Home | History | Annotate | Line # | Download | only in raidframe
rf_engine.c revision 1.40.4.2
      1 /*	$NetBSD: rf_engine.c,v 1.40.4.2 2011/05/31 03:04:53 rmind Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II, Mark Holland, Rachad Youssef
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************
     30  *                                                                          *
     31  * engine.c -- code for DAG execution engine                                *
     32  *                                                                          *
     33  * Modified to work as follows (holland):                                   *
     34  *   A user-thread calls into DispatchDAG, which fires off the nodes that   *
     35  *   are direct successors to the header node.  DispatchDAG then returns,   *
     36  *   and the rest of the I/O continues asynchronously.  As each node        *
     37  *   completes, the node execution function calls FinishNode().  FinishNode *
     38  *   scans the list of successors to the node and increments the antecedent *
     39  *   counts.  Each node that becomes enabled is placed on a central node    *
     40  *   queue.  A dedicated dag-execution thread grabs nodes off of this       *
     41  *   queue and fires them.                                                  *
     42  *                                                                          *
     43  *   NULL nodes are never fired.                                            *
     44  *                                                                          *
     45  *   Terminator nodes are never fired, but rather cause the callback        *
     46  *   associated with the DAG to be invoked.                                 *
     47  *                                                                          *
     48  *   If a node fails, the dag either rolls forward to the completion or     *
     49  *   rolls back, undoing previously-completed nodes and fails atomically.   *
     50  *   The direction of recovery is determined by the location of the failed  *
     51  *   node in the graph.  If the failure occurred before the commit node in   *
     52  *   the graph, backward recovery is used.  Otherwise, forward recovery is  *
     53  *   used.                                                                  *
     54  *                                                                          *
     55  ****************************************************************************/
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.40.4.2 2011/05/31 03:04:53 rmind Exp $");
     59 
     60 #include <sys/errno.h>
     61 
     62 #include "rf_threadstuff.h"
     63 #include "rf_dag.h"
     64 #include "rf_engine.h"
     65 #include "rf_etimer.h"
     66 #include "rf_general.h"
     67 #include "rf_dagutils.h"
     68 #include "rf_shutdown.h"
     69 #include "rf_raid.h"
     70 #include "rf_kintf.h"
     71 #include "rf_paritymap.h"
     72 
     73 static void rf_ShutdownEngine(void *);
     74 static void DAGExecutionThread(RF_ThreadArg_t arg);
     75 static void rf_RaidIOThread(RF_ThreadArg_t arg);
     76 
     77 /* synchronization primitives for this file.  DO_WAIT should be enclosed in a while loop. */
     78 
     79 #define DO_LOCK(_r_) \
     80 	rf_lock_mutex2((_r_)->node_queue_mutex)
     81 
     82 #define DO_UNLOCK(_r_) \
     83 	rf_unlock_mutex2((_r_)->node_queue_mutex)
     84 
     85 #define	DO_WAIT(_r_) \
     86 	rf_wait_cond2((_r_)->node_queue_cv, (_r_)->node_queue_mutex)
     87 
     88 #define	DO_SIGNAL(_r_) \
     89 	rf_broadcast_cond2((_r_)->node_queue_cv)	/* XXX rf_signal_cond2? */
     90 
     91 static void
     92 rf_ShutdownEngine(void *arg)
     93 {
     94 	RF_Raid_t *raidPtr;
     95 
     96 	raidPtr = (RF_Raid_t *) arg;
     97 
     98 	/* Tell the rf_RaidIOThread to shutdown */
     99 	rf_lock_mutex2(raidPtr->iodone_lock);
    100 
    101 	raidPtr->shutdown_raidio = 1;
    102 	rf_signal_cond2(raidPtr->iodone_cv);
    103 
    104 	/* ...and wait for it to tell us it has finished */
    105 	while (raidPtr->shutdown_raidio)
    106 		rf_wait_cond2(raidPtr->iodone_cv, raidPtr->iodone_lock);
    107 
    108 	rf_unlock_mutex2(raidPtr->iodone_lock);
    109 
    110  	/* Now shut down the DAG execution engine. */
    111  	DO_LOCK(raidPtr);
    112   	raidPtr->shutdown_engine = 1;
    113   	DO_SIGNAL(raidPtr);
    114 
    115 	/* ...and wait for it to tell us it has finished */
    116 	while (raidPtr->shutdown_engine)
    117 		DO_WAIT(raidPtr);
    118 
    119  	DO_UNLOCK(raidPtr);
    120 
    121 	rf_destroy_mutex2(raidPtr->node_queue_mutex);
    122 	rf_destroy_cond2(raidPtr->node_queue_cv);
    123 
    124 	rf_destroy_mutex2(raidPtr->iodone_lock);
    125 	rf_destroy_cond2(raidPtr->iodone_cv);
    126 }
    127 
    128 int
    129 rf_ConfigureEngine(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
    130 		   RF_Config_t *cfgPtr)
    131 {
    132 
    133 	/*
    134 	 * Initialise iodone for the IO thread.
