Home | History | Annotate | Line # | Download | only in raidframe
rf_engine.c revision 1.39.72.1
      1 /*	$NetBSD: rf_engine.c,v 1.39.72.1 2010/04/21 00:27:51 matt Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II, Mark Holland, Rachad Youssef
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************
     30  *                                                                          *
     31  * engine.c -- code for DAG execution engine                                *
     32  *                                                                          *
     33  * Modified to work as follows (holland):                                   *
     34  *   A user-thread calls into DispatchDAG, which fires off the nodes that   *
     35  *   are direct successors to the header node.  DispatchDAG then returns,   *
     36  *   and the rest of the I/O continues asynchronously.  As each node        *
     37  *   completes, the node execution function calls FinishNode().  FinishNode *
     38  *   scans the list of successors to the node and increments the antecedent *
     39  *   counts.  Each node that becomes enabled is placed on a central node    *
     40  *   queue.  A dedicated dag-execution thread grabs nodes off of this       *
     41  *   queue and fires them.                                                  *
     42  *                                                                          *
     43  *   NULL nodes are never fired.                                            *
     44  *                                                                          *
     45  *   Terminator nodes are never fired, but rather cause the callback        *
     46  *   associated with the DAG to be invoked.                                 *
     47  *                                                                          *
     48  *   If a node fails, the dag either rolls forward to the completion or     *
     49  *   rolls back, undoing previously-completed nodes and fails atomically.   *
     50  *   The direction of recovery is determined by the location of the failed  *
     51  *   node in the graph.  If the failure occurred before the commit node in   *
     52  *   the graph, backward recovery is used.  Otherwise, forward recovery is  *
     53  *   used.                                                                  *
     54  *                                                                          *
     55  ****************************************************************************/
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.39.72.1 2010/04/21 00:27:51 matt Exp $");
     59 
     60 #include <sys/errno.h>
     61 
     62 #include "rf_threadstuff.h"
     63 #include "rf_dag.h"
     64 #include "rf_engine.h"
     65 #include "rf_etimer.h"
     66 #include "rf_general.h"
     67 #include "rf_dagutils.h"
     68 #include "rf_shutdown.h"
     69 #include "rf_raid.h"
     70 #include "rf_kintf.h"
     71 #include "rf_paritymap.h"
     72 
     73 static void rf_ShutdownEngine(void *);
     74 static void DAGExecutionThread(RF_ThreadArg_t arg);
     75 static void rf_RaidIOThread(RF_ThreadArg_t arg);
     76 
     77 /* synchronization primitives for this file.  DO_WAIT should be enclosed in a while loop. */
     78 
     79 #define DO_LOCK(_r_) \
     80 do { \
     81 	ks = splbio(); \
     82 	RF_LOCK_MUTEX((_r_)->node_queue_mutex); \
     83 } while (0)
     84 
     85 #define DO_UNLOCK(_r_) \
     86 do { \
     87 	RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \
     88 	splx(ks); \
     89 } while (0)
     90 
     91 #define	DO_WAIT(_r_) \
     92 	RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex)
     93 
     94 #define	DO_SIGNAL(_r_) \
     95 	RF_BROADCAST_COND((_r_)->node_queue)	/* XXX RF_SIGNAL_COND? */
     96 
     97 static void
     98 rf_ShutdownEngine(void *arg)
     99 {
    100 	RF_Raid_t *raidPtr;
    101 	int ks;
    102 
    103 	raidPtr = (RF_Raid_t *) arg;
    104 
    105 	/* Tell the rf_RaidIOThread to shutdown */
    106 	simple_lock(&(raidPtr->iodone_lock));
    107 
    108 	raidPtr->shutdown_raidio = 1;
    109 	wakeup(&(raidPtr->iodone));
    110 
    111 	/* ...and wait for it to tell us it has finished */
    112 	while (raidPtr->shutdown_raidio)
    113  		ltsleep(&(raidPtr->shutdown_raidio), PRIBIO, "raidshutdown", 0,
    114 			&(raidPtr->iodone_lock));
