecedents + i);
539 RF_ASSERT(a->status == rf_good);
540 RF_ASSERT(a->numSuccDone <= a->numSuccedents);
541 RF_ASSERT(a->numSuccDone <= a->numSuccFired);
542
543 if (a->numSuccDone == a->numSuccFired) {
544 if (a->undoFunc == rf_NullNodeFunc) {
545 /* don't fire NIL nodes, just process
546 * them */
547 a->next = finishlist;
548 finishlist = a;
549 } else {
550 if (context != RF_INTR_CONTEXT) {
551 /* we only have to enqueue if
552 * we're at intr context */
553 /* put node on a list to be
554 fired after we unlock */
555 a->next = firelist;
556
557 firelist = a;
558 } else {
559 /* enqueue the node for the
560 dag exec thread to fire */
561 RF_ASSERT(NodeReady(a));
562 if (q) {
563 q->next = a;
564 q = a;
565 } else {
566 qh = q = a;
567 qh->next = NULL;
568 }
569 }
570 }
571 }
572 }
573 if (q) {
574 /* xfer our local list of nodes to the node queue */
575 q->next = raidPtr->node_queue;
576 raidPtr->node_queue = qh;
577 DO_SIGNAL(raidPtr);
578 }
579 DO_UNLOCK(raidPtr);
580 for (; finishlist; finishlist = next) {
581 /* NIL nodes: no need to fire them */
582 next = finishlist->next;
583 finishlist->status = rf_good;
584 /*
585 * Okay, here we're calling rf_FinishNode() on
586 * nodes that have the null function as their
587 * work proc. Such a node could be the first
588 * node in a DAG. If so, it will cause the DAG
589 * to complete, which will in turn free memory
590 * used by the DAG, which includes the node in
591 * question. Thus, we must avoid referencing
592 * the node at all after calling
593 * rf_FinishNode() on it. */
594 rf_FinishNode(finishlist, context); /* recursive call */
595 }
596 /* fire all nodes in firelist */
597 FireNodeList(firelist);
598
599 break;
600 default:
601 printf("Engine found illegal DAG status in PropagateResults()\n");
602 RF_PANIC();
603 break;
604 }
605 }
606
607
608
609 /*
610 * Process a fired node which has completed
611 */
612 static void
613 ProcessNode(RF_DagNode_t *node, int context)
614 {
615 RF_Raid_t *raidPtr;
616
617 raidPtr = node->dagHdr->raidPtr;
618
619 switch (node->status) {
620 case rf_good:
621 /* normal case, don't need to do anything */
622 break;
623 case rf_bad:
624 if ((node->dagHdr->numCommits > 0) ||
625 (node->dagHdr->numCommitNodes == 0)) {
626 /* crossed commit barrier */
627 node->dagHdr->status = rf_rollForward;
628 if (rf_engineDebug || 1) {
629 printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
630 }
631 } else {
632 /* never reached commit barrier */
633 node->dagHdr->status = rf_rollBackward;
634 if (rf_engineDebug || 1) {
635 printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
636 }
637 }
638 break;
639 case rf_undone:
640 /* normal rollBackward case, don't need to do anything */
641 break;
642 case rf_panic:
643 /* an undo node failed!!! */
644 printf("UNDO of a node failed!!!/n");
645 break;
646 default:
647 printf("node finished execution with an illegal status!!!\n");
648 RF_PANIC();
649 break;
650 }
651
652 /* enqueue node's succedents (antecedents if rollBackward) for
653 * execution */
654 PropagateResults(node, context);
655 }
656
657
658
659 /* user context or dag-exec-thread context:
660 * This is the first step in post-processing a newly-completed node.
661 * This routine is called by each node execution function to mark the node
662 * as complete and fire off any successors that have been enabled.
663 */
664 int
665 rf_FinishNode(RF_DagNode_t *node, int context)
666 {
667 int retcode = RF_FALSE;
668 node->dagHdr->numNodesCompleted++;
669 ProcessNode(node, context);
670
671 return (retcode);
672 }
673
674
675 /* user context: submit dag for execution, return non-zero if we have
676 * to wait for completion. if and only if we return non-zero, we'll
677 * cause cbFunc to get invoked with cbArg when the DAG has completed.
678 *
679 * for now we always return 1. If the DAG does not cause any I/O,
680 * then the callback may get invoked before DispatchDAG returns.
681 * There's code in state 5 of ContinueRaidAccess to handle this.
682 *
683 * All we do here is fire the direct successors of the header node.
