Home | History | Annotate | Line # | Download | only in raidframe
rf_engine.c revision 1.36
      1 /*	$NetBSD: rf_engine.c,v 1.36 2005/09/25 19:47:17 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II, Mark Holland, Rachad Youssef
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************
     30  *                                                                          *
     31  * engine.c -- code for DAG execution engine                                *
     32  *                                                                          *
     33  * Modified to work as follows (holland):                                   *
     34  *   A user-thread calls into DispatchDAG, which fires off the nodes that   *
     35  *   are direct successors to the header node.  DispatchDAG then returns,   *
     36  *   and the rest of the I/O continues asynchronously.  As each node        *
     37  *   completes, the node execution function calls FinishNode().  FinishNode *
     38  *   scans the list of successors to the node and increments the antecedent *
     39  *   counts.  Each node that becomes enabled is placed on a central node    *
     40  *   queue.  A dedicated dag-execution thread grabs nodes off of this       *
     41  *   queue and fires them.                                                  *
     42  *                                                                          *
     43  *   NULL nodes are never fired.                                            *
     44  *                                                                          *
     45  *   Terminator nodes are never fired, but rather cause the callback        *
     46  *   associated with the DAG to be invoked.                                 *
     47  *                                                                          *
     48  *   If a node fails, the dag either rolls forward to the completion or     *
     49  *   rolls back, undoing previously-completed nodes and fails atomically.   *
     50  *   The direction of recovery is determined by the location of the failed  *
     51  *   node in the graph.  If the failure occurred before the commit node in   *
     52  *   the graph, backward recovery is used.  Otherwise, forward recovery is  *
     53  *   used.                                                                  *
     54  *                                                                          *
     55  ****************************************************************************/
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.36 2005/09/25 19:47:17 oster Exp $");
     59 
     60 #include <sys/errno.h>
     61 
     62 #include "rf_threadstuff.h"
     63 #include "rf_dag.h"
     64 #include "rf_engine.h"
     65 #include "rf_etimer.h"
     66 #include "rf_general.h"
     67 #include "rf_dagutils.h"
     68 #include "rf_shutdown.h"
     69 #include "rf_raid.h"
     70 #include "rf_kintf.h"
     71 
     72 static void rf_ShutdownEngine(void *);
     73 static void DAGExecutionThread(RF_ThreadArg_t arg);
     74 static void rf_RaidIOThread(RF_ThreadArg_t arg);
     75 
     76 /* synchronization primitives for this file.  DO_WAIT should be enclosed in a while loop. */
     77 
     78 #define DO_LOCK(_r_) \
     79 do { \
     80 	ks = splbio(); \
     81 	RF_LOCK_MUTEX((_r_)->node_queue_mutex); \
     82 } while (0)
     83 
     84 #define DO_UNLOCK(_r_) \
     85 do { \
     86 	RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \
     87 	splx(ks); \
     88 } while (0)
     89 
     90 #define	DO_WAIT(_r_) \
     91 	RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex)
     92 
     93 #define	DO_SIGNAL(_r_) \
     94 	RF_BROADCAST_COND((_r_)->node_queue)	/* XXX RF_SIGNAL_COND? */
     95 
     96 static void
     97 rf_ShutdownEngine(void *arg)
     98 {
     99 	RF_Raid_t *raidPtr;
    100 	int ks;
    101 
    102 	raidPtr = (RF_Raid_t *) arg;
    103 
    104 	/* Tell the rf_RaidIOThread to shutdown */
    105 	simple_lock(&(raidPtr->iodone_lock));
    106 
    107 	raidPtr->shutdown_raidio = 1;
    108 	wakeup(&(raidPtr->iodone));
    109 
    110 	/* ...and wait for it to tell us it has finished */
    111 	while (raidPtr->shutdown_raidio)
    112  		ltsleep(&(raidPtr->shutdown_raidio), PRIBIO, "raidshutdown", 0,
    113 			&(raidPtr->iodone_lock));
    114 