    135 	 */
    136 	TAILQ_INIT(&(raidPtr->iodone));
    137 	rf_init_mutex2(raidPtr->iodone_lock, IPL_VM);
    138 	rf_init_cond2(raidPtr->iodone_cv, "raidiow");
    139 
    140 	rf_init_mutex2(raidPtr->node_queue_mutex, IPL_VM);
    141 	rf_init_cond2(raidPtr->node_queue_cv, "rfnodeq");
    142 	raidPtr->node_queue = NULL;
    143 	raidPtr->dags_in_flight = 0;
    144 
    145 	/* we create the execution thread only once per system boot. no need
    146 	 * to check return code b/c the kernel panics if it can't create the
    147 	 * thread. */
    148 #if RF_DEBUG_ENGINE
    149 	if (rf_engineDebug) {
    150 		printf("raid%d: Creating engine thread\n", raidPtr->raidid);
    151 	}
    152 #endif
    153 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
    154 				    DAGExecutionThread, raidPtr,
    155 				    "raid%d", raidPtr->raidid)) {
    156 		printf("raid%d: Unable to create engine thread\n",
    157 		       raidPtr->raidid);
    158 		return (ENOMEM);
    159 	}
    160 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
    161 				    rf_RaidIOThread, raidPtr,
    162 				    "raidio%d", raidPtr->raidid)) {
    163 		printf("raid%d: Unable to create raidio thread\n",
    164 		       raidPtr->raidid);
    165 		return (ENOMEM);
    166 	}
    167 #if RF_DEBUG_ENGINE
    168 	if (rf_engineDebug) {
    169 		printf("raid%d: Created engine thread\n", raidPtr->raidid);
    170 	}
    171 #endif
    172 
    173 	/* engine thread is now running and waiting for work */
    174 #if RF_DEBUG_ENGINE
    175 	if (rf_engineDebug) {
    176 		printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
    177 	}
    178 #endif
    179 	rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
    180 
    181 	return (0);
    182 }
    183 
    184 #if 0
    185 static int
    186 BranchDone(RF_DagNode_t *node)
    187 {
    188 	int     i;
    189 
    190 	/* return true if forward execution is completed for a node and it's
    191 	 * succedents */
    192 	switch (node->status) {
    193 	case rf_wait:
    194 		/* should never be called in this state */
    195 		RF_PANIC();
    196 		break;
    197 	case rf_fired:
    198 		/* node is currently executing, so we're not done */
    199 		return (RF_FALSE);
    200 	case rf_good:
    201 		/* for each succedent recursively check branch */
    202 		for (i = 0; i < node->numSuccedents; i++)
    203 			if (!BranchDone(node->succedents[i]))
    204 				return RF_FALSE;
    205 		return RF_TRUE;	/* node and all succedent branches aren't in
    206 				 * fired state */
    207 	case rf_bad:
    208 		/* succedents can't fire */
    209 		return (RF_TRUE);
    210 	case rf_recover:
    211 		/* should never be called in this state */
    212 		RF_PANIC();
    213 		break;
    214 	case rf_undone:
    215 	case rf_panic:
    216 		/* XXX need to fix this case */
    217 		/* for now, assume that we're done */
    218 		return (RF_TRUE);
    219 	default:
    220 		/* illegal node status */
    221 		RF_PANIC();
    222 		break;
    223 	}
    224 }
    225 #endif
    226 
    227 static int
    228 NodeReady(RF_DagNode_t *node)
    229 {
    230 	int     ready;
    231 
    232 	switch (node->dagHdr->status) {
    233 	case rf_enable:
    234 	case rf_rollForward:
    235 		if ((node->status == rf_wait) &&
    236 		    (node->numAntecedents == node->numAntDone))
    237 			ready = RF_TRUE;
    238 		else
    239 			ready = RF_FALSE;
    240 		break;
    241 	case rf_rollBackward:
    242 		RF_ASSERT(node->numSuccDone <= node->numSuccedents);
    243 		RF_ASSERT(node->numSuccFired <= node->numSuccedents);
    244 		RF_ASSERT(node->numSuccFired <= node->numSuccDone);
    245 		if ((node->status == rf_good) &&
    246 		    (node->numSuccDone == node->numSuccedents))
    247 			ready = RF_TRUE;
    248 		else
    249 			ready = RF_FALSE;
    250 		break;
    251 	default:
    252 		printf("Execution engine found illegal DAG status in NodeReady\n");
    253 		RF_PANIC();
    254 		break;
    255 	}
    256 
    257 	return (ready);
    258 }
    259 
    260 
    261 
    262 /* user context and dag-exec-thread context: Fire a node.  The node's
    263  * status field determines which function, do or undo, to be fired.
