Home | History | Annotate | Line # | Download | only in raidframe
rf_engine.c revision 1.32
      1 /*	$NetBSD: rf_engine.c,v 1.32 2004/02/29 04:03:50 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II, Mark Holland, Rachad Youssef
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************
     30  *                                                                          *
     31  * engine.c -- code for DAG execution engine                                *
     32  *                                                                          *
     33  * Modified to work as follows (holland):                                   *
     34  *   A user-thread calls into DispatchDAG, which fires off the nodes that   *
     35  *   are direct successors to the header node.  DispatchDAG then returns,   *
     36  *   and the rest of the I/O continues asynchronously.  As each node        *
     37  *   completes, the node execution function calls FinishNode().  FinishNode *
     38  *   scans the list of successors to the node and increments the antecedent *
     39  *   counts.  Each node that becomes enabled is placed on a central node    *
     40  *   queue.  A dedicated dag-execution thread grabs nodes off of this       *
     41  *   queue and fires them.                                                  *
     42  *                                                                          *
     43  *   NULL nodes are never fired.                                            *
     44  *                                                                          *
     45  *   Terminator nodes are never fired, but rather cause the callback        *
     46  *   associated with the DAG to be invoked.                                 *
     47  *                                                                          *
     48  *   If a node fails, the dag either rolls forward to the completion or     *
     49  *   rolls back, undoing previously-completed nodes and fails atomically.   *
     50  *   The direction of recovery is determined by the location of the failed  *
     51  *   node in the graph.  If the failure occurred before the commit node in   *
     52  *   the graph, backward recovery is used.  Otherwise, forward recovery is  *
     53  *   used.                                                                  *
     54  *                                                                          *
     55  ****************************************************************************/
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.32 2004/02/29 04:03:50 oster Exp $");
     59 
     60 #include <sys/errno.h>
     61 
     62 #include "rf_threadstuff.h"
     63 #include "rf_dag.h"
     64 #include "rf_engine.h"
     65 #include "rf_etimer.h"
     66 #include "rf_general.h"
     67 #include "rf_dagutils.h"
     68 #include "rf_shutdown.h"
     69 #include "rf_raid.h"
     70 
     71 static void rf_ShutdownEngine(void *);
     72 static void DAGExecutionThread(RF_ThreadArg_t arg);
     73 static void rf_RaidIOThread(RF_ThreadArg_t arg);
     74 
     75 /* synchronization primitives for this file.  DO_WAIT should be enclosed in a while loop. */
     76 
     77 #define DO_LOCK(_r_) \
     78 do { \
     79 	ks = splbio(); \
     80 	RF_LOCK_MUTEX((_r_)->node_queue_mutex); \
     81 } while (0)
     82 
     83 #define DO_UNLOCK(_r_) \
     84 do { \
     85 	RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \
     86 	splx(ks); \
     87 } while (0)
     88 
     89 #define	DO_WAIT(_r_) \
     90 	RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex)
     91 
     92 #define	DO_SIGNAL(_r_) \
     93 	RF_BROADCAST_COND((_r_)->node_queue)	/* XXX RF_SIGNAL_COND? */
     94 
     95 static void
     96 rf_ShutdownEngine(void *arg)
     97 {
     98 	RF_Raid_t *raidPtr;
     99 	int ks;
    100 
    101 	raidPtr = (RF_Raid_t *) arg;
    102 
    103 	/* Tell the rf_RaidIOThread to shutdown */
    104 	simple_lock(&(raidPtr->iodone_lock));
    105 
    106 	raidPtr->shutdown_raidio = 1;
    107 	wakeup(&(raidPtr->iodone));
    108 
    109 	/* ...and wait for it to tell us it has finished */
    110 	while (raidPtr->shutdown_raidio)
    111  		ltsleep(&(raidPtr->shutdown_raidio), PRIBIO, "raidshutdown", 0,
