Home | History | Annotate | Line # | Download | only in raidframe
rf_engine.c revision 1.40.2.1
      1 /*	$NetBSD: rf_engine.c,v 1.40.2.1 2010/10/22 07:22:13 uebayasi Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II, Mark Holland, Rachad Youssef
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************
     30  *                                                                          *
     31  * engine.c -- code for DAG execution engine                                *
     32  *                                                                          *
     33  * Modified to work as follows (holland):                                   *
     34  *   A user-thread calls into DispatchDAG, which fires off the nodes that   *
     35  *   are direct successors to the header node.  DispatchDAG then returns,   *
     36  *   and the rest of the I/O continues asynchronously.  As each node        *
     37  *   completes, the node execution function calls FinishNode().  FinishNode *
     38  *   scans the list of successors to the node and increments the antecedent *
     39  *   counts.  Each node that becomes enabled is placed on a central node    *
     40  *   queue.  A dedicated dag-execution thread grabs nodes off of this       *
     41  *   queue and fires them.                                                  *
     42  *                                                                          *
     43  *   NULL nodes are never fired.                                            *
     44  *                                                                          *
     45  *   Terminator nodes are never fired, but rather cause the callback        *
     46  *   associated with the DAG to be invoked.                                 *
     47  *                                                                          *
     48  *   If a node fails, the dag either rolls forward to the completion or     *
     49  *   rolls back, undoing previously-completed nodes and fails atomically.   *
     50  *   The direction of recovery is determined by the location of the failed  *
     51  *   node in the graph.  If the failure occurred before the commit node in   *
     52  *   the graph, backward recovery is used.  Otherwise, forward recovery is  *
     53  *   used.                                                                  *
     54  *                                                                          *
     55  ****************************************************************************/
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.40.2.1 2010/10/22 07:22:13 uebayasi Exp $");
     59 
     60 #include <sys/errno.h>
     61 
     62 #include "rf_threadstuff.h"
     63 #include "rf_dag.h"
     64 #include "rf_engine.h"
     65 #include "rf_etimer.h"
     66 #include "rf_general.h"
     67 #include "rf_dagutils.h"
     68 #include "rf_shutdown.h"
     69 #include "rf_raid.h"
     70 #include "rf_kintf.h"
     71 #include "rf_paritymap.h"
     72 
     73 static void rf_ShutdownEngine(void *);
     74 static void DAGExecutionThread(RF_ThreadArg_t arg);
     75 static void rf_RaidIOThread(RF_ThreadArg_t arg);
     76 
     77 /* synchronization primitives for this file.  DO_WAIT should be enclosed in a while loop. */
     78 
     79 #define DO_LOCK(_r_) \
     80 do { \
     81 	ks = splbio(); \
     82 	RF_LOCK_MUTEX((_r_)->node_queue_mutex); \
     83 } while (0)
     84 
     85 #define DO_UNLOCK(_r_) \
     86 do { \
     87 	RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \
     88 	splx(ks); \
     89 } while (0)
     90 
     91 #define	DO_WAIT(_r_) \
     92 	RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex)
     93 
     94 #define	DO_SIGNAL(_r_) \
     95 	RF_BROADCAST_COND((_r_)->node_queue)	/* XXX RF_SIGNAL_COND? */
     96 
     97 static void
     98 rf_ShutdownEngine(void *arg)
     99 {
    100 	RF_Raid_t *raidPtr;
    101 	int ks;
    102 
    103 	raidPtr = (RF_Raid_t *) arg;
    104 
    105 	/* Tell the rf_RaidIOThread to shutdown */
    106 	simple_lock(&(raidPtr->iodone_lock));
    107 
    108 	raidPtr->shutdown_raidio = 1;
    109 	wakeup(&(raidPtr->iodone));
    110 
    111 	/* ...and wait for it to tell us it has finished */
    112 	while (raidPtr->shutdown_raidio)
    113  		ltsleep(&(raidPtr->shutdown_raidio), PRIBIO, "raidshutdown", 0,
    114 			&(raidPtr->iodone_lock));
    115 