    264  * This routine assumes that the node's status field has alread been
    265  * set to "fired" or "recover" to indicate the direction of execution.
    266  */
    267 static void
    268 FireNode(RF_DagNode_t *node)
    269 {
    270 	switch (node->status) {
    271 	case rf_fired:
    272 		/* fire the do function of a node */
    273 #if RF_DEBUG_ENGINE
    274 		if (rf_engineDebug) {
    275 			printf("raid%d: Firing node 0x%lx (%s)\n",
    276 			       node->dagHdr->raidPtr->raidid,
    277 			       (unsigned long) node, node->name);
    278 		}
    279 #endif
    280 		if (node->flags & RF_DAGNODE_FLAG_YIELD) {
    281 #if defined(__NetBSD__) && defined(_KERNEL)
    282 			/* thread_block(); */
    283 			/* printf("Need to block the thread here...\n");  */
    284 			/* XXX thread_block is actually mentioned in
    285 			 * /usr/include/vm/vm_extern.h */
    286 #else
    287 			thread_block();
    288 #endif
    289 		}
    290 		(*(node->doFunc)) (node);
    291 		break;
    292 	case rf_recover:
    293 		/* fire the undo function of a node */
    294 #if RF_DEBUG_ENGINE
    295 		if (rf_engineDebug) {
    296 			printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
    297 			       node->dagHdr->raidPtr->raidid,
    298 			       (unsigned long) node, node->name);
    299 		}
    300 #endif
    301 		if (node->flags & RF_DAGNODE_FLAG_YIELD)
    302 #if defined(__NetBSD__) && defined(_KERNEL)
    303 			/* thread_block(); */
    304 			/* printf("Need to block the thread here...\n"); */
    305 			/* XXX thread_block is actually mentioned in
    306 			 * /usr/include/vm/vm_extern.h */
    307 #else
    308 			thread_block();
    309 #endif
    310 		(*(node->undoFunc)) (node);
    311 		break;
    312 	default:
    313 		RF_PANIC();
    314 		break;
    315 	}
    316 }
    317 
    318 
    319 
    320 /* user context:
    321  * Attempt to fire each node in a linear array.
    322  * The entire list is fired atomically.
    323  */
    324 static void
    325 FireNodeArray(int numNodes, RF_DagNode_t **nodeList)
    326 {
    327 	RF_DagStatus_t dstat;
    328 	RF_DagNode_t *node;
    329 	int     i, j;
    330 
    331 	/* first, mark all nodes which are ready to be fired */
    332 	for (i = 0; i < numNodes; i++) {
    333 		node = nodeList[i];
    334 		dstat = node->dagHdr->status;
    335 		RF_ASSERT((node->status == rf_wait) ||
    336 			  (node->status == rf_good));
    337 		if (NodeReady(node)) {
    338 			if ((dstat == rf_enable) ||
    339 			    (dstat == rf_rollForward)) {
    340 				RF_ASSERT(node->status == rf_wait);
    341 				if (node->commitNode)
    342 					node->dagHdr->numCommits++;
    343 				node->status = rf_fired;
    344 				for (j = 0; j < node->numAntecedents; j++)
    345 					node->antecedents[j]->numSuccFired++;
    346 			} else {
    347 				RF_ASSERT(dstat == rf_rollBackward);
    348 				RF_ASSERT(node->status == rf_good);
    349 				/* only one commit node per graph */
    350 				RF_ASSERT(node->commitNode == RF_FALSE);
    351 				node->status = rf_recover;
    352 			}
    353 		}
    354 	}
    355 	/* now, fire the nodes */
    356 	for (i = 0; i < numNodes; i++) {
    357 		if ((nodeList[i]->status == rf_fired) ||
    358 		    (nodeList[i]->status == rf_recover))
    359 			FireNode(nodeList[i]);
    360 	}
    361 }
    362 
    363 
    364 /* user context:
    365  * Attempt to fire each node in a linked list.