    112 			&(raidPtr->iodone_lock));
    113 
    114 	simple_unlock(&(raidPtr->iodone_lock));
    115 
    116  	/* Now shut down the DAG execution engine. */
    117  	DO_LOCK(raidPtr);
    118   	raidPtr->shutdown_engine = 1;
    119   	DO_SIGNAL(raidPtr);
    120  	DO_UNLOCK(raidPtr);
    121 
    122 }
    123 
    124 int
    125 rf_ConfigureEngine(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
    126 		   RF_Config_t *cfgPtr)
    127 {
    128 
    129 	rf_mutex_init(&raidPtr->node_queue_mutex);
    130 	raidPtr->node_queue = NULL;
    131 	raidPtr->dags_in_flight = 0;
    132 
    133 	/* we create the execution thread only once per system boot. no need
    134 	 * to check return code b/c the kernel panics if it can't create the
    135 	 * thread. */
    136 	if (rf_engineDebug) {
    137 		printf("raid%d: Creating engine thread\n", raidPtr->raidid);
    138 	}
    139 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
    140 				    DAGExecutionThread, raidPtr,
    141 				    "raid%d", raidPtr->raidid)) {
    142 		printf("raid%d: Unable to create engine thread\n",
    143 		       raidPtr->raidid);
    144 		return (ENOMEM);
    145 	}
    146 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
    147 				    rf_RaidIOThread, raidPtr,
    148 				    "raidio%d", raidPtr->raidid)) {
    149 		printf("raid%d: Unable to create raidio thread\n",
    150 		       raidPtr->raidid);
    151 		return (ENOMEM);
    152 	}
    153 	if (rf_engineDebug) {
    154 		printf("raid%d: Created engine thread\n", raidPtr->raidid);
    155 	}
    156 
    157 	/* engine thread is now running and waiting for work */
    158 	if (rf_engineDebug) {
    159 		printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
    160 	}
    161 	rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
    162 
    163 	return (0);
    164 }
    165 
    166 static int
    167 BranchDone(RF_DagNode_t *node)
    168 {
    169 	int     i;
    170 
    171 	/* return true if forward execution is completed for a node and it's
    172 	 * succedents */
    173 	switch (node->status) {
    174 	case rf_wait:
    175 		/* should never be called in this state */
    176 		RF_PANIC();
    177 		break;
    178 	case rf_fired:
    179 		/* node is currently executing, so we're not done */
    180 		return (RF_FALSE);
    181 	case rf_good:
    182 		/* for each succedent recursively check branch */
    183 		for (i = 0; i < node->numSuccedents; i++)
    184 			if (!BranchDone(node->succedents[i]))
    185 				return RF_FALSE;
    186 		return RF_TRUE;	/* node and all succedent branches aren't in
    187 				 * fired state */
    188 	case rf_bad:
    189 		/* succedents can't fire */
    190 		return (RF_TRUE);
    191 	case rf_recover:
    192 		/* should never be called in this state */
    193 		RF_PANIC();
    194 		break;
    195 	case rf_undone:
    196 	case rf_panic:
    197 		/* XXX need to fix this case */
    198 		/* for now, assume that we're done */
    199 		return (RF_TRUE);
    200 	default:
    201 		/* illegal node status */
    202 		RF_PANIC();
    203 		break;
    204 	}
    205 }
    206 
    207 static int
    208 NodeReady(RF_DagNode_t *node)
    209 {
    210 	int     ready;
    211 
    212 	switch (node->dagHdr->status) {
    213 	case rf_enable:
    214 	case rf_rollForward:
    215 		if ((node->status == rf_wait) &&
    216 		    (node->numAntecedents == node->numAntDone))
    217 			ready = RF_TRUE;
    218 		else
    219 			ready = RF_FALSE;
    220 		break;
    221 	case rf_rollBackward:
    222 		RF_ASSERT(node->numSuccDone <= node->numSuccedents);
    223 		RF_ASSERT(node->numSuccFired <= node->numSuccedents);
    224 		RF_ASSERT(node->numSuccFired <= node->numSuccDone);
    225 		if ((node->status == rf_good) &&
    226 		    (node->numSuccDone == node->numSuccedents))
    227 			ready = RF_TRUE;
    228 		else
    229 			ready = RF_FALSE;
    230 		break;
    231 	default:
    232 		printf("Execution engine found illegal DAG status in NodeReady\n");
    233 		RF_PANIC();
    234 		break;
    235 	}
    236 
    237 	return (ready);
    238 }
    239 
    240 
    241 
    242 /* user context and dag-exec-thread context: Fire a node.  The node's
    243  * status field determines which function, do or undo, to be fired.