    116 	simple_unlock(&(raidPtr->iodone_lock));
    117 
    118  	/* Now shut down the DAG execution engine. */
    119  	DO_LOCK(raidPtr);
    120   	raidPtr->shutdown_engine = 1;
    121   	DO_SIGNAL(raidPtr);
    122  	DO_UNLOCK(raidPtr);
    123 
    124 }
    125 
    126 int
    127 rf_ConfigureEngine(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
    128 		   RF_Config_t *cfgPtr)
    129 {
    130 
    131 	rf_mutex_init(&raidPtr->node_queue_mutex);
    132 	raidPtr->node_queue = NULL;
    133 	raidPtr->dags_in_flight = 0;
    134 
    135 	/* we create the execution thread only once per system boot. no need
    136 	 * to check return code b/c the kernel panics if it can't create the
    137 	 * thread. */
    138 #if RF_DEBUG_ENGINE
    139 	if (rf_engineDebug) {
    140 		printf("raid%d: Creating engine thread\n", raidPtr->raidid);
    141 	}
    142 #endif
    143 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
    144 				    DAGExecutionThread, raidPtr,
    145 				    "raid%d", raidPtr->raidid)) {
    146 		printf("raid%d: Unable to create engine thread\n",
    147 		       raidPtr->raidid);
    148 		return (ENOMEM);
    149 	}
    150 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
    151 				    rf_RaidIOThread, raidPtr,
    152 				    "raidio%d", raidPtr->raidid)) {
    153 		printf("raid%d: Unable to create raidio thread\n",
    154 		       raidPtr->raidid);
    155 		return (ENOMEM);
    156 	}
    157 #if RF_DEBUG_ENGINE
    158 	if (rf_engineDebug) {
    159 		printf("raid%d: Created engine thread\n", raidPtr->raidid);
    160 	}
    161 #endif
    162 
    163 	/* engine thread is now running and waiting for work */
    164 #if RF_DEBUG_ENGINE
    165 	if (rf_engineDebug) {
    166 		printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
    167 	}
    168 #endif
    169 	rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
    170 
    171 	return (0);
    172 }
    173 
    174 #if 0
    175 static int
    176 BranchDone(RF_DagNode_t *node)
    177 {
    178 	int     i;
    179 
    180 	/* return true if forward execution is completed for a node and it's
    181 	 * succedents */
    182 	switch (node->status) {
    183 	case rf_wait:
    184 		/* should never be called in this state */
    185 		RF_PANIC();
    186 		break;
    187 	case rf_fired:
    188 		/* node is currently executing, so we're not done */
    189 		return (RF_FALSE);
    190 	case rf_good:
    191 		/* for each succedent recursively check branch */
    192 		for (i = 0; i < node->numSuccedents; i++)
    193 			if (!BranchDone(node->succedents[i]))
    194 				return RF_FALSE;
    195 		return RF_TRUE;	/* node and all succedent branches aren't in
    196 				 * fired state */
    197 	case rf_bad:
    198 		/* succedents can't fire */
    199 		return (RF_TRUE);
    200 	case rf_recover:
    201 		/* should never be called in this state */
    202 		RF_PANIC();
    203 		break;
    204 	case rf_undone:
    205 	case rf_panic:
    206 		/* XXX need to fix this case */
    207 		/* for now, assume that we're done */
    208 		return (RF_TRUE);
    209 	default:
    210 		/* illegal node status */
    211 		RF_PANIC();
    212 		break;
    213 	}
    214 }
    215 #endif
    216 
    217 static int
    218 NodeReady(RF_DagNode_t *node)
    219 {
    220 	int     ready;
    221 
    222 	switch (node->dagHdr->status) {
    223 	case rf_enable:
    224 	case rf_rollForward:
    225 		if ((node->status == rf_wait) &&
    226 		    (node->numAntecedents == node->numAntDone))
    227 			ready = RF_TRUE;
    228 		else
    229 			ready = RF_FALSE;
    230 		break;
    231 	case rf_rollBackward:
    232 		RF_ASSERT(node->numSuccDone <= node->numSuccedents);
    233 		RF_ASSERT(node->numSuccFired <= node->numSuccedents);
    234 		RF_ASSERT(node->numSuccFired <= node->numSuccDone);
    235 		if ((node->status == rf_good) &&
    236 		    (node->numSuccDone == node->numSuccedents))
    237 			ready = RF_TRUE;
    238 		else
    239 			ready = RF_FALSE;
    240 		break;
    241 	default:
    242 		printf("Execution engine found illegal DAG status in NodeReady\n");
    243 		RF_PANIC();
    244 		break;
    245 	}
    246 
    247 	return (ready);
    248 }
    249 
    250 
    251 
    252 /* user context and dag-exec-thread context: Fire a node.  The node's
    253  * status field determines which function, do or undo, to be fired.