    115 	simple_unlock(&(raidPtr->iodone_lock));
    116 
    117  	/* Now shut down the DAG execution engine. */
    118  	DO_LOCK(raidPtr);
    119   	raidPtr->shutdown_engine = 1;
    120   	DO_SIGNAL(raidPtr);
    121  	DO_UNLOCK(raidPtr);
    122 
    123 }
    124 
    125 int
    126 rf_ConfigureEngine(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
    127 		   RF_Config_t *cfgPtr)
    128 {
    129 
    130 	rf_mutex_init(&raidPtr->node_queue_mutex);
    131 	raidPtr->node_queue = NULL;
    132 	raidPtr->dags_in_flight = 0;
    133 
    134 	/* we create the execution thread only once per system boot. no need
    135 	 * to check return code b/c the kernel panics if it can't create the
    136 	 * thread. */
    137 #if RF_DEBUG_ENGINE
    138 	if (rf_engineDebug) {
    139 		printf("raid%d: Creating engine thread\n", raidPtr->raidid);
    140 	}
    141 #endif
    142 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
    143 				    DAGExecutionThread, raidPtr,
    144 				    "raid%d", raidPtr->raidid)) {
    145 		printf("raid%d: Unable to create engine thread\n",
    146 		       raidPtr->raidid);
    147 		return (ENOMEM);
    148 	}
    149 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
    150 				    rf_RaidIOThread, raidPtr,
    151 				    "raidio%d", raidPtr->raidid)) {
    152 		printf("raid%d: Unable to create raidio thread\n",
    153 		       raidPtr->raidid);
    154 		return (ENOMEM);
    155 	}
    156 #if RF_DEBUG_ENGINE
    157 	if (rf_engineDebug) {
    158 		printf("raid%d: Created engine thread\n", raidPtr->raidid);
    159 	}
    160 #endif
    161 
    162 	/* engine thread is now running and waiting for work */
    163 #if RF_DEBUG_ENGINE
    164 	if (rf_engineDebug) {
    165 		printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
    166 	}
    167 #endif
    168 	rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
    169 
    170 	return (0);
    171 }
    172 
    173 static int
    174 BranchDone(RF_DagNode_t *node)
    175 {
    176 	int     i;
    177 
    178 	/* return true if forward execution is completed for a node and it's
    179 	 * succedents */
    180 	switch (node->status) {
    181 	case rf_wait:
    182 		/* should never be called in this state */
    183 		RF_PANIC();
    184 		break;
    185 	case rf_fired:
    186 		/* node is currently executing, so we're not done */
    187 		return (RF_FALSE);
    188 	case rf_good:
    189 		/* for each succedent recursively check branch */
    190 		for (i = 0; i < node->numSuccedents; i++)
    191 			if (!BranchDone(node->succedents[i]))
    192 				return RF_FALSE;
    193 		return RF_TRUE;	/* node and all succedent branches aren't in
    194 				 * fired state */
    195 	case rf_bad:
    196 		/* succedents can't fire */
    197 		return (RF_TRUE);
    198 	case rf_recover:
    199 		/* should never be called in this state */
    200 		RF_PANIC();
    201 		break;
    202 	case rf_undone:
    203 	case rf_panic:
    204 		/* XXX need to fix this case */
    205 		/* for now, assume that we're done */
    206 		return (RF_TRUE);
    207 	default:
    208 		/* illegal node status */
    209 		RF_PANIC();
    210 		break;
    211 	}
    212 }
    213 
    214 static int
    215 NodeReady(RF_DagNode_t *node)
    216 {
    217 	int     ready;
    218 
    219 	switch (node->dagHdr->status) {
    220 	case rf_enable:
    221 	case rf_rollForward:
    222 		if ((node->status == rf_wait) &&
    223 		    (node->numAntecedents == node->numAntDone))
    224 			ready = RF_TRUE;
    225 		else
    226 			ready = RF_FALSE;
    227 		break;
    228 	case rf_rollBackward:
    229 		RF_ASSERT(node->numSuccDone <= node->numSuccedents);
    230 		RF_ASSERT(node->numSuccFired <= node->numSuccedents);
    231 		RF_ASSERT(node->numSuccFired <= node->numSuccDone);
    232 		if ((node->status == rf_good) &&
    233 		    (node->numSuccDone == node->numSuccedents))
    234 			ready = RF_TRUE;
    235 		else
    236 			ready = RF_FALSE;
    237 		break;
    238 	default:
    239 		printf("Execution engine found illegal DAG status in NodeReady\n");
    240 		RF_PANIC();
    241 		break;
    242 	}
    243 
    244 	return (ready);
    245 }
    246 
    247 
    248 
    249 /* user context and dag-exec-thread context: Fire a node.  The node's
    250  * status field determines which function, do or undo, to be fired.
