rf_engine.c revision 1.37.20.1 1 /* $NetBSD: rf_engine.c,v 1.37.20.1 2006/11/18 21:34:46 ad Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II, Mark Holland, Rachad Youssef
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /****************************************************************************
30 * *
31 * engine.c -- code for DAG execution engine *
32 * *
33 * Modified to work as follows (holland): *
34 * A user-thread calls into DispatchDAG, which fires off the nodes that *
35 * are direct successors to the header node. DispatchDAG then returns, *
36 * and the rest of the I/O continues asynchronously. As each node *
37 * completes, the node execution function calls FinishNode(). FinishNode *
38 * scans the list of successors to the node and increments the antecedent *
39 * counts. Each node that becomes enabled is placed on a central node *
40 * queue. A dedicated dag-execution thread grabs nodes off of this *
41 * queue and fires them. *
42 * *
43 * NULL nodes are never fired. *
44 * *
45 * Terminator nodes are never fired, but rather cause the callback *
46 * associated with the DAG to be invoked. *
47 * *
48 * If a node fails, the dag either rolls forward to the completion or *
49 * rolls back, undoing previously-completed nodes and fails atomically. *
50 * The direction of recovery is determined by the location of the failed *
51 * node in the graph. If the failure occurred before the commit node in *
52 * the graph, backward recovery is used. Otherwise, forward recovery is *
53 * used. *
54 * *
55 ****************************************************************************/
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.37.20.1 2006/11/18 21:34:46 ad Exp $");
59
60 #include <sys/errno.h>
61
62 #include "rf_threadstuff.h"
63 #include "rf_dag.h"
64 #include "rf_engine.h"
65 #include "rf_etimer.h"
66 #include "rf_general.h"
67 #include "rf_dagutils.h"
68 #include "rf_shutdown.h"
69 #include "rf_raid.h"
70 #include "rf_kintf.h"
71
72 static void rf_ShutdownEngine(void *);
73 static void DAGExecutionThread(RF_ThreadArg_t arg);
74 static void rf_RaidIOThread(RF_ThreadArg_t arg);
75
76 /* synchronization primitives for this file. DO_WAIT should be enclosed in a while loop. */
77
78 #define DO_LOCK(_r_) \
79 do { \
80 ks = splbio(); \
81 RF_LOCK_MUTEX((_r_)->node_queue_mutex); \
82 } while (0)
83
84 #define DO_UNLOCK(_r_) \
85 do { \
86 RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \
87 splx(ks); \
88 } while (0)
89
90 #define DO_WAIT(_r_) \
91 RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex)
92
93 #define DO_SIGNAL(_r_) \
94 RF_BROADCAST_COND((_r_)->node_queue) /* XXX RF_SIGNAL_COND? */
95
96 static void
97 rf_ShutdownEngine(void *arg)
98 {
99 RF_Raid_t *raidPtr;
100 int ks;
101
102 raidPtr = (RF_Raid_t *) arg;
103
104 /* Tell the rf_RaidIOThread to shutdown */
105 simple_lock(&(raidPtr->iodone_lock));
106
107 raidPtr->shutdown_raidio = 1;
108 wakeup(&(raidPtr->iodone));
109
110 /* ...and wait for it to tell us it has finished */
111 while (raidPtr->shutdown_raidio)
112 ltsleep(&(raidPtr->shutdown_raidio), PRIBIO, "raidshutdown", 0,
113 &(raidPtr->iodone_lock));
114
115 simple_unlock(&(raidPtr->iodone_lock));
116
117 /* Now shut down the DAG execution engine. */
118 DO_LOCK(raidPtr);
119 raidPtr->shutdown_engine = 1;
120 DO_SIGNAL(raidPtr);
121 DO_UNLOCK(raidPtr);
122
123 }
124
125 int
126 rf_ConfigureEngine(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