    244  * This routine assumes that the node's status field has alread been
    245  * set to "fired" or "recover" to indicate the direction of execution.
    246  */
    247 static void
    248 FireNode(RF_DagNode_t *node)
    249 {
    250 	switch (node->status) {
    251 	case rf_fired:
    252 		/* fire the do function of a node */
    253 		if (rf_engineDebug) {
    254 			printf("raid%d: Firing node 0x%lx (%s)\n",
    255 			       node->dagHdr->raidPtr->raidid,
    256 			       (unsigned long) node, node->name);
    257 		}
    258 		if (node->flags & RF_DAGNODE_FLAG_YIELD) {
    259 #if defined(__NetBSD__) && defined(_KERNEL)
    260 			/* thread_block(); */
    261 			/* printf("Need to block the thread here...\n");  */
    262 			/* XXX thread_block is actually mentioned in
    263 			 * /usr/include/vm/vm_extern.h */
    264 #else
    265 			thread_block();
    266 #endif
    267 		}
    268 		(*(node->doFunc)) (node);
    269 		break;
    270 	case rf_recover:
    271 		/* fire the undo function of a node */
    272 		if (rf_engineDebug) {
    273 			printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
    274 			       node->dagHdr->raidPtr->raidid,
    275 			       (unsigned long) node, node->name);
    276 		}
    277 		if (node->flags & RF_DAGNODE_FLAG_YIELD)
    278 #if defined(__NetBSD__) && defined(_KERNEL)
    279 			/* thread_block(); */
    280 			/* printf("Need to block the thread here...\n"); */
    281 			/* XXX thread_block is actually mentioned in
    282 			 * /usr/include/vm/vm_extern.h */
    283 #else
    284 			thread_block();
    285 #endif
    286 		(*(node->undoFunc)) (node);
    287 		break;
    288 	default:
    289 		RF_PANIC();
    290 		break;
    291 	}
    292 }
    293 
    294 
    295 
    296 /* user context:
    297  * Attempt to fire each node in a linear array.
    298  * The entire list is fired atomically.
    299  */
    300 static void
    301 FireNodeArray(int numNodes, RF_DagNode_t **nodeList)
    302 {
    303 	RF_DagStatus_t dstat;
    304 	RF_DagNode_t *node;
    305 	int     i, j;
    306 
    307 	/* first, mark all nodes which are ready to be fired */
    308 	for (i = 0; i < numNodes; i++) {
    309 		node = nodeList[i];
    310 		dstat = node->dagHdr->status;
    311 		RF_ASSERT((node->status == rf_wait) ||
    312 			  (node->status == rf_good));
    313 		if (NodeReady(node)) {
    314 			if ((dstat == rf_enable) ||
    315 			    (dstat == rf_rollForward)) {
    316 				RF_ASSERT(node->status == rf_wait);
    317 				if (node->commitNode)
    318 					node->dagHdr->numCommits++;
    319 				node->status = rf_fired;
    320 				for (j = 0; j < node->numAntecedents; j++)
    321 					node->antecedents[j]->numSuccFired++;
    322 			} else {
    323 				RF_ASSERT(dstat == rf_rollBackward);
    324 				RF_ASSERT(node->status == rf_good);
    325 				/* only one commit node per graph */
    326 				RF_ASSERT(node->commitNode == RF_FALSE);
    327 				node->status = rf_recover;
    328 			}
    329 		}
    330 	}
    331 	/* now, fire the nodes */
    332 	for (i = 0; i < numNodes; i++) {
    333 		if ((nodeList[i]->status == rf_fired) ||
    334 		    (nodeList[i]->status == rf_recover))
    335 			FireNode(nodeList[i]);
    336 	}
    337 }
    338 
    339 
    340 /* user context:
    341  * Attempt to fire each node in a linked list.