    251  * This routine assumes that the node's status field has alread been
    252  * set to "fired" or "recover" to indicate the direction of execution.
    253  */
    254 static void
    255 FireNode(RF_DagNode_t *node)
    256 {
    257 	switch (node->status) {
    258 	case rf_fired:
    259 		/* fire the do function of a node */
    260 #if RF_DEBUG_ENGINE
    261 		if (rf_engineDebug) {
    262 			printf("raid%d: Firing node 0x%lx (%s)\n",
    263 			       node->dagHdr->raidPtr->raidid,
    264 			       (unsigned long) node, node->name);
    265 		}
    266 #endif
    267 		if (node->flags & RF_DAGNODE_FLAG_YIELD) {
    268 #if defined(__NetBSD__) && defined(_KERNEL)
    269 			/* thread_block(); */
    270 			/* printf("Need to block the thread here...\n");  */
    271 			/* XXX thread_block is actually mentioned in
    272 			 * /usr/include/vm/vm_extern.h */
    273 #else
    274 			thread_block();
    275 #endif
    276 		}
    277 		(*(node->doFunc)) (node);
    278 		break;
    279 	case rf_recover:
    280 		/* fire the undo function of a node */
    281 #if RF_DEBUG_ENGINE
    282 		if (rf_engineDebug) {
    283 			printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
    284 			       node->dagHdr->raidPtr->raidid,
    285 			       (unsigned long) node, node->name);
    286 		}
    287 #endif
    288 		if (node->flags & RF_DAGNODE_FLAG_YIELD)
    289 #if defined(__NetBSD__) && defined(_KERNEL)
    290 			/* thread_block(); */
    291 			/* printf("Need to block the thread here...\n"); */
    292 			/* XXX thread_block is actually mentioned in
    293 			 * /usr/include/vm/vm_extern.h */
    294 #else
    295 			thread_block();
    296 #endif
    297 		(*(node->undoFunc)) (node);
    298 		break;
    299 	default:
    300 		RF_PANIC();
    301 		break;
    302 	}
    303 }
    304 
    305 
    306 
    307 /* user context:
    308  * Attempt to fire each node in a linear array.
    309  * The entire list is fired atomically.
    310  */
    311 static void
    312 FireNodeArray(int numNodes, RF_DagNode_t **nodeList)
    313 {
    314 	RF_DagStatus_t dstat;
    315 	RF_DagNode_t *node;
    316 	int     i, j;
    317 
    318 	/* first, mark all nodes which are ready to be fired */
    319 	for (i = 0; i < numNodes; i++) {
    320 		node = nodeList[i];
    321 		dstat = node->dagHdr->status;
    322 		RF_ASSERT((node->status == rf_wait) ||
    323 			  (node->status == rf_good));
    324 		if (NodeReady(node)) {
    325 			if ((dstat == rf_enable) ||
    326 			    (dstat == rf_rollForward)) {
    327 				RF_ASSERT(node->status == rf_wait);
    328 				if (node->commitNode)
    329 					node->dagHdr->numCommits++;
    330 				node->status = rf_fired;
    331 				for (j = 0; j < node->numAntecedents; j++)
    332 					node->antecedents[j]->numSuccFired++;
    333 			} else {
    334 				RF_ASSERT(dstat == rf_rollBackward);
    335 				RF_ASSERT(node->status == rf_good);
    336 				/* only one commit node per graph */
    337 				RF_ASSERT(node->commitNode == RF_FALSE);
    338 				node->status = rf_recover;
    339 			}
    340 		}
    341 	}
    342 	/* now, fire the nodes */
    343 	for (i = 0; i < numNodes; i++) {
    344 		if ((nodeList[i]->status == rf_fired) ||
    345 		    (nodeList[i]->status == rf_recover))
    346 			FireNode(nodeList[i]);
    347 	}
    348 }
    349 
    350 
    351 /* user context:
    352  * Attempt to fire each node in a linked list.