127 RF_Config_t *cfgPtr)
128 {
129
130 rf_mutex_init(&raidPtr->node_queue_mutex);
131 raidPtr->node_queue = NULL;
132 raidPtr->dags_in_flight = 0;
133
134 /* we create the execution thread only once per system boot. no need
135 * to check return code b/c the kernel panics if it can't create the
136 * thread. */
137 #if RF_DEBUG_ENGINE
138 if (rf_engineDebug) {
139 printf("raid%d: Creating engine thread\n", raidPtr->raidid);
140 }
141 #endif
142 if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
143 DAGExecutionThread, raidPtr,
144 "raid%d", raidPtr->raidid)) {
145 printf("raid%d: Unable to create engine thread\n",
146 raidPtr->raidid);
147 return (ENOMEM);
148 }
149 if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
150 rf_RaidIOThread, raidPtr,
151 "raidio%d", raidPtr->raidid)) {
152 printf("raid%d: Unable to create raidio thread\n",
153 raidPtr->raidid);
154 return (ENOMEM);
155 }
156 #if RF_DEBUG_ENGINE
157 if (rf_engineDebug) {
158 printf("raid%d: Created engine thread\n", raidPtr->raidid);
159 }
160 #endif
161
162 /* engine thread is now running and waiting for work */
163 #if RF_DEBUG_ENGINE
164 if (rf_engineDebug) {
165 printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
166 }
167 #endif
168 rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
169
170 return (0);
171 }
172
173 static int
174 BranchDone(RF_DagNode_t *node)
175 {
176 int i;
177
178 /* return true if forward execution is completed for a node and it's
179 * succedents */
180 switch (node->status) {
181 case rf_wait:
182 /* should never be called in this state */
183 RF_PANIC();
184 break;
185 case rf_fired:
186 /* node is currently executing, so we're not done */
187 return (RF_FALSE);
188 case rf_good:
189 /* for each succedent recursively check branch */
190 for (i = 0; i < node->numSuccedents; i++)
191 if (!BranchDone(node->succedents[i]))
192 return RF_FALSE;
193 return RF_TRUE; /* node and all succedent branches aren't in
194 * fired state */
195 case rf_bad:
196 /* succedents can't fire */
197 return (RF_TRUE);
198 case rf_recover:
199 /* should never be called in this state */
200 RF_PANIC();
201 break;
202 case rf_undone:
203 case rf_panic:
204 /* XXX need to fix this case */
205 /* for now, assume that we're done */
206 return (RF_TRUE);
207 default:
208 /* illegal node status */
209 RF_PANIC();
210 break;
211 }
212 }
213
214 static int
215 NodeReady(RF_DagNode_t *node)
216 {
217 int ready;
218
219 switch (node->dagHdr->status) {
220 case rf_enable:
221 case rf_rollForward:
222 if ((node->status == rf_wait) &&
223 (node->numAntecedents == node->numAntDone))
224 ready = RF_TRUE;
225 else
226 ready = RF_FALSE;
227 break;
228 case rf_rollBackward:
229 RF_ASSERT(node->numSuccDone <= node->numSuccedents);
230 RF_ASSERT(node->numSuccFired <= node->numSuccedents);
231 RF_ASSERT(node->numSuccFired <= node->numSuccDone);
232 if ((node->status == rf_good) &&
233 (node->numSuccDone == node->numSuccedents))
234 ready = RF_TRUE;
235 else
236 ready = RF_FALSE;
237 break;
238 default:
239 printf("Execution engine found illegal DAG status in NodeReady\n");
240 RF_PANIC();
241 break;
242 }
243
244 return (ready);
245 }
246
247
248
249 /* user context and dag-exec-thread context: Fire a node. The node's
250 * status field determines which function, do or undo, to be fired.
251 * This routine assumes that the node's status field has alread been
252 * set to "fired" or "recover" to indicate the direction of execution.