    366  * The entire list is fired atomically.
    367  */
    368 static void
    369 FireNodeList(RF_DagNode_t *nodeList)
    370 {
    371 	RF_DagNode_t *node, *next;
    372 	RF_DagStatus_t dstat;
    373 	int     j;
    374 
    375 	if (nodeList) {
    376 		/* first, mark all nodes which are ready to be fired */
    377 		for (node = nodeList; node; node = next) {
    378 			next = node->next;
    379 			dstat = node->dagHdr->status;
    380 			RF_ASSERT((node->status == rf_wait) ||
    381 				  (node->status == rf_good));
    382 			if (NodeReady(node)) {
    383 				if ((dstat == rf_enable) ||
    384 				    (dstat == rf_rollForward)) {
    385 					RF_ASSERT(node->status == rf_wait);
    386 					if (node->commitNode)
    387 						node->dagHdr->numCommits++;
    388 					node->status = rf_fired;
    389 					for (j = 0; j < node->numAntecedents; j++)
    390 						node->antecedents[j]->numSuccFired++;
    391 				} else {
    392 					RF_ASSERT(dstat == rf_rollBackward);
    393 					RF_ASSERT(node->status == rf_good);
    394 					/* only one commit node per graph */
    395 					RF_ASSERT(node->commitNode == RF_FALSE);
    396 					node->status = rf_recover;
    397 				}
    398 			}
    399 		}
    400 		/* now, fire the nodes */
    401 		for (node = nodeList; node; node = next) {
    402 			next = node->next;
    403 			if ((node->status == rf_fired) ||
    404 			    (node->status == rf_recover))
    405 				FireNode(node);
    406 		}
    407 	}
    408 }
    409 /* interrupt context:
    410  * for each succedent
    411  *    propagate required results from node to succedent
    412  *    increment succedent's numAntDone
    413  *    place newly-enable nodes on node queue for firing
    414  *
    415  * To save context switches, we don't place NIL nodes on the node queue,
    416  * but rather just process them as if they had fired.  Note that NIL nodes
    417  * that are the direct successors of the header will actually get fired by
    418  * DispatchDAG, which is fine because no context switches are involved.
    419  *
    420  * Important:  when running at user level, this can be called by any
    421  * disk thread, and so the increment and check of the antecedent count
    422  * must be locked.  I used the node queue mutex and locked down the
    423  * entire function, but this is certainly overkill.