    353  * The entire list is fired atomically.
    354  */
    355 static void
    356 FireNodeList(RF_DagNode_t *nodeList)
    357 {
    358 	RF_DagNode_t *node, *next;
    359 	RF_DagStatus_t dstat;
    360 	int     j;
    361 
    362 	if (nodeList) {
    363 		/* first, mark all nodes which are ready to be fired */
    364 		for (node = nodeList; node; node = next) {
    365 			next = node->next;
    366 			dstat = node->dagHdr->status;
    367 			RF_ASSERT((node->status == rf_wait) ||
    368 				  (node->status == rf_good));
    369 			if (NodeReady(node)) {
    370 				if ((dstat == rf_enable) ||
    371 				    (dstat == rf_rollForward)) {
    372 					RF_ASSERT(node->status == rf_wait);
    373 					if (node->commitNode)
    374 						node->dagHdr->numCommits++;
    375 					node->status = rf_fired;
    376 					for (j = 0; j < node->numAntecedents; j++)
    377 						node->antecedents[j]->numSuccFired++;
    378 				} else {
    379 					RF_ASSERT(dstat == rf_rollBackward);
    380 					RF_ASSERT(node->status == rf_good);
    381 					/* only one commit node per graph */
    382 					RF_ASSERT(node->commitNode == RF_FALSE);
    383 					node->status = rf_recover;
    384 				}
    385 			}
    386 		}
    387 		/* now, fire the nodes */
    388 		for (node = nodeList; node; node = next) {
    389 			next = node->next;
    390 			if ((node->status == rf_fired) ||
    391 			    (node->status == rf_recover))
    392 				FireNode(node);
    393 		}
    394 	}
    395 }
    396 /* interrupt context:
    397  * for each succedent
    398  *    propagate required results from node to succedent
    399  *    increment succedent's numAntDone
    400  *    place newly-enable nodes on node queue for firing
    401  *
    402  * To save context switches, we don't place NIL nodes on the node queue,
    403  * but rather just process them as if they had fired.  Note that NIL nodes
    404  * that are the direct successors of the header will actually get fired by
    405  * DispatchDAG, which is fine because no context switches are involved.
    406  *
    407  * Important:  when running at user level, this can be called by any
    408  * disk thread, and so the increment and check of the antecedent count
    409  * must be locked.  I used the node queue mutex and locked down the
    410  * entire function, but this is certainly overkill.
    411  */
    412 static void
    413 PropagateResults(RF_DagNode_t *node, int context)
    414 {
    415 	RF_DagNode_t *s, *a;
    416 	RF_Raid_t *raidPtr;
    417 	int     i, ks;
    418 	RF_DagNode_t *finishlist = NULL;	/* a list of NIL nodes to be
    419 						 * finished */
    420 	RF_DagNode_t *skiplist = NULL;	/* list of nodes with failed truedata
    421 					 * antecedents */
    422 	RF_DagNode_t *firelist = NULL;	/* a list of nodes to be fired */
    423 	RF_DagNode_t *q = NULL, *qh = NULL, *next;
    424 	int     j, skipNode;
    425 
    426 	raidPtr = node->dagHdr->raidPtr;
    427 
    428 	DO_LOCK(raidPtr);
    429 
    430 	/* debug - validate fire counts */
    431 	for (i = 0; i < node->numAntecedents; i++) {
    432 		a = *(node->antecedents + i);
    433 		RF_ASSERT(a->numSuccFired >= a->numSuccDone);
    434 		RF_ASSERT(a->numSuccFired <= a->numSuccedents);
    435 		a->numSuccDone++;
    436 	}
    437 
    438 	switch (node->dagHdr->status) {
    439 	case rf_enable:
    440 	case rf_rollForward:
    441 		for (i = 0; i < node->numSuccedents; i++) {
    442 			s = *(node->succedents + i);
    443 			RF_ASSERT(s->status == rf_wait);
    444 			(s->numAntDone)++;
    445 			if (s->numAntDone == s->numAntecedents) {
    446 				/* look for NIL nodes */
    447 				if (s->doFunc == rf_NullNodeFunc) {
    448 					/* don't fire NIL nodes, just process
    449 					 * them */
    450 					s->next = finishlist;
    451 					finishlist = s;