253 */
254 static void
255 FireNode(RF_DagNode_t *node)
256 {
257 switch (node->status) {
258 case rf_fired:
259 /* fire the do function of a node */
260 #if RF_DEBUG_ENGINE
261 if (rf_engineDebug) {
262 printf("raid%d: Firing node 0x%lx (%s)\n",
263 node->dagHdr->raidPtr->raidid,
264 (unsigned long) node, node->name);
265 }
266 #endif
267 if (node->flags & RF_DAGNODE_FLAG_YIELD) {
268 #if defined(__NetBSD__) && defined(_KERNEL)
269 /* thread_block(); */
270 /* printf("Need to block the thread here...\n"); */
271 /* XXX thread_block is actually mentioned in
272 * /usr/include/vm/vm_extern.h */
273 #else
274 thread_block();
275 #endif
276 }
277 (*(node->doFunc)) (node);
278 break;
279 case rf_recover:
280 /* fire the undo function of a node */
281 #if RF_DEBUG_ENGINE
282 if (rf_engineDebug) {
283 printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
284 node->dagHdr->raidPtr->raidid,
285 (unsigned long) node, node->name);
286 }
287 #endif
288 if (node->flags & RF_DAGNODE_FLAG_YIELD)
289 #if defined(__NetBSD__) && defined(_KERNEL)
290 /* thread_block(); */
291 /* printf("Need to block the thread here...\n"); */
292 /* XXX thread_block is actually mentioned in
293 * /usr/include/vm/vm_extern.h */
294 #else
295 thread_block();
296 #endif
297 (*(node->undoFunc)) (node);
298 break;
299 default:
300 RF_PANIC();
301 break;
302 }
303 }
304
305
306
307 /* user context:
308 * Attempt to fire each node in a linear array.
309 * The entire list is fired atomically.
310 */
311 static void
312 FireNodeArray(int numNodes, RF_DagNode_t **nodeList)
313 {
314 RF_DagStatus_t dstat;
315 RF_DagNode_t *node;
316 int i, j;
317
318 /* first, mark all nodes which are ready to be fired */
319 for (i = 0; i < numNodes; i++) {
320 node = nodeList[i];
321 dstat = node->dagHdr->status;
322 RF_ASSERT((node->status == rf_wait) ||
323 (node->status == rf_good));
324 if (NodeReady(node)) {
325 if ((dstat == rf_enable) ||
326 (dstat == rf_rollForward)) {
327 RF_ASSERT(node->status == rf_wait);
328 if (node->commitNode)
329 node->dagHdr->numCommits++;
330 node->status = rf_fired;
331 for (j = 0; j < node->numAntecedents; j++)
332 node->antecedents[j]->numSuccFired++;
333 } else {
334 RF_ASSERT(dstat == rf_rollBackward);
335 RF_ASSERT(node->status == rf_good);
336 /* only one commit node per graph */
337 RF_ASSERT(node->commitNode == RF_FALSE);
338 node->status = rf_recover;
339 }
340 }
341 }
342 /* now, fire the nodes */
343 for (i = 0; i < numNodes; i++) {
344 if ((nodeList[i]->status == rf_fired) ||
345 (nodeList[i]->status == rf_recover))
346 FireNode(nodeList[i]);
347 }
348 }
349
350
351 /* user context:
352 * Attempt to fire each node in a linked list.
353 * The entire list is fired atomically.
354 */
355 static void
356 FireNodeList(RF_DagNode_t *nodeList)
357 {
358 RF_DagNode_t *node, *next;
359 RF_DagStatus_t dstat;
360 int j;
361
362 if (nodeList) {
363 /* first, mark all nodes which are ready to be fired */
364 for (node = nodeList; node; node = next) {
365 next = node->next;
366 dstat = node->dagHdr->status;
367 RF_ASSERT((node->status == rf_wait) ||
368 (node->status == rf_good));
369 if (NodeReady(node)) {
370 if ((dstat == rf_enable) ||
371 (dstat == rf_rollForward)) {
372 RF_ASSERT(node->status == rf_wait);
373 if (node->commitNode)
374 node->dagHdr->numCommits++;
375 node->status = rf_fired;
376 for (j = 0; j < node->numAntecedents; j++)
377 node->antecedents[j]->numSuccFired++;
378 } else {
379 RF_ASSERT(dstat == rf_rollBackward);
380 RF_ASSERT(node->status == rf_good);
381 /* only one commit node per graph */
382 RF_ASSERT(node->commitNode == RF_FALSE);
383 node->status = rf_recover;
384 }
385 }
386 }
387 /* now, fire the nodes */
388 for (node = nodeList; node; node = next) {
389 next = node->next;
390 if ((node->status == rf_fired) ||
391 (node->status == rf_recover))
392 FireNode(node);
393 }
394 }
395 }
396 /* interrupt context:
397 * for each succedent
398 * propagate required results from node to succedent
399 * increment succedent's numAntDone
400 * place newly-enable nodes on node queue for firing
401 *
402 * To save context switches, we don't place NIL nodes on the node queue,
403 * but rather just process them as if they had fired. Note that NIL nodes
404 * that are the direct successors of the header will actually get fired by
405 * DispatchDAG, which is fine because no context switches are involved.