    424  */
    425 static void
    426 PropagateResults(RF_DagNode_t *node, int context)
    427 {
    428 	RF_DagNode_t *s, *a;
    429 	RF_Raid_t *raidPtr;
    430 	int     i;
    431 	RF_DagNode_t *finishlist = NULL;	/* a list of NIL nodes to be
    432 						 * finished */
    433 	RF_DagNode_t *skiplist = NULL;	/* list of nodes with failed truedata
    434 					 * antecedents */
    435 	RF_DagNode_t *firelist = NULL;	/* a list of nodes to be fired */
    436 	RF_DagNode_t *q = NULL, *qh = NULL, *next;
    437 	int     j, skipNode;
    438 
    439 	raidPtr = node->dagHdr->raidPtr;
    440 
    441 	DO_LOCK(raidPtr);
    442 
    443 	/* debug - validate fire counts */
    444 	for (i = 0; i < node->numAntecedents; i++) {
    445 		a = *(node->antecedents + i);
    446 		RF_ASSERT(a->numSuccFired >= a->numSuccDone);
    447 		RF_ASSERT(a->numSuccFired <= a->numSuccedents);
    448 		a->numSuccDone++;
    449 	}
    450 
    451 	switch (node->dagHdr->status) {
    452 	case rf_enable:
    453 	case rf_rollForward:
    454 		for (i = 0; i < node->numSuccedents; i++) {
    455 			s = *(node->succedents + i);
    456 			RF_ASSERT(s->status == rf_wait);
    457 			(s->numAntDone)++;
    458 			if (s->numAntDone == s->numAntecedents) {
    459 				/* look for NIL nodes */
    460 				if (s->doFunc == rf_NullNodeFunc) {
    461 					/* don't fire NIL nodes, just process
    462 					 * them */
    463 					s->next = finishlist;
    464 					finishlist = s;
    465 				} else {
    466 					/* look to see if the node is to be
    467 					 * skipped */
    468 					skipNode = RF_FALSE;
    469 					for (j = 0; j < s->numAntecedents; j++)
    470 						if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
    471 							skipNode = RF_TRUE;
    472 					if (skipNode) {
    473 						/* this node has one or more
    474 						 * failed true data
    475 						 * dependencies, so skip it */
    476 						s->next = skiplist;
    477 						skiplist = s;
    478 					} else
    479 						/* add s to list of nodes (q)
    480 						 * to execute */
    481 						if (context != RF_INTR_CONTEXT) {
    482 							/* we only have to
    483 							 * enqueue if we're at
    484 							 * intr context */
    485 							/* put node on
    486                                                            a list to
    487                                                            be fired
    488                                                            after we
    489                                                            unlock */
    490 							s->next = firelist;
    491 							firelist = s;
    492 						} else {
    493 							/* enqueue the
    494 							   node for
    495 							   the dag
    496 							   exec thread
    497 							   to fire */
    498 							RF_ASSERT(NodeReady(s));
    499 							if (q) {
    500 								q->next = s;
    501 								q = s;
    502 							} else {
    503 								qh = q = s;
    504 								qh->next = NULL;
    505 							}
    506 						}
    507 				}
    508 			}
    509 		}
    510 
    511 		if (q) {
    512 			/* xfer our local list of nodes to the node queue */
    513 			q->next = raidPtr->node_queue;
    514 			raidPtr->node_queue = qh;
    515 			DO_SIGNAL(raidPtr);
    516 		}
    517 		DO_UNLOCK(raidPtr);
    518 
    519 		for (; skiplist; skiplist = next) {
    520 			next = skiplist->next;
    521 			skiplist->status = rf_skipped;
    522 			for (i = 0; i < skiplist->numAntecedents; i++) {
    523 				skiplist->antecedents[i]->numSuccFired++;
    524 			}
    525 			if (skiplist->commitNode) {
    526 				skiplist->dagHdr->numCommits++;
    527 			}
    528 			rf_FinishNode(skiplist, context);
    529 		}
    530 		for (; finishlist; finishlist = next) {
    531 			/* NIL nodes: no need to fire them */
    532 			next = finishlist->next;
    533 			finishlist->status = rf_good;
    534 			for (i = 0; i < finishlist->numAntecedents; i++) {
    535 				finishlist->antecedents[i]->numSuccFired++;
    536 			}
    537 			if (finishlist->commitNode)
    538 				finishlist->dagHdr->numCommits++;
    539 			/*
    540 		         * Okay, here we're calling rf_FinishNode() on
    541 		         * nodes that have the null function as their
    542 		         * work proc. Such a node could be the
    543 		         * terminal node in a DAG. If so, it will
    544 		         * cause the DAG to complete, which will in
    545 		         * turn free memory used by the DAG, which
    546 		         * includes the node in question. Thus, we