    342  * The entire list is fired atomically.
    343  */
    344 static void
    345 FireNodeList(RF_DagNode_t *nodeList)
    346 {
    347 	RF_DagNode_t *node, *next;
    348 	RF_DagStatus_t dstat;
    349 	int     j;
    350 
    351 	if (nodeList) {
    352 		/* first, mark all nodes which are ready to be fired */
    353 		for (node = nodeList; node; node = next) {
    354 			next = node->next;
    355 			dstat = node->dagHdr->status;
    356 			RF_ASSERT((node->status == rf_wait) ||
    357 				  (node->status == rf_good));
    358 			if (NodeReady(node)) {
    359 				if ((dstat == rf_enable) ||
    360 				    (dstat == rf_rollForward)) {
    361 					RF_ASSERT(node->status == rf_wait);
    362 					if (node->commitNode)
    363 						node->dagHdr->numCommits++;
    364 					node->status = rf_fired;
    365 					for (j = 0; j < node->numAntecedents; j++)
    366 						node->antecedents[j]->numSuccFired++;
    367 				} else {
    368 					RF_ASSERT(dstat == rf_rollBackward);
    369 					RF_ASSERT(node->status == rf_good);
    370 					/* only one commit node per graph */
    371 					RF_ASSERT(node->commitNode == RF_FALSE);
    372 					node->status = rf_recover;
    373 				}
    374 			}
    375 		}
    376 		/* now, fire the nodes */
    377 		for (node = nodeList; node; node = next) {
    378 			next = node->next;
    379 			if ((node->status == rf_fired) ||
    380 			    (node->status == rf_recover))
    381 				FireNode(node);
    382 		}
    383 	}
    384 }
    385 /* interrupt context:
    386  * for each succedent
    387  *    propagate required results from node to succedent
    388  *    increment succedent's numAntDone
    389  *    place newly-enable nodes on node queue for firing
    390  *
    391  * To save context switches, we don't place NIL nodes on the node queue,
    392  * but rather just process them as if they had fired.  Note that NIL nodes
    393  * that are the direct successors of the header will actually get fired by
    394  * DispatchDAG, which is fine because no context switches are involved.
    395  *
    396  * Important:  when running at user level, this can be called by any
    397  * disk thread, and so the increment and check of the antecedent count
    398  * must be locked.  I used the node queue mutex and locked down the
    399  * entire function, but this is certainly overkill.