406 *
407 * Important: when running at user level, this can be called by any
408 * disk thread, and so the increment and check of the antecedent count
409 * must be locked. I used the node queue mutex and locked down the
410 * entire function, but this is certainly overkill.
411 */
412 static void
413 PropagateResults(RF_DagNode_t *node, int context)
414 {
415 RF_DagNode_t *s, *a;
416 RF_Raid_t *raidPtr;
417 int i, ks;
418 RF_DagNode_t *finishlist = NULL; /* a list of NIL nodes to be
419 * finished */
420 RF_DagNode_t *skiplist = NULL; /* list of nodes with failed truedata
421 * antecedents */
422 RF_DagNode_t *firelist = NULL; /* a list of nodes to be fired */
423 RF_DagNode_t *q = NULL, *qh = NULL, *next;
424 int j, skipNode;
425
426 raidPtr = node->dagHdr->raidPtr;
427
428 DO_LOCK(raidPtr);
429
430 /* debug - validate fire counts */
431 for (i = 0; i < node->numAntecedents; i++) {
432 a = *(node->antecedents + i);
433 RF_ASSERT(a->numSuccFired >= a->numSuccDone);
434 RF_ASSERT(a->numSuccFired <= a->numSuccedents);
435 a->numSuccDone++;
436 }
437
438 switch (node->dagHdr->status) {
439 case rf_enable:
440 case rf_rollForward:
441 for (i = 0; i < node->numSuccedents; i++) {
442 s = *(node->succedents + i);
443 RF_ASSERT(s->status == rf_wait);
444 (s->numAntDone)++;
445 if (s->numAntDone == s->numAntecedents) {
446 /* look for NIL nodes */
447 if (s->doFunc == rf_NullNodeFunc) {
448 /* don't fire NIL nodes, just process
449 * them */
450 s->next = finishlist;
451 finishlist = s;
452 } else {
453 /* look to see if the node is to be
454 * skipped */
455 skipNode = RF_FALSE;
456 for (j = 0; j < s->numAntecedents; j++)
457 if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
458 skipNode = RF_TRUE;
459 if (skipNode) {
460 /* this node has one or more
461 * failed true data
462 * dependencies, so skip it */
463 s->next = skiplist;
464 skiplist = s;
465 } else
466 /* add s to list of nodes (q)
467 * to execute */
468 if (context != RF_INTR_CONTEXT) {
469 /* we only have to
470 * enqueue if we're at
471 * intr context */
472 /* put node on
473 a list to
474 be fired
475 after we
476 unlock */
477 s->next = firelist;
478 firelist = s;
479 } else {
480 /* enqueue the
481 node for
482 the dag
483 exec thread
484 to fire */
485 RF_ASSERT(NodeReady(s));
486 if (q) {
487 q->next = s;
488 q = s;
489 } else {
490 qh = q = s;
491 qh->next = NULL;
492 }
493 }
494 }
495 }
496 }
497
498 if (q) {
499 /* xfer our local list of nodes to the node queue */
500 q->next = raidPtr->node_queue;
501 raidPtr->node_queue = qh;
502 DO_SIGNAL(raidPtr);
503 }
504 DO_UNLOCK(raidPtr);
505
506 for (; skiplist; skiplist = next) {
507 next = skiplist->next;
508 skiplist->status = rf_skipped;
509 for (i = 0; i < skiplist->numAntecedents; i++) {
510 skiplist->antecedents[i]->numSuccFired++;
511 }
512 if (skiplist->commitNode) {
513 skiplist->dagHdr->numCommits++;
514 }
515 rf_FinishNode(skiplist, context);
516 }
517 for (; finishlist; finishlist = next) {
518 /* NIL nodes: no need to fire them */
519 next = finishlist->next;
520 finishlist->status = rf_good;
521 for (i = 0; i < finishlist->numAntecedents; i++) {
522 finishlist->antecedents[i]->numSuccFired++;
523 }
524 if (finishlist->commitNode)
525 finishlist->dagHdr->numCommits++;
526 /*
527 * Okay, here we're calling rf_FinishNode() on
528 * nodes that have the null function as their
529 * work proc. Such a node could be the
530 * terminal node in a DAG. If so, it will
531 * cause the DAG to complete, which will in
532 * turn free memory used by the DAG, which
533 * includes the node in question. Thus, we