    254  * This routine assumes that the node's status field has alread been
    255  * set to "fired" or "recover" to indicate the direction of execution.
    256  */
    257 static void
    258 FireNode(RF_DagNode_t *node)
    259 {
    260 	switch (node->status) {
    261 	case rf_fired:
    262 		/* fire the do function of a node */
    263 #if RF_DEBUG_ENGINE
    264 		if (rf_engineDebug) {
    265 			printf("raid%d: Firing node 0x%lx (%s)\n",
    266 			       node->dagHdr->raidPtr->raidid,
    267 			       (unsigned long) node, node->name);
    268 		}
    269 #endif
    270 		if (node->flags & RF_DAGNODE_FLAG_YIELD) {
    271 #if defined(__NetBSD__) && defined(_KERNEL)
    272 			/* thread_block(); */
    273 			/* printf("Need to block the thread here...\n");  */
    274 			/* XXX thread_block is actually mentioned in
    275 			 * /usr/include/vm/vm_extern.h */
    276 #else
    277 			thread_block();
    278 #endif
    279 		}
    280 		(*(node->doFunc)) (node);
    281 		break;
    282 	case rf_recover:
    283 		/* fire the undo function of a node */
    284 #if RF_DEBUG_ENGINE
    285 		if (rf_engineDebug) {
    286 			printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
    287 			       node->dagHdr->raidPtr->raidid,
    288 			       (unsigned long) node, node->name);
    289 		}
    290 #endif
    291 		if (node->flags & RF_DAGNODE_FLAG_YIELD)
    292 #if defined(__NetBSD__) && defined(_KERNEL)
    293 			/* thread_block(); */
    294 			/* printf("Need to block the thread here...\n"); */
    295 			/* XXX thread_block is actually mentioned in
    296 			 * /usr/include/vm/vm_extern.h */
    297 #else
    298 			thread_block();
    299 #endif
    300 		(*(node->undoFunc)) (node);
    301 		break;
    302 	default:
    303 		RF_PANIC();
    304 		break;
    305 	}
    306 }
    307 
    308 
    309 
    310 /* user context:
    311  * Attempt to fire each node in a linear array.
    312  * The entire list is fired atomically.
    313  */
    314 static void
    315 FireNodeArray(int numNodes, RF_DagNode_t **nodeList)
    316 {
    317 	RF_DagStatus_t dstat;
    318 	RF_DagNode_t *node;
    319 	int     i, j;
    320 
    321 	/* first, mark all nodes which are ready to be fired */
    322 	for (i = 0; i < numNodes; i++) {
    323 		node = nodeList[i];
    324 		dstat = node->dagHdr->status;
    325 		RF_ASSERT((node->status == rf_wait) ||
    326 			  (node->status == rf_good));
    327 		if (NodeReady(node)) {
    328 			if ((dstat == rf_enable) ||
    329 			    (dstat == rf_rollForward)) {
    330 				RF_ASSERT(node->status == rf_wait);
    331 				if (node->commitNode)
    332 					node->dagHdr->numCommits++;
    333 				node->status = rf_fired;
    334 				for (j = 0; j < node->numAntecedents; j++)
    335 					node->antecedents[j]->numSuccFired++;
    336 			} else {
    337 				RF_ASSERT(dstat == rf_rollBackward);
    338 				RF_ASSERT(node->status == rf_good);
    339 				/* only one commit node per graph */
    340 				RF_ASSERT(node->commitNode == RF_FALSE);
    341 				node->status = rf_recover;
    342 			}
    343 		}
    344 	}
    345 	/* now, fire the nodes */
    346 	for (i = 0; i < numNodes; i++) {
    347 		if ((nodeList[i]->status == rf_fired) ||
    348 		    (nodeList[i]->status == rf_recover))
    349 			FireNode(nodeList[i]);
    350 	}
    351 }
    352 
    353 
    354 /* user context:
    355  * Attempt to fire each node in a linked list.