    547 		         * must avoid referencing the node at all
    548 		         * after calling rf_FinishNode() on it.  */
    549 			rf_FinishNode(finishlist, context);	/* recursive call */
    550 		}
    551 		/* fire all nodes in firelist */
    552 		FireNodeList(firelist);
    553 		break;
    554 
    555 	case rf_rollBackward:
    556 		for (i = 0; i < node->numAntecedents; i++) {
    557 			a = *(node->antecedents + i);
    558 			RF_ASSERT(a->status == rf_good);
    559 			RF_ASSERT(a->numSuccDone <= a->numSuccedents);
    560 			RF_ASSERT(a->numSuccDone <= a->numSuccFired);
    561 
    562 			if (a->numSuccDone == a->numSuccFired) {
    563 				if (a->undoFunc == rf_NullNodeFunc) {
    564 					/* don't fire NIL nodes, just process
    565 					 * them */
    566 					a->next = finishlist;
    567 					finishlist = a;
    568 				} else {
    569 					if (context != RF_INTR_CONTEXT) {
    570 						/* we only have to enqueue if
    571 						 * we're at intr context */
    572 						/* put node on a list to be
    573 						   fired after we unlock */
    574 						a->next = firelist;
    575 
    576 						firelist = a;
    577 					} else {
    578 						/* enqueue the node for the
    579 						   dag exec thread to fire */
    580 						RF_ASSERT(NodeReady(a));
    581 						if (q) {
    582 							q->next = a;
    583 							q = a;
    584 						} else {
    585 							qh = q = a;
    586 							qh->next = NULL;
    587 						}
    588 					}
    589 				}
    590 			}
    591 		}
    592 		if (q) {
    593 			/* xfer our local list of nodes to the node queue */
    594 			q->next = raidPtr->node_queue;
    595 			raidPtr->node_queue = qh;
    596 			DO_SIGNAL(raidPtr);
    597 		}
    598 		DO_UNLOCK(raidPtr);
    599 		for (; finishlist; finishlist = next) {
    600 			/* NIL nodes: no need to fire them */
    601 			next = finishlist->next;
    602 			finishlist->status = rf_good;
    603 			/*
    604 		         * Okay, here we're calling rf_FinishNode() on
    605 		         * nodes that have the null function as their
    606 		         * work proc. Such a node could be the first
    607 		         * node in a DAG. If so, it will cause the DAG
    608 		         * to complete, which will in turn free memory
    609 		         * used by the DAG, which includes the node in
    610 		         * question. Thus, we must avoid referencing
    611 		         * the node at all after calling
    612 		         * rf_FinishNode() on it.  */
    613 			rf_FinishNode(finishlist, context);	/* recursive call */
    614 		}
    615 		/* fire all nodes in firelist */
    616 		FireNodeList(firelist);
    617 
    618 		break;
    619 	default:
    620 		printf("Engine found illegal DAG status in PropagateResults()\n");
    621 		RF_PANIC();
    622 		break;
    623 	}
    624 }
    625 
    626 
    627 
    628 /*
    629  * Process a fired node which has completed
    630  */
    631 static void
    632 ProcessNode(RF_DagNode_t *node, int context)
    633 {
    634 	RF_Raid_t *raidPtr;
    635 
    636 	raidPtr = node->dagHdr->raidPtr;
    637 
    638 	switch (node->status) {
    639 	case rf_good:
    640 		/* normal case, don't need to do anything */
    641 		break;
    642 	case rf_bad:
    643 		if ((node->dagHdr->numCommits > 0) ||
    644 		    (node->dagHdr->numCommitNodes == 0)) {
    645 			/* crossed commit barrier */
    646 			node->dagHdr->status = rf_rollForward;
    647 #if RF_DEBUG_ENGINE
    648 			if (rf_engineDebug) {
    649 				printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
    650 			}
    651 #endif
    652 		} else {
    653 			/* never reached commit barrier */
    654 			node->dagHdr->status = rf_rollBackward;
    655 #if RF_DEBUG_ENGINE
    656 			if (rf_engineDebug) {
    657 				printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
    658 			}
    659 #endif
    660 		}
    661 		break;
    662 	case rf_undone:
    663 		/* normal rollBackward case, don't need to do anything */
    664 		break;
    665 	case rf_panic:
    666 		/* an undo node failed!!! */
    667 		printf("UNDO of a node failed!!!/n");
    668 		break;
    669 	default:
    670 		printf("node finished execution with an illegal status!!!\n");
    671 		RF_PANIC();
    672 		break;
    673 	}
    674 
    675 	/* enqueue node's succedents (antecedents if rollBackward) for
    676 	 * execution */
    677 	PropagateResults(node, context);
    678 }
    679 
    680 
    681 
    682 /* user context or dag-exec-thread context:
    683  * This is the first step in post-processing a newly-completed node.