    452 				} else {
    453 					/* look to see if the node is to be
    454 					 * skipped */
    455 					skipNode = RF_FALSE;
    456 					for (j = 0; j < s->numAntecedents; j++)
    457 						if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
    458 							skipNode = RF_TRUE;
    459 					if (skipNode) {
    460 						/* this node has one or more
    461 						 * failed true data
    462 						 * dependencies, so skip it */
    463 						s->next = skiplist;
    464 						skiplist = s;
    465 					} else
    466 						/* add s to list of nodes (q)
    467 						 * to execute */
    468 						if (context != RF_INTR_CONTEXT) {
    469 							/* we only have to
    470 							 * enqueue if we're at
    471 							 * intr context */
    472 							/* put node on
    473                                                            a list to
    474                                                            be fired
    475                                                            after we
    476                                                            unlock */
    477 							s->next = firelist;
    478 							firelist = s;
    479 						} else {
    480 							/* enqueue the
    481 							   node for
    482 							   the dag
    483 							   exec thread
    484 							   to fire */
    485 							RF_ASSERT(NodeReady(s));
    486 							if (q) {
    487 								q->next = s;
    488 								q = s;
    489 							} else {
    490 								qh = q = s;
    491 								qh->next = NULL;
    492 							}
    493 						}
    494 				}
    495 			}
    496 		}
    497 
    498 		if (q) {
    499 			/* xfer our local list of nodes to the node queue */
    500 			q->next = raidPtr->node_queue;
    501 			raidPtr->node_queue = qh;
    502 			DO_SIGNAL(raidPtr);
    503 		}
    504 		DO_UNLOCK(raidPtr);
    505 
    506 		for (; skiplist; skiplist = next) {
    507 			next = skiplist->next;
    508 			skiplist->status = rf_skipped;
    509 			for (i = 0; i < skiplist->numAntecedents; i++) {
    510 				skiplist->antecedents[i]->numSuccFired++;
    511 			}
    512 			if (skiplist->commitNode) {
    513 				skiplist->dagHdr->numCommits++;
    514 			}
    515 			rf_FinishNode(skiplist, context);
    516 		}
    517 		for (; finishlist; finishlist = next) {
    518 			/* NIL nodes: no need to fire them */
    519 			next = finishlist->next;
    520 			finishlist->status = rf_good;
    521 			for (i = 0; i < finishlist->numAntecedents; i++) {
    522 				finishlist->antecedents[i]->numSuccFired++;
    523 			}
    524 			if (finishlist->commitNode)
    525 				finishlist->dagHdr->numCommits++;
    526 			/*
    527 		         * Okay, here we're calling rf_FinishNode() on
    528 		         * nodes that have the null function as their
    529 		         * work proc. Such a node could be the
    530 		         * terminal node in a DAG. If so, it will
    531 		         * cause the DAG to complete, which will in
    532 		         * turn free memory used by the DAG, which
    533 		         * includes the node in question. Thus, we
    534 		         * must avoid referencing the node at all
    535 		         * after calling rf_FinishNode() on it.  */
    536 			rf_FinishNode(finishlist, context);	/* recursive call */
    537 		}
    538 		/* fire all nodes in firelist */
    539 		FireNodeList(firelist);
    540 		break;
    541 
    542 	case rf_rollBackward:
    543 		for (i = 0; i < node->numAntecedents; i++) {
    544 			a = *(node->antecedents + i);
    545 			RF_ASSERT(a->status == rf_good);
    546 			RF_ASSERT(a->numSuccDone <= a->numSuccedents);
    547 			RF_ASSERT(a->numSuccDone <= a->numSuccFired);
    548 
    549 			if (a->numSuccDone == a->numSuccFired) {
    550 				if (a->undoFunc == rf_NullNodeFunc) {
    551 					/* don't fire NIL nodes, just process