    356  * The entire list is fired atomically.
    357  */
    358 static void
    359 FireNodeList(RF_DagNode_t *nodeList)
    360 {
    361 	RF_DagNode_t *node, *next;
    362 	RF_DagStatus_t dstat;
    363 	int     j;
    364 
    365 	if (nodeList) {
    366 		/* first, mark all nodes which are ready to be fired */
    367 		for (node = nodeList; node; node = next) {
    368 			next = node->next;
    369 			dstat = node->dagHdr->status;
    370 			RF_ASSERT((node->status == rf_wait) ||
    371 				  (node->status == rf_good));
    372 			if (NodeReady(node)) {
    373 				if ((dstat == rf_enable) ||
    374 				    (dstat == rf_rollForward)) {
    375 					RF_ASSERT(node->status == rf_wait);
    376 					if (node->commitNode)
    377 						node->dagHdr->numCommits++;
    378 					node->status = rf_fired;
    379 					for (j = 0; j < node->numAntecedents; j++)
    380 						node->antecedents[j]->numSuccFired++;
    381 				} else {
    382 					RF_ASSERT(dstat == rf_rollBackward);
    383 					RF_ASSERT(node->status == rf_good);
    384 					/* only one commit node per graph */
    385 					RF_ASSERT(node->commitNode == RF_FALSE);
    386 					node->status = rf_recover;
    387 				}
    388 			}
    389 		}
    390 		/* now, fire the nodes */
    391 		for (node = nodeList; node; node = next) {
    392 			next = node->next;
    393 			if ((node->status == rf_fired) ||
    394 			    (node->status == rf_recover))
    395 				FireNode(node);
    396 		}
    397 	}
    398 }
    399 /* interrupt context:
    400  * for each succedent
    401  *    propagate required results from node to succedent
    402  *    increment succedent's numAntDone
    403  *    place newly-enable nodes on node queue for firing
    404  *
    405  * To save context switches, we don't place NIL nodes on the node queue,
    406  * but rather just process them as if they had fired.  Note that NIL nodes
    407  * that are the direct successors of the header will actually get fired by
    408  * DispatchDAG, which is fine because no context switches are involved.
    409  *
    410  * Important:  when running at user level, this can be called by any
    411  * disk thread, and so the increment and check of the antecedent count
    412  * must be locked.  I used the node queue mutex and locked down the
    413  * entire function, but this is certainly overkill.
    414  */
    415 static void
    416 PropagateResults(RF_DagNode_t *node, int context)
    417 {
    418 	RF_DagNode_t *s, *a;
    419 	RF_Raid_t *raidPtr;
    420 	int     i, ks;
    421 	RF_DagNode_t *finishlist = NULL;	/* a list of NIL nodes to be
    422 						 * finished */
    423 	RF_DagNode_t *skiplist = NULL;	/* list of nodes with failed truedata
    424 					 * antecedents */
    425 	RF_DagNode_t *firelist = NULL;	/* a list of nodes to be fired */
    426 	RF_DagNode_t *q = NULL, *qh = NULL, *next;
    427 	int     j, skipNode;
    428 
    429 	raidPtr = node->dagHdr->raidPtr;
    430 
    431 	DO_LOCK(raidPtr);
    432 
    433 	/* debug - validate fire counts */
    434 	for (i = 0; i < node->numAntecedents; i++) {
    435 		a = *(node->antecedents + i);
    436 		RF_ASSERT(a->numSuccFired >= a->numSuccDone);
    437 		RF_ASSERT(a->numSuccFired <= a->numSuccedents);
    438 		a->numSuccDone++;
    439 	}
    440 
    441 	switch (node->dagHdr->status) {
    442 	case rf_enable:
    443 	case rf_rollForward:
    444 		for (i = 0; i < node->numSuccedents; i++) {
    445 			s = *(node->succedents + i);
    446 			RF_ASSERT(s->status == rf_wait);
    447 			(s->numAntDone)++;
    448 			if (s->numAntDone == s->numAntecedents) {
    449 				/* look for NIL nodes */
    450 				if (s->doFunc == rf_NullNodeFunc) {
    451 					/* don't fire NIL nodes, just process
    452 					 * them */
    453 					s->next = finishlist;
    454 					finishlist = s;
    455 				} else {