    115 
    116 	simple_unlock(&(raidPtr->iodone_lock));
    117 
    118  	/* Now shut down the DAG execution engine. */
    119  	DO_LOCK(raidPtr);
    120   	raidPtr->shutdown_engine = 1;
    121   	DO_SIGNAL(raidPtr);
    122  	DO_UNLOCK(raidPtr);
    123 
    124 }
    125 
    126 int
    127 rf_ConfigureEngine(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
    128 		   RF_Config_t *cfgPtr)
    129 {
    130 
    131 	rf_mutex_init(&raidPtr->node_queue_mutex);
    132 	raidPtr->node_queue = NULL;
    133 	raidPtr->dags_in_flight = 0;
    134 
    135 	/* we create the execution thread only once per system boot. no need
    136 	 * to check return code b/c the kernel panics if it can't create the
    137 	 * thread. */
    138 #if RF_DEBUG_ENGINE
    139 	if (rf_engineDebug) {
    140 		printf("raid%d: Creating engine thread\n", raidPtr->raidid);
    141 	}
    142 #endif
    143 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
    144 				    DAGExecutionThread, raidPtr,
    145 				    "raid%d", raidPtr->raidid)) {
    146 		printf("raid%d: Unable to create engine thread\n",
    147 		       raidPtr->raidid);
    148 		return (ENOMEM);
    149 	}
    150 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
    151 				    rf_RaidIOThread, raidPtr,
    152 				    "raidio%d", raidPtr->raidid)) {
    153 		printf("raid%d: Unable to create raidio thread\n",
    154 		       raidPtr->raidid);
    155 		return (ENOMEM);
    156 	}
    157 #if RF_DEBUG_ENGINE
    158 	if (rf_engineDebug) {
    159 		printf("raid%d: Created engine thread\n", raidPtr->raidid);
    160 	}
    161 #endif
    162 
    163 	/* engine thread is now running and waiting for work */
    164 #if RF_DEBUG_ENGINE
    165 	if (rf_engineDebug) {
    166 		printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
    167 	}
    168 #endif
    169 	rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
    170 
    171 	return (0);
    172 }
    173 
    174 static int
    175 BranchDone(RF_DagNode_t *node)
    176 {
    177 	int     i;
    178 
    179 	/* return true if forward execution is completed for a node and it's
    180 	 * succedents */
    181 	switch (node->status) {
    182 	case rf_wait:
    183 		/* should never be called in this state */
    184 		RF_PANIC();
    185 		break;
    186 	case rf_fired:
    187 		/* node is currently executing, so we're not done */
    188 		return (RF_FALSE);
    189 	case rf_good:
    190 		/* for each succedent recursively check branch */
    191 		for (i = 0; i < node->numSuccedents; i++)
    192 			if (!BranchDone(node->succedents[i]))
    193 				return RF_FALSE;
    194 		return RF_TRUE;	/* node and all succedent branches aren't in
    195 				 * fired state */
    196 	case rf_bad:
    197 		/* succedents can't fire */
    198 		return (RF_TRUE);
    199 	case rf_recover:
    200 		/* should never be called in this state */
    201 		RF_PANIC();
    202 		break;
    203 	case rf_undone:
    204 	case rf_panic:
    205 		/* XXX need to fix this case */
    206 		/* for now, assume that we're done */
    207 		return (RF_TRUE);
    208 	default:
    209 		/* illegal node status */
    210 		RF_PANIC();
    211 		break;
    212 	}
    213 }
    214 
    215 static int
    216 NodeReady(RF_DagNode_t *node)
    217 {
    218 	int     ready;
    219 
    220 	switch (node->dagHdr->status) {
    221 	case rf_enable:
    222 	case rf_rollForward:
    223 		if ((node->status == rf_wait) &&
    224 		    (node->numAntecedents == node->numAntDone))
    225 			ready = RF_TRUE;
    226 		else
    227 			ready = RF_FALSE;
    228 		break;
    229 	case rf_rollBackward:
    230 		RF_ASSERT(node->numSuccDone <= node->numSuccedents);
    231 		RF_ASSERT(node->numSuccFired <= node->numSuccedents);
    232 		RF_ASSERT(node->numSuccFired <= node->numSuccDone);
    233 		if ((node->status == rf_good) &&
    234 		    (node->numSuccDone == node->numSuccedents))
    235 			ready = RF_TRUE;
    236 		else
    237 			ready = RF_FALSE;
    238 		break;
    239 	default:
    240 		printf("Execution engine found illegal DAG status in NodeReady\n");
    241 		RF_PANIC();
    242 		break;
    243 	}
    244 
    245 	return (ready);
    246 }
    247 
    248 
    249 
    250 /* user context and dag-exec-thread context: Fire a node.  The node's
    251  * status field determines which function, do or undo, to be fired.