    552 					 * them */
    553 					a->next = finishlist;
    554 					finishlist = a;
    555 				} else {
    556 					if (context != RF_INTR_CONTEXT) {
    557 						/* we only have to enqueue if
    558 						 * we're at intr context */
    559 						/* put node on a list to be
    560 						   fired after we unlock */
    561 						a->next = firelist;
    562 
    563 						firelist = a;
    564 					} else {
    565 						/* enqueue the node for the
    566 						   dag exec thread to fire */
    567 						RF_ASSERT(NodeReady(a));
    568 						if (q) {
    569 							q->next = a;
    570 							q = a;
    571 						} else {
    572 							qh = q = a;
    573 							qh->next = NULL;
    574 						}
    575 					}
    576 				}
    577 			}
    578 		}
    579 		if (q) {
    580 			/* xfer our local list of nodes to the node queue */
    581 			q->next = raidPtr->node_queue;
    582 			raidPtr->node_queue = qh;
    583 			DO_SIGNAL(raidPtr);
    584 		}
    585 		DO_UNLOCK(raidPtr);
    586 		for (; finishlist; finishlist = next) {
    587 			/* NIL nodes: no need to fire them */
    588 			next = finishlist->next;
    589 			finishlist->status = rf_good;
    590 			/*
    591 		         * Okay, here we're calling rf_FinishNode() on
    592 		         * nodes that have the null function as their
    593 		         * work proc. Such a node could be the first
    594 		         * node in a DAG. If so, it will cause the DAG
    595 		         * to complete, which will in turn free memory
    596 		         * used by the DAG, which includes the node in
    597 		         * question. Thus, we must avoid referencing
    598 		         * the node at all after calling
    599 		         * rf_FinishNode() on it.  */
    600 			rf_FinishNode(finishlist, context);	/* recursive call */
    601 		}
    602 		/* fire all nodes in firelist */
    603 		FireNodeList(firelist);
    604 
    605 		break;
    606 	default:
    607 		printf("Engine found illegal DAG status in PropagateResults()\n");
    608 		RF_PANIC();
    609 		break;
    610 	}
    611 }
    612 
    613 
    614 
    615 /*
    616  * Process a fired node which has completed
    617  */
    618 static void
    619 ProcessNode(RF_DagNode_t *node, int context)
    620 {
    621 	RF_Raid_t *raidPtr;
    622 
    623 	raidPtr = node->dagHdr->raidPtr;
    624 
    625 	switch (node->status) {
    626 	case rf_good:
    627 		/* normal case, don't need to do anything */
    628 		break;
    629 	case rf_bad:
    630 		if ((node->dagHdr->numCommits > 0) ||
    631 		    (node->dagHdr->numCommitNodes == 0)) {
    632 			/* crossed commit barrier */
    633 			node->dagHdr->status = rf_rollForward;
    634 #if RF_DEBUG_ENGINE
    635 			if (rf_engineDebug) {
    636 				printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
    637 			}
    638 #endif
    639 		} else {
    640 			/* never reached commit barrier */
    641 			node->dagHdr->status = rf_rollBackward;
    642 #if RF_DEBUG_ENGINE
    643 			if (rf_engineDebug) {
    644 				printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
    645 			}
    646 #endif
    647 		}
    648 		break;
    649 	case rf_undone:
    650 		/* normal rollBackward case, don't need to do anything */
    651 		break;
    652 	case rf_panic:
    653 		/* an undo node failed!!! */
    654 		printf("UNDO of a node failed!!!/n");
    655 		break;
    656 	default:
    657 		printf("node finished execution with an illegal status!!!\n");
    658 		RF_PANIC();
    659 		break;
    660 	}
    661 
    662 	/* enqueue node's succedents (antecedents if rollBackward) for
    663 	 * execution */
    664 	PropagateResults(node, context);
    665 }
    666 
    667 
    668 
    669 /* user context or dag-exec-thread context:
    670  * This is the first step in post-processing a newly-completed node.