    456 					/* look to see if the node is to be
    457 					 * skipped */
    458 					skipNode = RF_FALSE;
    459 					for (j = 0; j < s->numAntecedents; j++)
    460 						if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
    461 							skipNode = RF_TRUE;
    462 					if (skipNode) {
    463 						/* this node has one or more
    464 						 * failed true data
    465 						 * dependencies, so skip it */
    466 						s->next = skiplist;
    467 						skiplist = s;
    468 					} else
    469 						/* add s to list of nodes (q)
    470 						 * to execute */
    471 						if (context != RF_INTR_CONTEXT) {
    472 							/* we only have to
    473 							 * enqueue if we're at
    474 							 * intr context */
    475 							/* put node on
    476                                                            a list to
    477                                                            be fired
    478                                                            after we
    479                                                            unlock */
    480 							s->next = firelist;
    481 							firelist = s;
    482 						} else {
    483 							/* enqueue the
    484 							   node for
    485 							   the dag
    486 							   exec thread
    487 							   to fire */
    488 							RF_ASSERT(NodeReady(s));
    489 							if (q) {
    490 								q->next = s;
    491 								q = s;
    492 							} else {
    493 								qh = q = s;
    494 								qh->next = NULL;
    495 							}
    496 						}
    497 				}
    498 			}
    499 		}
    500 
    501 		if (q) {
    502 			/* xfer our local list of nodes to the node queue */
    503 			q->next = raidPtr->node_queue;
    504 			raidPtr->node_queue = qh;
    505 			DO_SIGNAL(raidPtr);
    506 		}
    507 		DO_UNLOCK(raidPtr);
    508 
    509 		for (; skiplist; skiplist = next) {
    510 			next = skiplist->next;
    511 			skiplist->status = rf_skipped;
    512 			for (i = 0; i < skiplist->numAntecedents; i++) {
    513 				skiplist->antecedents[i]->numSuccFired++;
    514 			}
    515 			if (skiplist->commitNode) {
    516 				skiplist->dagHdr->numCommits++;
    517 			}
    518 			rf_FinishNode(skiplist, context);
    519 		}
    520 		for (; finishlist; finishlist = next) {
    521 			/* NIL nodes: no need to fire them */
    522 			next = finishlist->next;
    523 			finishlist->status = rf_good;
    524 			for (i = 0; i < finishlist->numAntecedents; i++) {
    525 				finishlist->antecedents[i]->numSuccFired++;
    526 			}
    527 			if (finishlist->commitNode)
    528 				finishlist->dagHdr->numCommits++;
    529 			/*
    530 		         * Okay, here we're calling rf_FinishNode() on
    531 		         * nodes that have the null function as their
    532 		         * work proc. Such a node could be the
    533 		         * terminal node in a DAG. If so, it will
    534 		         * cause the DAG to complete, which will in
    535 		         * turn free memory used by the DAG, which
    536 		         * includes the node in question. Thus, we
    537 		         * must avoid referencing the node at all
    538 		         * after calling rf_FinishNode() on it.  */
    539 			rf_FinishNode(finishlist, context);	/* recursive call */
    540 		}
    541 		/* fire all nodes in firelist */
    542 		FireNodeList(firelist);
    543 		break;
    544 
    545 	case rf_rollBackward:
    546 		for (i = 0; i < node->numAntecedents; i++) {
    547 			a = *(node->antecedents + i);
    548 			RF_ASSERT(a->status == rf_good);
    549 			RF_ASSERT(a->numSuccDone <= a->numSuccedents);
    550 			RF_ASSERT(a->numSuccDone <= a->numSuccFired);
    551 
    552 			if (a->numSuccDone == a->numSuccFired) {
    553 				if (a->undoFunc == rf_NullNodeFunc) {
    554 					/* don't fire NIL nodes, just process
    555 					 * them */
    556 					a->next = finishlist;
    557 					finishlist = a;
    558 				} else {