534 * must avoid referencing the node at all
535 * after calling rf_FinishNode() on it. */
536 rf_FinishNode(finishlist, context); /* recursive call */
537 }
538 /* fire all nodes in firelist */
539 FireNodeList(firelist);
540 break;
541
542 case rf_rollBackward:
543 for (i = 0; i < node->numAntecedents; i++) {
544 a = *(node->antecedents + i);
545 RF_ASSERT(a->status == rf_good);
546 RF_ASSERT(a->numSuccDone <= a->numSuccedents);
547 RF_ASSERT(a->numSuccDone <= a->numSuccFired);
548
549 if (a->numSuccDone == a->numSuccFired) {
550 if (a->undoFunc == rf_NullNodeFunc) {
551 /* don't fire NIL nodes, just process
552 * them */
553 a->next = finishlist;
554 finishlist = a;
555 } else {
556 if (context != RF_INTR_CONTEXT) {
557 /* we only have to enqueue if
558 * we're at intr context */
559 /* put node on a list to be
560 fired after we unlock */
561 a->next = firelist;
562
563 firelist = a;
564 } else {
565 /* enqueue the node for the
566 dag exec thread to fire */
567 RF_ASSERT(NodeReady(a));
568 if (q) {
569 q->next = a;
570 q = a;
571 } else {
572 qh = q = a;
573 qh->next = NULL;
574 }
575 }
576 }
577 }
578 }
579 if (q) {
580 /* xfer our local list of nodes to the node queue */
581 q->next = raidPtr->node_queue;
582 raidPtr->node_queue = qh;
583 DO_SIGNAL(raidPtr);
584 }
585 DO_UNLOCK(raidPtr);
586 for (; finishlist; finishlist = next) {
587 /* NIL nodes: no need to fire them */
588 next = finishlist->next;
589 finishlist->status = rf_good;
590 /*
591 * Okay, here we're calling rf_FinishNode() on
592 * nodes that have the null function as their
593 * work proc. Such a node could be the first
594 * node in a DAG. If so, it will cause the DAG
595 * to complete, which will in turn free memory
596 * used by the DAG, which includes the node in
597 * question. Thus, we must avoid referencing
598 * the node at all after calling
599 * rf_FinishNode() on it. */
600 rf_FinishNode(finishlist, context); /* recursive call */
601 }
602 /* fire all nodes in firelist */
603 FireNodeList(firelist);
604
605 break;
606 default:
607 printf("Engine found illegal DAG status in PropagateResults()\n");
608 RF_PANIC();
609 break;
610 }
611 }
612
613
614
615 /*
616 * Process a fired node which has completed
617 */
618 static void
619 ProcessNode(RF_DagNode_t *node, int context)
620 {
621 RF_Raid_t *raidPtr;
622
623 raidPtr = node->dagHdr->raidPtr;
624
625 switch (node->status) {
626 case rf_good:
627 /* normal case, don't need to do anything */
628 break;
629 case rf_bad:
630 if ((node->dagHdr->numCommits > 0) ||
631 (node->dagHdr->numCommitNodes == 0)) {
632 /* crossed commit barrier */
633 node->dagHdr->status = rf_rollForward;
634 #if RF_DEBUG_ENGINE
635 if (rf_engineDebug) {
636 printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
637 }
638 #endif
639 } else {
640 /* never reached commit barrier */
641 node->dagHdr->status = rf_rollBackward;
642 #if RF_DEBUG_ENGINE
643 if (rf_engineDebug) {
644 printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
645 }
646 #endif
647 }
648 break;
649 case rf_undone:
650 /* normal rollBackward case, don't need to do anything */
651 break;
652 case rf_panic:
653 /* an undo node failed!!! */
654 printf("UNDO of a node failed!!!/n");
655 break;
656 default:
657 printf("node finished execution with an illegal status!!!\n");
658 RF_PANIC();
659 break;
660 }
661
662 /* enqueue node's succedents (antecedents if rollBackward) for
663 * execution */
664 PropagateResults(node, context);
665 }
666
667
668
669 /* user context or dag-exec-thread context:
670 * This is the first step in post-processing a newly-completed node.