    671  * This routine is called by each node execution function to mark the node
    672  * as complete and fire off any successors that have been enabled.
    673  */
    674 int
    675 rf_FinishNode(RF_DagNode_t *node, int context)
    676 {
    677 	int     retcode = RF_FALSE;
    678 	node->dagHdr->numNodesCompleted++;
    679 	ProcessNode(node, context);
    680 
    681 	return (retcode);
    682 }
    683 
    684 
    685 /* user context: submit dag for execution, return non-zero if we have
    686  * to wait for completion.  if and only if we return non-zero, we'll
    687  * cause cbFunc to get invoked with cbArg when the DAG has completed.
    688  *
    689  * for now we always return 1.  If the DAG does not cause any I/O,
    690  * then the callback may get invoked before DispatchDAG returns.
    691  * There's code in state 5 of ContinueRaidAccess to handle this.
    692  *
    693  * All we do here is fire the direct successors of the header node.
    694  * The DAG execution thread does the rest of the dag processing.  */
    695 int
    696 rf_DispatchDAG(RF_DagHeader_t *dag, void (*cbFunc) (void *),
    697 	       void *cbArg)
    698 {
    699 	RF_Raid_t *raidPtr;
    700 
    701 	raidPtr = dag->raidPtr;
    702 #if RF_ACC_TRACE > 0
    703 	if (dag->tracerec) {
    704 		RF_ETIMER_START(dag->tracerec->timer);
    705 	}
    706 #endif
    707 #if DEBUG
    708 #if RF_DEBUG_VALIDATE_DAG
    709 	if (rf_engineDebug || rf_validateDAGDebug) {
    710 		if (rf_ValidateDAG(dag))
    711 			RF_PANIC();
    712 	}
    713 #endif
    714 #endif
    715 #if RF_DEBUG_ENGINE
    716 	if (rf_engineDebug) {
    717 		printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
    718 	}
    719 #endif
    720 	raidPtr->dags_in_flight++;	/* debug only:  blow off proper
    721 					 * locking */
    722 	dag->cbFunc = cbFunc;
    723 	dag->cbArg = cbArg;
    724 	dag->numNodesCompleted = 0;
    725 	dag->status = rf_enable;
    726 	FireNodeArray(dag->numSuccedents, dag->succedents);
    727 	return (1);
    728 }
    729 /* dedicated kernel thread: the thread that handles all DAG node
    730  * firing.  To minimize locking and unlocking, we grab a copy of the
    731  * entire node queue and then set the node queue to NULL before doing
    732  * any firing of nodes.  This way we only have to release the lock
    733  * once.  Of course, it's probably rare that there's more than one
    734  * node in the queue at any one time, but it sometimes happens.
    735  */
    736 
    737 static void
    738 DAGExecutionThread(RF_ThreadArg_t arg)
    739 {
    740 	RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
    741 	RF_Raid_t *raidPtr;
    742 	int     ks;
    743 	int     s;
    744 
    745 	raidPtr = (RF_Raid_t *) arg;
    746 
    747 #if RF_DEBUG_ENGINE
    748 	if (rf_engineDebug) {
    749 		printf("raid%d: Engine thread is running\n", raidPtr->raidid);
    750 	}
    751 #endif
    752 	s = splbio();
    753 
    754 	DO_LOCK(raidPtr);
    755 	while (!raidPtr->shutdown_engine) {
    756 
    757 		while (raidPtr->node_queue != NULL) {
    758 			local_nq = raidPtr->node_queue;
    759 			fire_nq = NULL;
    760 			term_nq = NULL;
    761 			raidPtr->node_queue = NULL;
    762 			DO_UNLOCK(raidPtr);
    763 
    764 			/* first, strip out the terminal nodes */
    765 			while (local_nq) {
    766 				nd = local_nq;
    767 				local_nq = local_nq->next;
    768 				switch (nd->dagHdr->status) {
    769 				case rf_enable:
    770 				case rf_rollForward:
    771 					if (nd->numSuccedents == 0) {
    772 						/* end of the dag, add to