    400  */
    401 static void
    402 PropagateResults(RF_DagNode_t *node, int context)
    403 {
    404 	RF_DagNode_t *s, *a;
    405 	RF_Raid_t *raidPtr;
    406 	int     i, ks;
    407 	RF_DagNode_t *finishlist = NULL;	/* a list of NIL nodes to be
    408 						 * finished */
    409 	RF_DagNode_t *skiplist = NULL;	/* list of nodes with failed truedata
    410 					 * antecedents */
    411 	RF_DagNode_t *firelist = NULL;	/* a list of nodes to be fired */
    412 	RF_DagNode_t *q = NULL, *qh = NULL, *next;
    413 	int     j, skipNode;
    414 
    415 	raidPtr = node->dagHdr->raidPtr;
    416 
    417 	DO_LOCK(raidPtr);
    418 
    419 	/* debug - validate fire counts */
    420 	for (i = 0; i < node->numAntecedents; i++) {
    421 		a = *(node->antecedents + i);
    422 		RF_ASSERT(a->numSuccFired >= a->numSuccDone);
    423 		RF_ASSERT(a->numSuccFired <= a->numSuccedents);
    424 		a->numSuccDone++;
    425 	}
    426 
    427 	switch (node->dagHdr->status) {
    428 	case rf_enable:
    429 	case rf_rollForward:
    430 		for (i = 0; i < node->numSuccedents; i++) {
    431 			s = *(node->succedents + i);
    432 			RF_ASSERT(s->status == rf_wait);
    433 			(s->numAntDone)++;
    434 			if (s->numAntDone == s->numAntecedents) {
    435 				/* look for NIL nodes */
    436 				if (s->doFunc == rf_NullNodeFunc) {
    437 					/* don't fire NIL nodes, just process
    438 					 * them */
    439 					s->next = finishlist;
    440 					finishlist = s;
    441 				} else {
    442 					/* look to see if the node is to be
    443 					 * skipped */
    444 					skipNode = RF_FALSE;
    445 					for (j = 0; j < s->numAntecedents; j++)
    446 						if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
    447 							skipNode = RF_TRUE;
    448 					if (skipNode) {
    449 						/* this node has one or more
    450 						 * failed true data
    451 						 * dependencies, so skip it */
    452 						s->next = skiplist;
    453 						skiplist = s;
    454 					} else
    455 						/* add s to list of nodes (q)
    456 						 * to execute */
    457 						if (context != RF_INTR_CONTEXT) {
    458 							/* we only have to
    459 							 * enqueue if we're at
    460 							 * intr context */
    461 							/* put node on
    462                                                            a list to
    463                                                            be fired
    464                                                            after we
    465                                                            unlock */
    466 							s->next = firelist;
    467 							firelist = s;
    468 						} else {
    469 							/* enqueue the
    470 							   node for
    471 							   the dag
    472 							   exec thread
    473 							   to fire */
    474 							RF_ASSERT(NodeReady(s));
    475 							if (q) {
    476 								q->next = s;
    477 								q = s;
    478 							} else {
    479 								qh = q = s;
    480 								qh->next = NULL;
    481 							}
    482 						}
    483 				}
    484 			}
    485 		}
    486 
    487 		if (q) {
    488 			/* xfer our local list of nodes to the node queue */
    489 			q->next = raidPtr->node_queue;
    490 			raidPtr->node_queue = qh;
    491 			DO_SIGNAL(raidPtr);
    492 		}
    493 		DO_UNLOCK(raidPtr);
    494 
    495 		for (; skiplist; skiplist = next) {
    496 			next = skiplist->next;
    497 			skiplist->status = rf_skipped;
    498 			for (i = 0; i < skiplist->numAntecedents; i++) {
    499 				skiplist->antecedents[i]->numSuccFired++;
    500 			}
    501 			if (skiplist->commitNode) {
    502 				skiplist->dagHdr->numCommits++;
    503 			}
    504 			rf_FinishNode(skiplist, context);
    505 		}
    506 		for (; finishlist; finishlist = next) {
    507 			/* NIL nodes: no need to fire them */
    508 			next = finishlist->next;
    509 			finishlist->status = rf_good;
    510 			for (i = 0; i < finishlist->numAntecedents; i++) {
    511 				finishlist->antecedents[i]->numSuccFired++;
    512 			}
    513 			if (finishlist->commitNode)
    514 				finishlist->dagHdr->numCommits++;
    515 			/*
    516 		         * Okay, here we're calling rf_FinishNode() on
    517 		         * nodes that have the null function as their
    518 		         * work proc. Such a node could be the
    519 		         * terminal node in a DAG. If so, it will
    520 		         * cause the DAG to complete, which will in
    521 		         * turn free memory used by the DAG, which
    522 		         * includes the node in question. Thus, we