    252  * This routine assumes that the node's status field has alread been
    253  * set to "fired" or "recover" to indicate the direction of execution.
    254  */
    255 static void
    256 FireNode(RF_DagNode_t *node)
    257 {
    258 	switch (node->status) {
    259 	case rf_fired:
    260 		/* fire the do function of a node */
    261 #if RF_DEBUG_ENGINE
    262 		if (rf_engineDebug) {
    263 			printf("raid%d: Firing node 0x%lx (%s)\n",
    264 			       node->dagHdr->raidPtr->raidid,
    265 			       (unsigned long) node, node->name);
    266 		}
    267 #endif
    268 		if (node->flags & RF_DAGNODE_FLAG_YIELD) {
    269 #if defined(__NetBSD__) && defined(_KERNEL)
    270 			/* thread_block(); */
    271 			/* printf("Need to block the thread here...\n");  */
    272 			/* XXX thread_block is actually mentioned in
    273 			 * /usr/include/vm/vm_extern.h */
    274 #else
    275 			thread_block();
    276 #endif
    277 		}
    278 		(*(node->doFunc)) (node);
    279 		break;
    280 	case rf_recover:
    281 		/* fire the undo function of a node */
    282 #if RF_DEBUG_ENGINE
    283 		if (rf_engineDebug) {
    284 			printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
    285 			       node->dagHdr->raidPtr->raidid,
    286 			       (unsigned long) node, node->name);
    287 		}
    288 #endif
    289 		if (node->flags & RF_DAGNODE_FLAG_YIELD)
    290 #if defined(__NetBSD__) && defined(_KERNEL)
    291 			/* thread_block(); */
    292 			/* printf("Need to block the thread here...\n"); */
    293 			/* XXX thread_block is actually mentioned in
    294 			 * /usr/include/vm/vm_extern.h */
    295 #else
    296 			thread_block();
    297 #endif
    298 		(*(node->undoFunc)) (node);
    299 		break;
    300 	default:
    301 		RF_PANIC();
    302 		break;
    303 	}
    304 }
    305 
    306 
    307 
    308 /* user context:
    309  * Attempt to fire each node in a linear array.
    310  * The entire list is fired atomically.
    311  */
    312 static void
    313 FireNodeArray(int numNodes, RF_DagNode_t **nodeList)
    314 {
    315 	RF_DagStatus_t dstat;
    316 	RF_DagNode_t *node;
    317 	int     i, j;
    318 
    319 	/* first, mark all nodes which are ready to be fired */
    320 	for (i = 0; i < numNodes; i++) {
    321 		node = nodeList[i];
    322 		dstat = node->dagHdr->status;
    323 		RF_ASSERT((node->status == rf_wait) ||
    324 			  (node->status == rf_good));
    325 		if (NodeReady(node)) {
    326 			if ((dstat == rf_enable) ||
    327 			    (dstat == rf_rollForward)) {
    328 				RF_ASSERT(node->status == rf_wait);
    329 				if (node->commitNode)
    330 					node->dagHdr->numCommits++;
    331 				node->status = rf_fired;
    332 				for (j = 0; j < node->numAntecedents; j++)
    333 					node->antecedents[j]->numSuccFired++;
    334 			} else {
    335 				RF_ASSERT(dstat == rf_rollBackward);
    336 				RF_ASSERT(node->status == rf_good);
    337 				/* only one commit node per graph */
    338 				RF_ASSERT(node->commitNode == RF_FALSE);
    339 				node->status = rf_recover;
    340 			}
    341 		}
    342 	}
    343 	/* now, fire the nodes */
    344 	for (i = 0; i < numNodes; i++) {
    345 		if ((nodeList[i]->status == rf_fired) ||
    346 		    (nodeList[i]->status == rf_recover))
    347 			FireNode(nodeList[i]);
    348 	}
    349 }
    350 
    351 
    352 /* user context:
    353  * Attempt to fire each node in a linked list.