    773 						 * callback list */
    774 						nd->next = term_nq;
    775 						term_nq = nd;
    776 					} else {
    777 						/* not the end, add to the
    778 						 * fire queue */
    779 						nd->next = fire_nq;
    780 						fire_nq = nd;
    781 					}
    782 					break;
    783 				case rf_rollBackward:
    784 					if (nd->numAntecedents == 0) {
    785 						/* end of the dag, add to the
    786 						 * callback list */
    787 						nd->next = term_nq;
    788 						term_nq = nd;
    789 					} else {
    790 						/* not the end, add to the
    791 						 * fire queue */
    792 						nd->next = fire_nq;
    793 						fire_nq = nd;
    794 					}
    795 					break;
    796 				default:
    797 					RF_PANIC();
    798 					break;
    799 				}
    800 			}
    801 
    802 			/* execute callback of dags which have reached the
    803 			 * terminal node */
    804 			while (term_nq) {
    805 				nd = term_nq;
    806 				term_nq = term_nq->next;
    807 				nd->next = NULL;
    808 				(nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
    809 				raidPtr->dags_in_flight--;	/* debug only */
    810 			}
    811 
    812 			/* fire remaining nodes */
    813 			FireNodeList(fire_nq);
    814 
    815 			DO_LOCK(raidPtr);
    816 		}
    817 		while (!raidPtr->shutdown_engine &&
    818 		       raidPtr->node_queue == NULL) {
    819 			DO_WAIT(raidPtr);
    820 		}
    821 	}
    822 	DO_UNLOCK(raidPtr);
    823 
    824 	splx(s);
    825 	kthread_exit(0);
    826 }
    827 
    828 /*
    829  * rf_RaidIOThread() -- When I/O to a component begins, raidstrategy()
    830  * puts the I/O on a buf_queue, and then signals raidPtr->iodone.  If
    831  * necessary, this function calls raidstart() to initiate the I/O.
    832  * When I/O to a component completes, KernelWakeupFunc() puts the
    833  * completed request onto raidPtr->iodone TAILQ.  This function looks
    834  * after requests on that queue by calling rf_DiskIOComplete() for the
    835  * request, and by calling any required CompleteFunc for the request.
    836  */
    837 
    838 static void
    839 rf_RaidIOThread(RF_ThreadArg_t arg)
    840 {
    841 	RF_Raid_t *raidPtr;
    842 	RF_DiskQueueData_t *req;
    843 	int s;
    844 
    845 	raidPtr = (RF_Raid_t *) arg;
    846 
    847 	s = splbio();
    848 	simple_lock(&(raidPtr->iodone_lock));
    849 
    850 	while (!raidPtr->shutdown_raidio) {
    851 		/* if there is nothing to do, then snooze. */
    852 		if (TAILQ_EMPTY(&(raidPtr->iodone)) &&
    853 		    rf_buf_queue_check(raidPtr->raidid)) {
    854 			ltsleep(&(raidPtr->iodone), PRIBIO, "raidiow", 0,
    855 				&(raidPtr->iodone_lock));
    856 		}
    857 
    858 		/* See what I/Os, if any, have arrived */
    859 		while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
    860 			TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
    861 			simple_unlock(&(raidPtr->iodone_lock));
    862 			rf_DiskIOComplete(req->queue, req, req->error);
    863 			(req->CompleteFunc) (req->argument, req->error);
    864 			simple_lock(&(raidPtr->iodone_lock));
    865 		}
    866 
    867 		/* process any pending outgoing IO */
    868 		simple_unlock(&(raidPtr->iodone_lock));
    869 		raidstart(raidPtr);
    870 		simple_lock(&(raidPtr->iodone_lock));
    871 
    872 	}
    873 
    874 	/* Let rf_ShutdownEngine know that we're done... */
    875 	raidPtr->shutdown_raidio = 0;
    876 	wakeup(&(raidPtr->shutdown_raidio));
    877 
    878 	simple_unlock(&(raidPtr->iodone_lock));
    879 	splx(s);
    880 
    881 	kthread_exit(0);
    882 }
    883