671 * This routine is called by each node execution function to mark the node
672 * as complete and fire off any successors that have been enabled.
673 */
674 int
675 rf_FinishNode(RF_DagNode_t *node, int context)
676 {
677 int retcode = RF_FALSE;
678 node->dagHdr->numNodesCompleted++;
679 ProcessNode(node, context);
680
681 return (retcode);
682 }
683
684
685 /* user context: submit dag for execution, return non-zero if we have
686 * to wait for completion. if and only if we return non-zero, we'll
687 * cause cbFunc to get invoked with cbArg when the DAG has completed.
688 *
689 * for now we always return 1. If the DAG does not cause any I/O,
690 * then the callback may get invoked before DispatchDAG returns.
691 * There's code in state 5 of ContinueRaidAccess to handle this.
692 *
693 * All we do here is fire the direct successors of the header node.
694 * The DAG execution thread does the rest of the dag processing. */
695 int
696 rf_DispatchDAG(RF_DagHeader_t *dag, void (*cbFunc) (void *),
697 void *cbArg)
698 {
699 RF_Raid_t *raidPtr;
700
701 raidPtr = dag->raidPtr;
702 #if RF_ACC_TRACE > 0
703 if (dag->tracerec) {
704 RF_ETIMER_START(dag->tracerec->timer);
705 }
706 #endif
707 #if DEBUG
708 #if RF_DEBUG_VALIDATE_DAG
709 if (rf_engineDebug || rf_validateDAGDebug) {
710 if (rf_ValidateDAG(dag))
711 RF_PANIC();
712 }
713 #endif
714 #endif
715 #if RF_DEBUG_ENGINE
716 if (rf_engineDebug) {
717 printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
718 }
719 #endif
720 raidPtr->dags_in_flight++; /* debug only: blow off proper
721 * locking */
722 dag->cbFunc = cbFunc;
723 dag->cbArg = cbArg;
724 dag->numNodesCompleted = 0;
725 dag->status = rf_enable;
726 FireNodeArray(dag->numSuccedents, dag->succedents);
727 return (1);
728 }
729 /* dedicated kernel thread: the thread that handles all DAG node
730 * firing. To minimize locking and unlocking, we grab a copy of the
731 * entire node queue and then set the node queue to NULL before doing
732 * any firing of nodes. This way we only have to release the lock
733 * once. Of course, it's probably rare that there's more than one
734 * node in the queue at any one time, but it sometimes happens.