    354  * The entire list is fired atomically.
    355  */
    356 static void
    357 FireNodeList(RF_DagNode_t *nodeList)
    358 {
    359 	RF_DagNode_t *node, *next;
    360 	RF_DagStatus_t dstat;
    361 	int     j;
    362 
    363 	if (nodeList) {
    364 		/* first, mark all nodes which are ready to be fired */
    365 		for (node = nodeList; node; node = next) {
    366 			next = node->next;
    367 			dstat = node->dagHdr->status;
    368 			RF_ASSERT((node->status == rf_wait) ||
    369 				  (node->status == rf_good));
    370 			if (NodeReady(node)) {
    371 				if ((dstat == rf_enable) ||
    372 				    (dstat == rf_rollForward)) {
    373 					RF_ASSERT(node->status == rf_wait);
    374 					if (node->commitNode)
    375 						node->dagHdr->numCommits++;
    376 					node->status = rf_fired;
    377 					for (j = 0; j < node->numAntecedents; j++)
    378 						node->antecedents[j]->numSuccFired++;
    379 				} else {
    380 					RF_ASSERT(dstat == rf_rollBackward);
    381 					RF_ASSERT(node->status == rf_good);
    382 					/* only one commit node per graph */
    383 					RF_ASSERT(node->commitNode == RF_FALSE);
    384 					node->status = rf_recover;
    385 				}
    386 			}
    387 		}
    388 		/* now, fire the nodes */
    389 		for (node = nodeList; node; node = next) {
    390 			next = node->next;
    391 			if ((node->status == rf_fired) ||
    392 			    (node->status == rf_recover))
    393 				FireNode(node);
    394 		}
    395 	}
    396 }
    397 /* interrupt context:
    398  * for each succedent
    399  *    propagate required results from node to succedent
    400  *    increment succedent's numAntDone
    401  *    place newly-enable nodes on node queue for firing
    402  *
    403  * To save context switches, we don't place NIL nodes on the node queue,
    404  * but rather just process them as if they had fired.  Note that NIL nodes
    405  * that are the direct successors of the header will actually get fired by
    406  * DispatchDAG, which is fine because no context switches are involved.
    407  *
    408  * Important:  when running at user level, this can be called by any
    409  * disk thread, and so the increment and check of the antecedent count
    410  * must be locked.  I used the node queue mutex and locked down the
    411  * entire function, but this is certainly overkill.
    412  */
    413 static void
    414 PropagateResults(RF_DagNode_t *node, int context)
    415 {
    416 	RF_DagNode_t *s, *a;
    417 	RF_Raid_t *raidPtr;
    418 	int     i, ks;
    419 	RF_DagNode_t *finishlist = NULL;	/* a list of NIL nodes to be
    420 						 * finished */
    421 	RF_DagNode_t *skiplist = NULL;	/* list of nodes with failed truedata
    422 					 * antecedents */
    423 	RF_DagNode_t *firelist = NULL;	/* a list of nodes to be fired */
    424 	RF_DagNode_t *q = NULL, *qh = NULL, *next;
    425 	int     j, skipNode;
    426 
    427 	raidPtr = node->dagHdr->raidPtr;
    428 
    429 	DO_LOCK(raidPtr);
    430 
    431 	/* debug - validate fire counts */
    432 	for (i = 0; i < node->numAntecedents; i++) {
    433 		a = *(node->antecedents + i);
    434 		RF_ASSERT(a->numSuccFired >= a->numSuccDone);
    435 		RF_ASSERT(a->numSuccFired <= a->numSuccedents);
    436 		a->numSuccDone++;
    437 	}
    438 
    439 	switch (node->dagHdr->status) {
    440 	case rf_enable:
    441 	case rf_rollForward:
    442 		for (i = 0; i < node->numSuccedents; i++) {
    443 			s = *(node->succedents + i);
    444 			RF_ASSERT(s->status == rf_wait);
    445 			(s->numAntDone)++;
    446 			if (s->numAntDone == s->numAntecedents) {
    447 				/* look for NIL nodes */
    448 				if (s->doFunc == rf_NullNodeFunc) {
    449 					/* don't fire NIL nodes, just process
    450 					 * them */
    451 					s->next = finishlist;
    452 					finishlist = s;
    453 				} else {