    523 		         * must avoid referencing the node at all
    524 		         * after calling rf_FinishNode() on it.  */
    525 			rf_FinishNode(finishlist, context);	/* recursive call */
    526 		}
    527 		/* fire all nodes in firelist */
    528 		FireNodeList(firelist);
    529 		break;
    530 
    531 	case rf_rollBackward:
    532 		for (i = 0; i < node->numAntecedents; i++) {
    533 			a = *(node->antecedents + i);
    534 			RF_ASSERT(a->status == rf_good);
    535 			RF_ASSERT(a->numSuccDone <= a->numSuccedents);
    536 			RF_ASSERT(a->numSuccDone <= a->numSuccFired);
    537 
    538 			if (a->numSuccDone == a->numSuccFired) {
    539 				if (a->undoFunc == rf_NullNodeFunc) {
    540 					/* don't fire NIL nodes, just process
    541 					 * them */
    542 					a->next = finishlist;
    543 					finishlist = a;
    544 				} else {
    545 					if (context != RF_INTR_CONTEXT) {
    546 						/* we only have to enqueue if
    547 						 * we're at intr context */
    548 						/* put node on a list to be
    549 						   fired after we unlock */
    550 						a->next = firelist;
    551 
    552 						firelist = a;
    553 					} else {
    554 						/* enqueue the node for the
    555 						   dag exec thread to fire */
    556 						RF_ASSERT(NodeReady(a));
    557 						if (q) {
    558 							q->next = a;
    559 							q = a;
    560 						} else {
    561 							qh = q = a;
    562 							qh->next = NULL;
    563 						}
    564 					}
    565 				}
    566 			}
    567 		}
    568 		if (q) {
    569 			/* xfer our local list of nodes to the node queue */
    570 			q->next = raidPtr->node_queue;
    571 			raidPtr->node_queue = qh;
    572 			DO_SIGNAL(raidPtr);
    573 		}
    574 		DO_UNLOCK(raidPtr);
    575 		for (; finishlist; finishlist = next) {
    576 			/* NIL nodes: no need to fire them */
    577 			next = finishlist->next;
    578 			finishlist->status = rf_good;
    579 			/*
    580 		         * Okay, here we're calling rf_FinishNode() on
    581 		         * nodes that have the null function as their
    582 		         * work proc. Such a node could be the first
    583 		         * node in a DAG. If so, it will cause the DAG
    584 		         * to complete, which will in turn free memory
    585 		         * used by the DAG, which includes the node in
    586 		         * question. Thus, we must avoid referencing
    587 		         * the node at all after calling
    588 		         * rf_FinishNode() on it.  */
    589 			rf_FinishNode(finishlist, context);	/* recursive call */
    590 		}
    591 		/* fire all nodes in firelist */
    592 		FireNodeList(firelist);
    593 
    594 		break;
    595 	default:
    596 		printf("Engine found illegal DAG status in PropagateResults()\n");
    597 		RF_PANIC();
    598 		break;
    599 	}
    600 }
    601 
    602 
    603 
    604 /*
    605  * Process a fired node which has completed
    606  */
    607 static void
    608 ProcessNode(RF_DagNode_t *node, int context)
    609 {
    610 	RF_Raid_t *raidPtr;
    611 
    612 	raidPtr = node->dagHdr->raidPtr;
    613 
    614 	switch (node->status) {
    615 	case rf_good:
    616 		/* normal case, don't need to do anything */
    617 		break;
    618 	case rf_bad:
    619 		if ((node->dagHdr->numCommits > 0) ||
    620 		    (node->dagHdr->numCommitNodes == 0)) {
    621 			/* crossed commit barrier */
    622 			node->dagHdr->status = rf_rollForward;
    623 			if (rf_engineDebug) {
    624 				printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
    625 			}
    626 		} else {
    627 			/* never reached commit barrier */
    628 			node->dagHdr->status = rf_rollBackward;
    629 			if (rf_engineDebug) {
    630 				printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
    631 			}
    632 		}
    633 		break;
    634 	case rf_undone:
    635 		/* normal rollBackward case, don't need to do anything */
    636 		break;
    637 	case rf_panic:
    638 		/* an undo node failed!!! */
    639 		printf("UNDO of a node failed!!!/n");
    640 		break;
    641 	default:
    642 		printf("node finished execution with an illegal status!!!\n");
    643 		RF_PANIC();
    644 		break;
    645 	}
    646 
    647 	/* enqueue node's succedents (antecedents if rollBackward) for
    648 	 * execution */
    649 	PropagateResults(node, context);
    650 }
    651 
    652 
    653 
    654 /* user context or dag-exec-thread context:
    655  * This is the first step in post-processing a newly-completed node.