    684  * This routine is called by each node execution function to mark the node
    685  * as complete and fire off any successors that have been enabled.
    686  */
    687 int
    688 rf_FinishNode(RF_DagNode_t *node, int context)
    689 {
    690 	int     retcode = RF_FALSE;
    691 	node->dagHdr->numNodesCompleted++;
    692 	ProcessNode(node, context);
    693 
    694 	return (retcode);
    695 }
    696 
    697 
    698 /* user context: submit dag for execution, return non-zero if we have
    699  * to wait for completion.  if and only if we return non-zero, we'll
    700  * cause cbFunc to get invoked with cbArg when the DAG has completed.
    701  *
    702  * for now we always return 1.  If the DAG does not cause any I/O,
    703  * then the callback may get invoked before DispatchDAG returns.
    704  * There's code in state 5 of ContinueRaidAccess to handle this.
    705  *
    706  * All we do here is fire the direct successors of the header node.
    707  * The DAG execution thread does the rest of the dag processing.  */
    708 int
    709 rf_DispatchDAG(RF_DagHeader_t *dag, void (*cbFunc) (void *),
    710 	       void *cbArg)
    711 {
    712 	RF_Raid_t *raidPtr;
    713 
    714 	raidPtr = dag->raidPtr;
    715 #if RF_ACC_TRACE > 0
    716 	if (dag->tracerec) {
    717 		RF_ETIMER_START(dag->tracerec->timer);
    718 	}
    719 #endif
    720 #if DEBUG
    721 #if RF_DEBUG_VALIDATE_DAG
    722 	if (rf_engineDebug || rf_validateDAGDebug) {
    723 		if (rf_ValidateDAG(dag))
    724 			RF_PANIC();
    725 	}
    726 #endif
    727 #endif
    728 #if RF_DEBUG_ENGINE
    729 	if (rf_engineDebug) {
    730 		printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
    731 	}
    732 #endif
    733 	raidPtr->dags_in_flight++;	/* debug only:  blow off proper
    734 					 * locking */
    735 	dag->cbFunc = cbFunc;
    736 	dag->cbArg = cbArg;
    737 	dag->numNodesCompleted = 0;
    738 	dag->status = rf_enable;
    739 	FireNodeArray(dag->numSuccedents, dag->succedents);
    740 	return (1);
    741 }
    742 /* dedicated kernel thread: the thread that handles all DAG node
    743  * firing.  To minimize locking and unlocking, we grab a copy of the
    744  * entire node queue and then set the node queue to NULL before doing
    745  * any firing of nodes.  This way we only have to release the lock
    746  * once.  Of course, it's probably rare that there's more than one
    747  * node in the queue at any one time, but it sometimes happens.
    748  */
    749 
    750 static void
    751 DAGExecutionThread(RF_ThreadArg_t arg)
    752 {
    753 	RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
    754 	RF_Raid_t *raidPtr;
    755 
    756 	raidPtr = (RF_Raid_t *) arg;
    757 
    758 #if RF_DEBUG_ENGINE
    759 	if (rf_engineDebug) {
    760 		printf("raid%d: Engine thread is running\n", raidPtr->raidid);
    761 	}
    762 #endif
    763 
    764 	DO_LOCK(raidPtr);
    765 	while (!raidPtr->shutdown_engine) {
    766 
    767 		while (raidPtr->node_queue != NULL) {
    768 			local_nq = raidPtr->node_queue;
    769 			fire_nq = NULL;
    770 			term_nq = NULL;
    771 			raidPtr->node_queue = NULL;
    772 			DO_UNLOCK(raidPtr);
    773 
    774 			/* first, strip out the terminal nodes */
    775 			while (local_nq) {
    776 				nd = local_nq;
    777 				local_nq = local_nq->next;
    778 				switch (nd->dagHdr->status) {
    779 				case rf_enable:
    780 				case rf_rollForward:
    781 					if (nd->numSuccedents == 0) {
    782 						/* end of the dag, add to
    783 						 * callback list */
    784 						nd->next = term_nq;
    785 						term_nq = nd;
    786 					} else {
    787 						/* not the end, add to the
    788 						 * fire queue */