    454 					/* look to see if the node is to be
    455 					 * skipped */
    456 					skipNode = RF_FALSE;
    457 					for (j = 0; j < s->numAntecedents; j++)
    458 						if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
    459 							skipNode = RF_TRUE;
    460 					if (skipNode) {
    461 						/* this node has one or more
    462 						 * failed true data
    463 						 * dependencies, so skip it */
    464 						s->next = skiplist;
    465 						skiplist = s;
    466 					} else
    467 						/* add s to list of nodes (q)
    468 						 * to execute */
    469 						if (context != RF_INTR_CONTEXT) {
    470 							/* we only have to
    471 							 * enqueue if we're at
    472 							 * intr context */
    473 							/* put node on
    474                                                            a list to
    475                                                            be fired
    476                                                            after we
    477                                                            unlock */
    478 							s->next = firelist;
    479 							firelist = s;
    480 						} else {
    481 							/* enqueue the
    482 							   node for
    483 							   the dag
    484 							   exec thread
    485 							   to fire */
    486 							RF_ASSERT(NodeReady(s));
    487 							if (q) {
    488 								q->next = s;
    489 								q = s;
    490 							} else {
    491 								qh = q = s;
    492 								qh->next = NULL;
    493 							}
    494 						}
    495 				}
    496 			}
    497 		}
    498 
    499 		if (q) {
    500 			/* xfer our local list of nodes to the node queue */
    501 			q->next = raidPtr->node_queue;
    502 			raidPtr->node_queue = qh;
    503 			DO_SIGNAL(raidPtr);
    504 		}
    505 		DO_UNLOCK(raidPtr);
    506 
    507 		for (; skiplist; skiplist = next) {
    508 			next = skiplist->next;
    509 			skiplist->status = rf_skipped;
    510 			for (i = 0; i < skiplist->numAntecedents; i++) {
    511 				skiplist->antecedents[i]->numSuccFired++;
    512 			}
    513 			if (skiplist->commitNode) {
    514 				skiplist->dagHdr->numCommits++;
    515 			}
    516 			rf_FinishNode(skiplist, context);
    517 		}
    518 		for (; finishlist; finishlist = next) {
    519 			/* NIL nodes: no need to fire them */
    520 			next = finishlist->next;
    521 			finishlist->status = rf_good;
    522 			for (i = 0; i < finishlist->numAntecedents; i++) {
    523 				finishlist->antecedents[i]->numSuccFired++;
    524 			}
    525 			if (finishlist->commitNode)
    526 				finishlist->dagHdr->numCommits++;
    527 			/*
    528 		         * Okay, here we're calling rf_FinishNode() on
    529 		         * nodes that have the null function as their
    530 		         * work proc. Such a node could be the
    531 		         * terminal node in a DAG. If so, it will
    532 		         * cause the DAG to complete, which will in
    533 		         * turn free memory used by the DAG, which
    534 		         * includes the node in question. Thus, we
    535 		         * must avoid referencing the node at all
    536 		         * after calling rf_FinishNode() on it.  */
    537 			rf_FinishNode(finishlist, context);	/* recursive call */
    538 		}
    539 		/* fire all nodes in firelist */
    540 		FireNodeList(firelist);
    541 		break;
    542 
    543 	case rf_rollBackward:
    544 		for (i = 0; i < node->numAntecedents; i++) {
    545 			a = *(node->antecedents + i);
    546 			RF_ASSERT(a->status == rf_good);
    547 			RF_ASSERT(a->numSuccDone <= a->numSuccedents);
    548 			RF_ASSERT(a->numSuccDone <= a->numSuccFired);
    549 
    550 			if (a->numSuccDone == a->numSuccFired) {
    551 				if (a->undoFunc == rf_NullNodeFunc) {
    552 					/* don't fire NIL nodes, just process
    553 					 * them */
    554 					a->next = finishlist;
    555 					finishlist = a;
    556 				} else {