684 * The DAG execution thread does the rest of the dag processing. */
685 int
686 rf_DispatchDAG(RF_DagHeader_t *dag, void (*cbFunc) (void *),
687 void *cbArg)
688 {
689 RF_Raid_t *raidPtr;
690
691 raidPtr = dag->raidPtr;
692 if (dag->tracerec) {
693 RF_ETIMER_START(dag->tracerec->timer);
694 }
695 #if DEBUG
696 #if RF_DEBUG_VALIDATE_DAG
697 if (rf_engineDebug || rf_validateDAGDebug) {
698 if (rf_ValidateDAG(dag))
699 RF_PANIC();
700 }
701 #endif
702 #endif
703 if (rf_engineDebug) {
704 printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
705 }
706 raidPtr->dags_in_flight++; /* debug only: blow off proper
707 * locking */
708 dag->cbFunc = cbFunc;
709 dag->cbArg = cbArg;
710 dag->numNodesCompleted = 0;
711 dag->status = rf_enable;
712 FireNodeArray(dag->numSuccedents, dag->succedents);
713 return (1);
714 }
715 /* dedicated kernel thread: the thread that handles all DAG node
716 * firing. To minimize locking and unlocking, we grab a copy of the
717 * entire node queue and then set the node queue to NULL before doing
718 * any firing of nodes. This way we only have to release the lock
719 * once. Of course, it's probably rare that there's more than one
720 * node in the queue at any one time, but it sometimes happens.
721 */
722
723 static void
724 DAGExecutionThread(RF_ThreadArg_t arg)
725 {
726 RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
727 RF_Raid_t *raidPtr;
728 int ks;
729 int s;
730
731 raidPtr = (RF_Raid_t *) arg;
732
733 if (rf_engineDebug) {
734 printf("raid%d: Engine thread is running\n", raidPtr->raidid);
735 }
736
737 s = splbio();
738
739 DO_LOCK(raidPtr);
740 while (!raidPtr->shutdown_engine) {
741
742 while (raidPtr->node_queue != NULL) {
743 local_nq = raidPtr->node_queue;
744 fire_nq = NULL;
745 term_nq = NULL;
746 raidPtr->node_queue = NULL;
747 DO_UNLOCK(raidPtr);
748
749 /* first, strip out the terminal nodes */
750 while (local_nq) {
751 nd = local_nq;
752 local_nq = local_nq->next;
753 switch (nd->dagHdr->status) {
754 case rf_enable:
755 case rf_rollForward:
756 if (nd->numSuccedents == 0) {
757 /* end of the dag, add to
758 * callback list */
759 nd->next = term_nq;
760 term_nq = nd;
761 } else {
762 /* not the end, add to the
763 * fire queue */
764 nd->next = fire_nq;
765 fire_nq = nd;
766 }
767 break;
768 case rf_rollBackward:
769 if (nd->numAntecedents == 0) {
770 /* end of the dag, add to the
771 * callback list */
772 nd->next = term_nq;
773 term_nq = nd;
774 } else {
775 /* not the end, add to the
776 * fire queue */
777 nd->next = fire_nq;
778 fire_nq = nd;
779 }
780 break;
781 default:
782 RF_PANIC();
783 break;
784 }
785 }
786
787 /* execute callback of dags which have reached the
788 * terminal node */
789 while (term_nq) {
790 nd = term_nq;
791 term_nq = term_nq->next;
792 nd->next = NULL;
793 (nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
794 raidPtr->dags_in_flight--; /* debug only */
795 }
796
797 /* fire remaining nodes */
798 FireNodeList(fire_nq);
799
800 DO_LOCK(raidPtr);
801 }
802 while (!raidPtr->shutdown_engine &&
803 raidPtr->node_queue == NULL) {
804 DO_WAIT(raidPtr);
805 }
806 }
807 DO_UNLOCK(raidPtr);
808
809 splx(s);
810 kthread_exit(0);
811 }
812
813 /*
814 * rf_RaidIOThread() -- When I/O to a component completes,
815 * KernelWakeupFunc() puts the completed request onto raidPtr->iodone
816 * TAILQ. This function looks after requests on that queue by calling
817 * rf_DiskIOComplete() for the request, and by calling any required
818 * CompleteFunc for the request.
819 */
820
821 static void
822 rf_RaidIOThread(RF_ThreadArg_t arg)
823 {
824 RF_Raid_t *raidPtr;
825 RF_DiskQueueData_t *req;
826 int s;
827
828 raidPtr = (RF_Raid_t *) arg;
829
830 s = splbio();
831 simple_lock(&(raidPtr->iodone_lock));
832
833 while (!raidPtr->shutdown_raidio) {
834 /* if there is nothing to do, then snooze. */
835 if (TAILQ_EMPTY(&(raidPtr->iodone))) {
836 ltsleep(&(raidPtr->iodone), PRIBIO, "raidiow", 0,
837 &(raidPtr->iodone_lock));
838 }
839
840 /* See what I/Os, if any, have arrived */
841 while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
842 TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
843 simple_unlock(&(raidPtr->iodone_lock));
844 rf_DiskIOComplete(req->queue, req, req->error);
845 (req->CompleteFunc) (req->argument, req->error);
846 simple_lock(&(raidPtr->iodone_lock));
847 }
848 }
849
850 /* Let rf_ShutdownEngine know that we're done... */
851 raidPtr->shutdown_raidio = 0;
852 wakeup(&(raidPtr->shutdown_raidio));
853
854 simple_unlock(&(raidPtr->iodone_lock));
855 splx(s);
856
857 kthread_exit(0);
858 }
859