    789 						nd->next = fire_nq;
    790 						fire_nq = nd;
    791 					}
    792 					break;
    793 				case rf_rollBackward:
    794 					if (nd->numAntecedents == 0) {
    795 						/* end of the dag, add to the
    796 						 * callback list */
    797 						nd->next = term_nq;
    798 						term_nq = nd;
    799 					} else {
    800 						/* not the end, add to the
    801 						 * fire queue */
    802 						nd->next = fire_nq;
    803 						fire_nq = nd;
    804 					}
    805 					break;
    806 				default:
    807 					RF_PANIC();
    808 					break;
    809 				}
    810 			}
    811 
    812 			/* execute callback of dags which have reached the
    813 			 * terminal node */
    814 			while (term_nq) {
    815 				nd = term_nq;
    816 				term_nq = term_nq->next;
    817 				nd->next = NULL;
    818 				(nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
    819 				raidPtr->dags_in_flight--;	/* debug only */
    820 			}
    821 
    822 			/* fire remaining nodes */
    823 			FireNodeList(fire_nq);
    824 
    825 			DO_LOCK(raidPtr);
    826 		}
    827 		while (!raidPtr->shutdown_engine &&
    828 		       raidPtr->node_queue == NULL) {
    829 			DO_WAIT(raidPtr);
    830 		}
    831 	}
    832 
    833 	/* Let rf_ShutdownEngine know that we're done... */
    834 	raidPtr->shutdown_engine = 0;
    835 	DO_SIGNAL(raidPtr);
    836 
    837 	DO_UNLOCK(raidPtr);
    838 
    839 	kthread_exit(0);
    840 }
    841 
    842 /*
    843  * rf_RaidIOThread() -- When I/O to a component begins, raidstrategy()
    844  * puts the I/O on a buf_queue, and then signals raidPtr->iodone.  If
    845  * necessary, this function calls raidstart() to initiate the I/O.
    846  * When I/O to a component completes, KernelWakeupFunc() puts the
    847  * completed request onto raidPtr->iodone TAILQ.  This function looks
    848  * after requests on that queue by calling rf_DiskIOComplete() for the
    849  * request, and by calling any required CompleteFunc for the request.
    850  */
    851 
    852 static void
    853 rf_RaidIOThread(RF_ThreadArg_t arg)
    854 {
    855 	RF_Raid_t *raidPtr;
    856 	RF_DiskQueueData_t *req;
    857 
    858 	raidPtr = (RF_Raid_t *) arg;
    859 
    860 	rf_lock_mutex2(raidPtr->iodone_lock);
    861 
    862 	while (!raidPtr->shutdown_raidio) {
    863 		/* if there is nothing to do, then snooze. */
    864 		if (TAILQ_EMPTY(&(raidPtr->iodone)) &&
    865 		    rf_buf_queue_check(raidPtr->raidid)) {
    866 			rf_wait_cond2(raidPtr->iodone_cv, raidPtr->iodone_lock);
    867 		}
    868 
    869 		/* Check for deferred parity-map-related work. */
    870 		if (raidPtr->parity_map != NULL) {
    871 			rf_unlock_mutex2(raidPtr->iodone_lock);
    872 			rf_paritymap_checkwork(raidPtr->parity_map);
    873 			rf_lock_mutex2(raidPtr->iodone_lock);
    874 		}
    875 
    876 		/* See what I/Os, if any, have arrived */
    877 		while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
    878 			TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
    879 			rf_unlock_mutex2(raidPtr->iodone_lock);
    880 			rf_DiskIOComplete(req->queue, req, req->error);
    881 			(req->CompleteFunc) (req->argument, req->error);
    882 			rf_lock_mutex2(raidPtr->iodone_lock);
    883 		}
    884 
    885 		/* process any pending outgoing IO */
    886 		rf_unlock_mutex2(raidPtr->iodone_lock);
    887 		raidstart(raidPtr);
    888 		rf_lock_mutex2(raidPtr->iodone_lock);
    889 
    890 	}
    891 
    892 	/* Let rf_ShutdownEngine know that we're done... */
    893 	raidPtr->shutdown_raidio = 0;
    894 	rf_signal_cond2(raidPtr->iodone_cv);
    895 
    896 	rf_unlock_mutex2(raidPtr->iodone_lock);
    897 
    898 	kthread_exit(0);
    899 }
    900