    557 					if (context != RF_INTR_CONTEXT) {
    558 						/* we only have to enqueue if
    559 						 * we're at intr context */
    560 						/* put node on a list to be
    561 						   fired after we unlock */
    562 						a->next = firelist;
    563 
    564 						firelist = a;
    565 					} else {
    566 						/* enqueue the node for the
    567 						   dag exec thread to fire */
    568 						RF_ASSERT(NodeReady(a));
    569 						if (q) {
    570 							q->next = a;
    571 							q = a;
    572 						} else {
    573 							qh = q = a;
    574 							qh->next = NULL;
    575 						}
    576 					}
    577 				}
    578 			}
    579 		}
    580 		if (q) {
    581 			/* xfer our local list of nodes to the node queue */
    582 			q->next = raidPtr->node_queue;
    583 			raidPtr->node_queue = qh;
    584 			DO_SIGNAL(raidPtr);
    585 		}
    586 		DO_UNLOCK(raidPtr);
    587 		for (; finishlist; finishlist = next) {
    588 			/* NIL nodes: no need to fire them */
    589 			next = finishlist->next;
    590 			finishlist->status = rf_good;
    591 			/*
    592 		         * Okay, here we're calling rf_FinishNode() on
    593 		         * nodes that have the null function as their
    594 		         * work proc. Such a node could be the first
    595 		         * node in a DAG. If so, it will cause the DAG
    596 		         * to complete, which will in turn free memory
    597 		         * used by the DAG, which includes the node in
    598 		         * question. Thus, we must avoid referencing
    599 		         * the node at all after calling
    600 		         * rf_FinishNode() on it.  */
    601 			rf_FinishNode(finishlist, context);	/* recursive call */
    602 		}
    603 		/* fire all nodes in firelist */
    604 		FireNodeList(firelist);
    605 
    606 		break;
    607 	default:
    608 		printf("Engine found illegal DAG status in PropagateResults()\n");
    609 		RF_PANIC();
    610 		break;
    611 	}
    612 }
    613 
    614 
    615 
    616 /*
    617  * Process a fired node which has completed
    618  */
    619 static void
    620 ProcessNode(RF_DagNode_t *node, int context)
    621 {
    622 	RF_Raid_t *raidPtr;
    623 
    624 	raidPtr = node->dagHdr->raidPtr;
    625 
    626 	switch (node->status) {
    627 	case rf_good:
    628 		/* normal case, don't need to do anything */
    629 		break;
    630 	case rf_bad:
    631 		if ((node->dagHdr->numCommits > 0) ||
    632 		    (node->dagHdr->numCommitNodes == 0)) {
    633 			/* crossed commit barrier */
    634 			node->dagHdr->status = rf_rollForward;
    635 #if RF_DEBUG_ENGINE
    636 			if (rf_engineDebug) {
    637 				printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
    638 			}
    639 #endif
    640 		} else {
    641 			/* never reached commit barrier */
    642 			node->dagHdr->status = rf_rollBackward;
    643 #if RF_DEBUG_ENGINE
    644 			if (rf_engineDebug) {
    645 				printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
    646 			}
    647 #endif
    648 		}
    649 		break;
    650 	case rf_undone:
    651 		/* normal rollBackward case, don't need to do anything */
    652 		break;
    653 	case rf_panic:
    654 		/* an undo node failed!!! */
    655 		printf("UNDO of a node failed!!!/n");
    656 		break;
    657 	default:
    658 		printf("node finished execution with an illegal status!!!\n");
    659 		RF_PANIC();
    660 		break;
    661 	}
    662 
    663 	/* enqueue node's succedents (antecedents if rollBackward) for
    664 	 * execution */
    665 	PropagateResults(node, context);
    666 }
    667 
    668 
    669 
    670 /* user context or dag-exec-thread context:
    671  * This is the first step in post-processing a newly-completed node.
    672  * This routine is called by each node execution function to mark the node
    673  * as complete and fire off any successors that have been enabled.