    559 					if (context != RF_INTR_CONTEXT) {
    560 						/* we only have to enqueue if
    561 						 * we're at intr context */
    562 						/* put node on a list to be
    563 						   fired after we unlock */
    564 						a->next = firelist;
    565 
    566 						firelist = a;
    567 					} else {
    568 						/* enqueue the node for the
    569 						   dag exec thread to fire */
    570 						RF_ASSERT(NodeReady(a));
    571 						if (q) {
    572 							q->next = a;
    573 							q = a;
    574 						} else {
    575 							qh = q = a;
    576 							qh->next = NULL;
    577 						}
    578 					}
    579 				}
    580 			}
    581 		}
    582 		if (q) {
    583 			/* xfer our local list of nodes to the node queue */
    584 			q->next = raidPtr->node_queue;
    585 			raidPtr->node_queue = qh;
    586 			DO_SIGNAL(raidPtr);
    587 		}
    588 		DO_UNLOCK(raidPtr);
    589 		for (; finishlist; finishlist = next) {
    590 			/* NIL nodes: no need to fire them */
    591 			next = finishlist->next;
    592 			finishlist->status = rf_good;
    593 			/*
    594 		         * Okay, here we're calling rf_FinishNode() on
    595 		         * nodes that have the null function as their
    596 		         * work proc. Such a node could be the first
    597 		         * node in a DAG. If so, it will cause the DAG
    598 		         * to complete, which will in turn free memory
    599 		         * used by the DAG, which includes the node in
    600 		         * question. Thus, we must avoid referencing
    601 		         * the node at all after calling
    602 		         * rf_FinishNode() on it.  */
    603 			rf_FinishNode(finishlist, context);	/* recursive call */
    604 		}
    605 		/* fire all nodes in firelist */
    606 		FireNodeList(firelist);
    607 
    608 		break;
    609 	default:
    610 		printf("Engine found illegal DAG status in PropagateResults()\n");
    611 		RF_PANIC();
    612 		break;
    613 	}
    614 }
    615 
    616 
    617 
    618 /*
    619  * Process a fired node which has completed
    620  */
    621 static void
    622 ProcessNode(RF_DagNode_t *node, int context)
    623 {
    624 	RF_Raid_t *raidPtr;
    625 
    626 	raidPtr = node->dagHdr->raidPtr;
    627 
    628 	switch (node->status) {
    629 	case rf_good:
    630 		/* normal case, don't need to do anything */
    631 		break;
    632 	case rf_bad:
    633 		if ((node->dagHdr->numCommits > 0) ||
    634 		    (node->dagHdr->numCommitNodes == 0)) {
    635 			/* crossed commit barrier */
    636 			node->dagHdr->status = rf_rollForward;
    637 #if RF_DEBUG_ENGINE
    638 			if (rf_engineDebug) {
    639 				printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
    640 			}
    641 #endif
    642 		} else {
    643 			/* never reached commit barrier */
    644 			node->dagHdr->status = rf_rollBackward;
    645 #if RF_DEBUG_ENGINE
    646 			if (rf_engineDebug) {
    647 				printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
    648 			}
    649 #endif
    650 		}
    651 		break;
    652 	case rf_undone:
    653 		/* normal rollBackward case, don't need to do anything */
    654 		break;
    655 	case rf_panic:
    656 		/* an undo node failed!!! */
    657 		printf("UNDO of a node failed!!!/n");
    658 		break;
    659 	default:
    660 		printf("node finished execution with an illegal status!!!\n");
    661 		RF_PANIC();
    662 		break;
    663 	}
    664 
    665 	/* enqueue node's succedents (antecedents if rollBackward) for
    666 	 * execution */
    667 	PropagateResults(node, context);
    668 }
    669 
    670 
    671 
    672 /* user context or dag-exec-thread context:
    673  * This is the first step in post-processing a newly-completed node.
    674  * This routine is called by each node execution function to mark the node
    675  * as complete and fire off any successors that have been enabled.