    656  * This routine is called by each node execution function to mark the node
    657  * as complete and fire off any successors that have been enabled.
    658  */
    659 int
    660 rf_FinishNode(RF_DagNode_t *node, int context)
    661 {
    662 	int     retcode = RF_FALSE;
    663 	node->dagHdr->numNodesCompleted++;
    664 	ProcessNode(node, context);
    665 
    666 	return (retcode);
    667 }
    668 
    669 
    670 /* user context: submit dag for execution, return non-zero if we have
    671  * to wait for completion.  if and only if we return non-zero, we'll
    672  * cause cbFunc to get invoked with cbArg when the DAG has completed.
    673  *
    674  * for now we always return 1.  If the DAG does not cause any I/O,
    675  * then the callback may get invoked before DispatchDAG returns.
    676  * There's code in state 5 of ContinueRaidAccess to handle this.
    677  *
    678  * All we do here is fire the direct successors of the header node.
    679  * The DAG execution thread does the rest of the dag processing.  */
    680 int
    681 rf_DispatchDAG(RF_DagHeader_t *dag, void (*cbFunc) (void *),
    682 	       void *cbArg)
    683 {
    684 	RF_Raid_t *raidPtr;
    685 
    686 	raidPtr = dag->raidPtr;
    687 	if (dag->tracerec) {
    688 		RF_ETIMER_START(dag->tracerec->timer);
    689 	}
    690 #if DEBUG
    691 #if RF_DEBUG_VALIDATE_DAG
    692 	if (rf_engineDebug || rf_validateDAGDebug) {
    693 		if (rf_ValidateDAG(dag))
    694 			RF_PANIC();
    695 	}
    696 #endif
    697 #endif
    698 	if (rf_engineDebug) {
    699 		printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
    700 	}
    701 	raidPtr->dags_in_flight++;	/* debug only:  blow off proper
    702 					 * locking */
    703 	dag->cbFunc = cbFunc;
    704 	dag->cbArg = cbArg;
    705 	dag->numNodesCompleted = 0;
    706 	dag->status = rf_enable;
    707 	FireNodeArray(dag->numSuccedents, dag->succedents);
    708 	return (1);
    709 }
    710 /* dedicated kernel thread: the thread that handles all DAG node
    711  * firing.  To minimize locking and unlocking, we grab a copy of the
    712  * entire node queue and then set the node queue to NULL before doing
    713  * any firing of nodes.  This way we only have to release the lock
    714  * once.  Of course, it's probably rare that there's more than one
    715  * node in the queue at any one time, but it sometimes happens.