    674  */
    675 int
    676 rf_FinishNode(RF_DagNode_t *node, int context)
    677 {
    678 	int     retcode = RF_FALSE;
    679 	node->dagHdr->numNodesCompleted++;
    680 	ProcessNode(node, context);
    681 
    682 	return (retcode);
    683 }
    684 
    685 
    686 /* user context: submit dag for execution, return non-zero if we have
    687  * to wait for completion.  if and only if we return non-zero, we'll
    688  * cause cbFunc to get invoked with cbArg when the DAG has completed.
    689  *
    690  * for now we always return 1.  If the DAG does not cause any I/O,
    691  * then the callback may get invoked before DispatchDAG returns.
    692  * There's code in state 5 of ContinueRaidAccess to handle this.
    693  *
    694  * All we do here is fire the direct successors of the header node.
    695  * The DAG execution thread does the rest of the dag processing.  */
    696 int
    697 rf_DispatchDAG(RF_DagHeader_t *dag, void (*cbFunc) (void *),
    698 	       void *cbArg)
    699 {
    700 	RF_Raid_t *raidPtr;
    701 
    702 	raidPtr = dag->raidPtr;
    703 #if RF_ACC_TRACE > 0
    704 	if (dag->tracerec) {
    705 		RF_ETIMER_START(dag->tracerec->timer);
    706 	}
    707 #endif
    708 #if DEBUG
    709 #if RF_DEBUG_VALIDATE_DAG
    710 	if (rf_engineDebug || rf_validateDAGDebug) {
    711 		if (rf_ValidateDAG(dag))
    712 			RF_PANIC();
    713 	}
    714 #endif
    715 #endif
    716 #if RF_DEBUG_ENGINE
    717 	if (rf_engineDebug) {
    718 		printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
    719 	}
    720 #endif
    721 	raidPtr->dags_in_flight++;	/* debug only:  blow off proper
    722 					 * locking */
    723 	dag->cbFunc = cbFunc;
    724 	dag->cbArg = cbArg;
    725 	dag->numNodesCompleted = 0;
    726 	dag->status = rf_enable;
    727 	FireNodeArray(dag->numSuccedents, dag->succedents);
    728 	return (1);
    729 }
    730 /* dedicated kernel thread: the thread that handles all DAG node
    731  * firing.  To minimize locking and unlocking, we grab a copy of the
    732  * entire node queue and then set the node queue to NULL before doing
    733  * any firing of nodes.  This way we only have to release the lock
    734  * once.  Of course, it's probably rare that there's more than one
    735  * node in the queue at any one time, but it sometimes happens.
    736  */
    737 
    738 static void
    739 DAGExecutionThread(RF_ThreadArg_t arg)
    740 {
    741 	RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
    742 	RF_Raid_t *raidPtr;
    743 	int     ks;
    744 	int     s;
    745 
    746 	raidPtr = (RF_Raid_t *) arg;
    747 
    748 #if RF_DEBUG_ENGINE
    749 	if (rf_engineDebug) {
    750 		printf("raid%d: Engine thread is running\n", raidPtr->raidid);
    751 	}
    752 #endif
    753 	s = splbio();
    754 
    755 	DO_LOCK(raidPtr);
    756 	while (!raidPtr->shutdown_engine) {
    757 
    758 		while (raidPtr->node_queue != NULL) {
    759 			local_nq = raidPtr->node_queue;
    760 			fire_nq = NULL;
    761 			term_nq = NULL;
    762 			raidPtr->node_queue = NULL;
    763 			DO_UNLOCK(raidPtr);
    764 
    765 			/* first, strip out the terminal nodes */
    766 			while (local_nq) {
    767 				nd = local_nq;
    768 				local_nq = local_nq->next;
    769 				switch (nd->dagHdr->status) {
    770 				case rf_enable:
    771 				case rf_rollForward:
    772 					if (nd->numSuccedents == 0) {
    773 						/* end of the dag, add to
    774 						 * callback list */
    775 						nd->next = term_nq;
    776 						term_nq = nd;
    777 					} else {
    778 						/* not the end, add to the
    779 						 * fire queue */
    780 						nd->next = fire_nq;