    676  */
    677 int
    678 rf_FinishNode(RF_DagNode_t *node, int context)
    679 {
    680 	int     retcode = RF_FALSE;
    681 	node->dagHdr->numNodesCompleted++;
    682 	ProcessNode(node, context);
    683 
    684 	return (retcode);
    685 }
    686 
    687 
    688 /* user context: submit dag for execution, return non-zero if we have
    689  * to wait for completion.  if and only if we return non-zero, we'll
    690  * cause cbFunc to get invoked with cbArg when the DAG has completed.
    691  *
    692  * for now we always return 1.  If the DAG does not cause any I/O,
    693  * then the callback may get invoked before DispatchDAG returns.
    694  * There's code in state 5 of ContinueRaidAccess to handle this.
    695  *
    696  * All we do here is fire the direct successors of the header node.
    697  * The DAG execution thread does the rest of the dag processing.  */
    698 int
    699 rf_DispatchDAG(RF_DagHeader_t *dag, void (*cbFunc) (void *),
    700 	       void *cbArg)
    701 {
    702 	RF_Raid_t *raidPtr;
    703 
    704 	raidPtr = dag->raidPtr;
    705 #if RF_ACC_TRACE > 0
    706 	if (dag->tracerec) {
    707 		RF_ETIMER_START(dag->tracerec->timer);
    708 	}
    709 #endif
    710 #if DEBUG
    711 #if RF_DEBUG_VALIDATE_DAG
    712 	if (rf_engineDebug || rf_validateDAGDebug) {
    713 		if (rf_ValidateDAG(dag))
    714 			RF_PANIC();
    715 	}
    716 #endif
    717 #endif
    718 #if RF_DEBUG_ENGINE
    719 	if (rf_engineDebug) {
    720 		printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
    721 	}
    722 #endif
    723 	raidPtr->dags_in_flight++;	/* debug only:  blow off proper
    724 					 * locking */
    725 	dag->cbFunc = cbFunc;
    726 	dag->cbArg = cbArg;
    727 	dag->numNodesCompleted = 0;
    728 	dag->status = rf_enable;
    729 	FireNodeArray(dag->numSuccedents, dag->succedents);
    730 	return (1);
    731 }
    732 /* dedicated kernel thread: the thread that handles all DAG node
    733  * firing.  To minimize locking and unlocking, we grab a copy of the
    734  * entire node queue and then set the node queue to NULL before doing
    735  * any firing of nodes.  This way we only have to release the lock
    736  * once.  Of course, it's probably rare that there's more than one
    737  * node in the queue at any one time, but it sometimes happens.
    738  */
    739 
    740 static void
    741 DAGExecutionThread(RF_ThreadArg_t arg)
    742 {
    743 	RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
    744 	RF_Raid_t *raidPtr;
    745 	int     ks;
    746 	int     s;
    747 
    748 	raidPtr = (RF_Raid_t *) arg;
    749 
    750 #if RF_DEBUG_ENGINE
    751 	if (rf_engineDebug) {
    752 		printf("raid%d: Engine thread is running\n", raidPtr->raidid);
    753 	}
    754 #endif
    755 	s = splbio();
    756 
    757 	DO_LOCK(raidPtr);
    758 	while (!raidPtr->shutdown_engine) {
    759 
    760 		while (raidPtr->node_queue != NULL) {
    761 			local_nq = raidPtr->node_queue;
    762 			fire_nq = NULL;
    763 			term_nq = NULL;
    764 			raidPtr->node_queue = NULL;
    765 			DO_UNLOCK(raidPtr);
    766 
    767 			/* first, strip out the terminal nodes */
    768 			while (local_nq) {
    769 				nd = local_nq;
    770 				local_nq = local_nq->next;
    771 				switch (nd->dagHdr->status) {
    772 				case rf_enable:
    773 				case rf_rollForward:
    774 					if (nd->numSuccedents == 0) {
    775 						/* end of the dag, add to
    776 						 * callback list */
    777 						nd->next = term_nq;
    778 						term_nq = nd;
    779 					} else {
    780 						/* not the end, add to the
    781 						 * fire queue */
    782 						nd->next = fire_nq;