735 */
736
737 static void
738 DAGExecutionThread(RF_ThreadArg_t arg)
739 {
740 RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
741 RF_Raid_t *raidPtr;
742 int ks;
743 int s;
744
745 raidPtr = (RF_Raid_t *) arg;
746
747 #if RF_DEBUG_ENGINE
748 if (rf_engineDebug) {
749 printf("raid%d: Engine thread is running\n", raidPtr->raidid);
750 }
751 #endif
752 s = splbio();
753
754 DO_LOCK(raidPtr);
755 while (!raidPtr->shutdown_engine) {
756
757 while (raidPtr->node_queue != NULL) {
758 local_nq = raidPtr->node_queue;
759 fire_nq = NULL;
760 term_nq = NULL;
761 raidPtr->node_queue = NULL;
762 DO_UNLOCK(raidPtr);
763
764 /* first, strip out the terminal nodes */
765 while (local_nq) {
766 nd = local_nq;
767 local_nq = local_nq->next;
768 switch (nd->dagHdr->status) {
769 case rf_enable:
770 case rf_rollForward:
771 if (nd->numSuccedents == 0) {
772 /* end of the dag, add to
773 * callback list */
774 nd->next = term_nq;
775 term_nq = nd;
776 } else {
777 /* not the end, add to the
778 * fire queue */
779 nd->next = fire_nq;
780 fire_nq = nd;
781 }
782 break;
783 case rf_rollBackward:
784 if (nd->numAntecedents == 0) {
785 /* end of the dag, add to the
786 * callback list */
787 nd->next = term_nq;
788 term_nq = nd;
789 } else {
790 /* not the end, add to the
791 * fire queue */
792 nd->next = fire_nq;
793 fire_nq = nd;
794 }
795 break;
796 default:
797 RF_PANIC();
798 break;
799 }
800 }
801
802 /* execute callback of dags which have reached the
803 * terminal node */
804 while (term_nq) {
805 nd = term_nq;
806 term_nq = term_nq->next;
807 nd->next = NULL;
808 (nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
809 raidPtr->dags_in_flight--; /* debug only */
810 }
811
812 /* fire remaining nodes */
813 FireNodeList(fire_nq);
814
815 DO_LOCK(raidPtr);
816 }
817 while (!raidPtr->shutdown_engine &&
818 raidPtr->node_queue == NULL) {
819 DO_WAIT(raidPtr);
820 }
821 }
822 DO_UNLOCK(raidPtr);
823
824 splx(s);
825 kthread_exit(0);
826 }
827
828 /*
829 * rf_RaidIOThread() -- When I/O to a component begins, raidstrategy()
830 * puts the I/O on a buf_queue, and then signals raidPtr->iodone. If
831 * necessary, this function calls raidstart() to initiate the I/O.
832 * When I/O to a component completes, KernelWakeupFunc() puts the
833 * completed request onto raidPtr->iodone TAILQ. This function looks
834 * after requests on that queue by calling rf_DiskIOComplete() for the
835 * request, and by calling any required CompleteFunc for the request.
836 */
837
838 static void
839 rf_RaidIOThread(RF_ThreadArg_t arg)
840 {
841 RF_Raid_t *raidPtr;
842 RF_DiskQueueData_t *req;
843 int s;
844
845 raidPtr = (RF_Raid_t *) arg;
846
847 s = splbio();
848 simple_lock(&(raidPtr->iodone_lock));
849
850 while (!raidPtr->shutdown_raidio) {
851 /* if there is nothing to do, then snooze. */
852 if (TAILQ_EMPTY(&(raidPtr->iodone)) &&
853 rf_buf_queue_check(raidPtr->raidid)) {
854 ltsleep(&(raidPtr->iodone), PRIBIO, "raidiow", 0,
855 &(raidPtr->iodone_lock));
856 }
857
858 /* See what I/Os, if any, have arrived */
859 while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
860 TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
861 simple_unlock(&(raidPtr->iodone_lock));
862 rf_DiskIOComplete(req->queue, req, req->error);
863 (req->CompleteFunc) (req->argument, req->error);
864 simple_lock(&(raidPtr->iodone_lock));
865 }
866
867 /* process any pending outgoing IO */
868 simple_unlock(&(raidPtr->iodone_lock));
869 raidstart(raidPtr);
870 simple_lock(&(raidPtr->iodone_lock));
871
872 }
873
874 /* Let rf_ShutdownEngine know that we're done... */
875 raidPtr->shutdown_raidio = 0;
876 wakeup(&(raidPtr->shutdown_raidio));
877
878 simple_unlock(&(raidPtr->iodone_lock));
879 splx(s);
880
881 kthread_exit(0);
882 }
883