    781 						fire_nq = nd;
    782 					}
    783 					break;
    784 				case rf_rollBackward:
    785 					if (nd->numAntecedents == 0) {
    786 						/* end of the dag, add to the
    787 						 * callback list */
    788 						nd->next = term_nq;
    789 						term_nq = nd;
    790 					} else {
    791 						/* not the end, add to the
    792 						 * fire queue */
    793 						nd->next = fire_nq;
    794 						fire_nq = nd;
    795 					}
    796 					break;
    797 				default:
    798 					RF_PANIC();
    799 					break;
    800 				}
    801 			}
    802 
    803 			/* execute callback of dags which have reached the
    804 			 * terminal node */
    805 			while (term_nq) {
    806 				nd = term_nq;
    807 				term_nq = term_nq->next;
    808 				nd->next = NULL;
    809 				(nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
    810 				raidPtr->dags_in_flight--;	/* debug only */
    811 			}
    812 
    813 			/* fire remaining nodes */
    814 			FireNodeList(fire_nq);
    815 
    816 			DO_LOCK(raidPtr);
    817 		}
    818 		while (!raidPtr->shutdown_engine &&
    819 		       raidPtr->node_queue == NULL) {
    820 			DO_WAIT(raidPtr);
    821 		}
    822 	}
    823 	DO_UNLOCK(raidPtr);
    824 
    825 	splx(s);
    826 	kthread_exit(0);
    827 }
    828 
    829 /*
    830  * rf_RaidIOThread() -- When I/O to a component begins, raidstrategy()
    831  * puts the I/O on a buf_queue, and then signals raidPtr->iodone.  If
    832  * necessary, this function calls raidstart() to initiate the I/O.
    833  * When I/O to a component completes, KernelWakeupFunc() puts the
    834  * completed request onto raidPtr->iodone TAILQ.  This function looks
    835  * after requests on that queue by calling rf_DiskIOComplete() for the
    836  * request, and by calling any required CompleteFunc for the request.
    837  */
    838 
    839 static void
    840 rf_RaidIOThread(RF_ThreadArg_t arg)
    841 {
    842 	RF_Raid_t *raidPtr;
    843 	RF_DiskQueueData_t *req;
    844 	int s;
    845 
    846 	raidPtr = (RF_Raid_t *) arg;
    847 
    848 	s = splbio();
    849 	simple_lock(&(raidPtr->iodone_lock));
    850 
    851 	while (!raidPtr->shutdown_raidio) {
    852 		/* if there is nothing to do, then snooze. */
    853 		if (TAILQ_EMPTY(&(raidPtr->iodone)) &&
    854 		    rf_buf_queue_check(raidPtr->raidid)) {
    855 			ltsleep(&(raidPtr->iodone), PRIBIO, "raidiow", 0,
    856 				&(raidPtr->iodone_lock));
    857 		}
    858 
    859 		/* Check for deferred parity-map-related work. */
    860 		if (raidPtr->parity_map != NULL) {
    861 			simple_unlock(&(raidPtr->iodone_lock));
    862 			rf_paritymap_checkwork(raidPtr->parity_map);
    863 			simple_lock(&(raidPtr->iodone_lock));
    864 		}
    865 
    866 		/* See what I/Os, if any, have arrived */
    867 		while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
    868 			TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
    869 			simple_unlock(&(raidPtr->iodone_lock));
    870 			rf_DiskIOComplete(req->queue, req, req->error);
    871 			(req->CompleteFunc) (req->argument, req->error);
    872 			simple_lock(&(raidPtr->iodone_lock));
    873 		}
    874 
    875 		/* process any pending outgoing IO */
    876 		simple_unlock(&(raidPtr->iodone_lock));
    877 		raidstart(raidPtr);
    878 		simple_lock(&(raidPtr->iodone_lock));
    879 
    880 	}
    881 
    882 	/* Let rf_ShutdownEngine know that we're done... */
    883 	raidPtr->shutdown_raidio = 0;
    884 	wakeup(&(raidPtr->shutdown_raidio));
    885 
    886 	simple_unlock(&(raidPtr->iodone_lock));
    887 	splx(s);
    888 
    889 	kthread_exit(0);
    890 }
    891