    783 						fire_nq = nd;
    784 					}
    785 					break;
    786 				case rf_rollBackward:
    787 					if (nd->numAntecedents == 0) {
    788 						/* end of the dag, add to the
    789 						 * callback list */
    790 						nd->next = term_nq;
    791 						term_nq = nd;
    792 					} else {
    793 						/* not the end, add to the
    794 						 * fire queue */
    795 						nd->next = fire_nq;
    796 						fire_nq = nd;
    797 					}
    798 					break;
    799 				default:
    800 					RF_PANIC();
    801 					break;
    802 				}
    803 			}
    804 
    805 			/* execute callback of dags which have reached the
    806 			 * terminal node */
    807 			while (term_nq) {
    808 				nd = term_nq;
    809 				term_nq = term_nq->next;
    810 				nd->next = NULL;
    811 				(nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
    812 				raidPtr->dags_in_flight--;	/* debug only */
    813 			}
    814 
    815 			/* fire remaining nodes */
    816 			FireNodeList(fire_nq);
    817 
    818 			DO_LOCK(raidPtr);
    819 		}
    820 		while (!raidPtr->shutdown_engine &&
    821 		       raidPtr->node_queue == NULL) {
    822 			DO_WAIT(raidPtr);
    823 		}
    824 	}
    825 	DO_UNLOCK(raidPtr);
    826 
    827 	splx(s);
    828 	kthread_exit(0);
    829 }
    830 
    831 /*
    832  * rf_RaidIOThread() -- When I/O to a component begins, raidstrategy()
    833  * puts the I/O on a buf_queue, and then signals raidPtr->iodone.  If
    834  * necessary, this function calls raidstart() to initiate the I/O.
    835  * When I/O to a component completes, KernelWakeupFunc() puts the
    836  * completed request onto raidPtr->iodone TAILQ.  This function looks
    837  * after requests on that queue by calling rf_DiskIOComplete() for the
    838  * request, and by calling any required CompleteFunc for the request.
    839  */
    840 
    841 static void
    842 rf_RaidIOThread(RF_ThreadArg_t arg)
    843 {
    844 	RF_Raid_t *raidPtr;
    845 	RF_DiskQueueData_t *req;
    846 	int s;
    847 
    848 	raidPtr = (RF_Raid_t *) arg;
    849 
    850 	s = splbio();
    851 	simple_lock(&(raidPtr->iodone_lock));
    852 
    853 	while (!raidPtr->shutdown_raidio) {
    854 		/* if there is nothing to do, then snooze. */
    855 		if (TAILQ_EMPTY(&(raidPtr->iodone)) &&
    856 		    rf_buf_queue_check(raidPtr->raidid)) {
    857 			ltsleep(&(raidPtr->iodone), PRIBIO, "raidiow", 0,
    858 				&(raidPtr->iodone_lock));
    859 		}
    860 
    861 		/* Check for deferred parity-map-related work. */
    862 		if (raidPtr->parity_map != NULL) {
    863 			simple_unlock(&(raidPtr->iodone_lock));
    864 			rf_paritymap_checkwork(raidPtr->parity_map);
    865 			simple_lock(&(raidPtr->iodone_lock));
    866 		}
    867 
    868 		/* See what I/Os, if any, have arrived */
    869 		while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
    870 			TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
    871 			simple_unlock(&(raidPtr->iodone_lock));
    872 			rf_DiskIOComplete(req->queue, req, req->error);
    873 			(req->CompleteFunc) (req->argument, req->error);
    874 			simple_lock(&(raidPtr->iodone_lock));
    875 		}
    876 
    877 		/* process any pending outgoing IO */
    878 		simple_unlock(&(raidPtr->iodone_lock));
    879 		raidstart(raidPtr);
    880 		simple_lock(&(raidPtr->iodone_lock));
    881 
    882 	}
    883 
    884 	/* Let rf_ShutdownEngine know that we're done... */
    885 	raidPtr->shutdown_raidio = 0;
    886 	wakeup(&(raidPtr->shutdown_raidio));
    887 
    888 	simple_unlock(&(raidPtr->iodone_lock));
    889 	splx(s);
    890 
    891 	kthread_exit(0);
    892 }
    893