    716  */
    717 
    718 static void
    719 DAGExecutionThread(RF_ThreadArg_t arg)
    720 {
    721 	RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
    722 	RF_Raid_t *raidPtr;
    723 	int     ks;
    724 	int     s;
    725 
    726 	raidPtr = (RF_Raid_t *) arg;
    727 
    728 	if (rf_engineDebug) {
    729 		printf("raid%d: Engine thread is running\n", raidPtr->raidid);
    730 	}
    731 
    732 	s = splbio();
    733 
    734 	DO_LOCK(raidPtr);
    735 	while (!raidPtr->shutdown_engine) {
    736 
    737 		while (raidPtr->node_queue != NULL) {
    738 			local_nq = raidPtr->node_queue;
    739 			fire_nq = NULL;
    740 			term_nq = NULL;
    741 			raidPtr->node_queue = NULL;
    742 			DO_UNLOCK(raidPtr);
    743 
    744 			/* first, strip out the terminal nodes */
    745 			while (local_nq) {
    746 				nd = local_nq;
    747 				local_nq = local_nq->next;
    748 				switch (nd->dagHdr->status) {
    749 				case rf_enable:
    750 				case rf_rollForward:
    751 					if (nd->numSuccedents == 0) {
    752 						/* end of the dag, add to
    753 						 * callback list */
    754 						nd->next = term_nq;
    755 						term_nq = nd;
    756 					} else {
    757 						/* not the end, add to the
    758 						 * fire queue */
    759 						nd->next = fire_nq;
    760 						fire_nq = nd;
    761 					}
    762 					break;
    763 				case rf_rollBackward:
    764 					if (nd->numAntecedents == 0) {
    765 						/* end of the dag, add to the
    766 						 * callback list */
    767 						nd->next = term_nq;
    768 						term_nq = nd;
    769 					} else {
    770 						/* not the end, add to the
    771 						 * fire queue */
    772 						nd->next = fire_nq;
    773 						fire_nq = nd;
    774 					}
    775 					break;
    776 				default:
    777 					RF_PANIC();
    778 					break;
    779 				}
    780 			}
    781 
    782 			/* execute callback of dags which have reached the
    783 			 * terminal node */
    784 			while (term_nq) {
    785 				nd = term_nq;
    786 				term_nq = term_nq->next;
    787 				nd->next = NULL;
    788 				(nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
    789 				raidPtr->dags_in_flight--;	/* debug only */
    790 			}
    791 
    792 			/* fire remaining nodes */
    793 			FireNodeList(fire_nq);
    794 
    795 			DO_LOCK(raidPtr);
    796 		}
    797 		while (!raidPtr->shutdown_engine &&
    798 		       raidPtr->node_queue == NULL) {
    799 			DO_WAIT(raidPtr);
    800 		}
    801 	}
    802 	DO_UNLOCK(raidPtr);
    803 
    804 	splx(s);
    805 	kthread_exit(0);
    806 }
    807 
    808 /*
    809  * rf_RaidIOThread() -- When I/O to a component completes,
    810  * KernelWakeupFunc() puts the completed request onto raidPtr->iodone
    811  * TAILQ.  This function looks after requests on that queue by calling
    812  * rf_DiskIOComplete() for the request, and by calling any required
    813  * CompleteFunc for the request.
    814  */
    815 
    816 static void
    817 rf_RaidIOThread(RF_ThreadArg_t arg)
    818 {
    819 	RF_Raid_t *raidPtr;
    820 	RF_DiskQueueData_t *req;
    821 	int s;
    822 
    823 	raidPtr = (RF_Raid_t *) arg;
    824 
    825 	s = splbio();
    826 	simple_lock(&(raidPtr->iodone_lock));
    827 
    828 	while (!raidPtr->shutdown_raidio) {
    829 		/* if there is nothing to do, then snooze. */
    830 		if (TAILQ_EMPTY(&(raidPtr->iodone))) {
    831 			ltsleep(&(raidPtr->iodone), PRIBIO, "raidiow", 0,
    832 				&(raidPtr->iodone_lock));
    833 		}
    834 
    835 		/* See what I/Os, if any, have arrived */
    836 		while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
    837 			TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
    838 			simple_unlock(&(raidPtr->iodone_lock));
    839 			rf_DiskIOComplete(req->queue, req, req->error);
    840 			(req->CompleteFunc) (req->argument, req->error);
    841 			simple_lock(&(raidPtr->iodone_lock));
    842 		}
    843 	}
    844 
    845 	/* Let rf_ShutdownEngine know that we're done... */
    846 	raidPtr->shutdown_raidio = 0;
    847 	wakeup(&(raidPtr->shutdown_raidio));
    848 
    849 	simple_unlock(&(raidPtr->iodone_lock));
    850 	splx(s);
    851 
    852 	kthread_exit(0);
    853 }
    854