Home | History | Annotate | Line # | Download | only in raidframe
rf_engine.c revision 1.43
      1 /*	$NetBSD: rf_engine.c,v 1.43 2011/04/23 22:22:46 mrg Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II, Mark Holland, Rachad Youssef
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /****************************************************************************
     30  *                                                                          *
     31  * engine.c -- code for DAG execution engine                                *
     32  *                                                                          *
     33  * Modified to work as follows (holland):                                   *
     34  *   A user-thread calls into DispatchDAG, which fires off the nodes that   *
     35  *   are direct successors to the header node.  DispatchDAG then returns,   *
     36  *   and the rest of the I/O continues asynchronously.  As each node        *
     37  *   completes, the node execution function calls FinishNode().  FinishNode *
     38  *   scans the list of successors to the node and increments the antecedent *
     39  *   counts.  Each node that becomes enabled is placed on a central node    *
     40  *   queue.  A dedicated dag-execution thread grabs nodes off of this       *
     41  *   queue and fires them.                                                  *
     42  *                                                                          *
     43  *   NULL nodes are never fired.                                            *
     44  *                                                                          *
     45  *   Terminator nodes are never fired, but rather cause the callback        *
     46  *   associated with the DAG to be invoked.                                 *
     47  *                                                                          *
     48  *   If a node fails, the dag either rolls forward to the completion or     *
     49  *   rolls back, undoing previously-completed nodes and fails atomically.   *
     50  *   The direction of recovery is determined by the location of the failed  *
     51  *   node in the graph.  If the failure occurred before the commit node in   *
     52  *   the graph, backward recovery is used.  Otherwise, forward recovery is  *
     53  *   used.                                                                  *
     54  *                                                                          *
     55  ****************************************************************************/
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.43 2011/04/23 22:22:46 mrg Exp $");
     59 
     60 #include <sys/errno.h>
     61 
     62 #include "rf_threadstuff.h"
     63 #include "rf_dag.h"
     64 #include "rf_engine.h"
     65 #include "rf_etimer.h"
     66 #include "rf_general.h"
     67 #include "rf_dagutils.h"
     68 #include "rf_shutdown.h"
     69 #include "rf_raid.h"
     70 #include "rf_kintf.h"
     71 #include "rf_paritymap.h"
     72 
     73 static void rf_ShutdownEngine(void *);
     74 static void DAGExecutionThread(RF_ThreadArg_t arg);
     75 static void rf_RaidIOThread(RF_ThreadArg_t arg);
     76 
     77 /* synchronization primitives for this file.  DO_WAIT should be enclosed in a while loop. */
     78 
     79 #define DO_LOCK(_r_) \
     80 do { \
     81 	ks = splbio(); \
     82 	RF_LOCK_MUTEX((_r_)->node_queue_mutex); \
     83 } while (0)
     84 
     85 #define DO_UNLOCK(_r_) \
     86 do { \
     87 	RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \
     88 	splx(ks); \
     89 } while (0)
     90 
     91 #define	DO_WAIT(_r_) \
     92 	RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex)
     93 
     94 #define	DO_SIGNAL(_r_) \
     95 	RF_BROADCAST_COND((_r_)->node_queue)	/* XXX RF_SIGNAL_COND? */
     96 
     97 static void
     98 rf_ShutdownEngine(void *arg)
     99 {
    100 	RF_Raid_t *raidPtr;
    101 	int ks;
    102 
    103 	raidPtr = (RF_Raid_t *) arg;
    104 
    105 	/* Tell the rf_RaidIOThread to shutdown */
    106 	mutex_enter(&raidPtr->iodone_lock);
    107 
    108 	raidPtr->shutdown_raidio = 1;
    109 	cv_signal(&raidPtr->iodone_cv);
    110 
    111 	/* ...and wait for it to tell us it has finished */
    112 	while (raidPtr->shutdown_raidio)
    113 		cv_wait(&raidPtr->iodone_cv, &raidPtr->iodone_lock);
    114 
    115 	mutex_exit(&raidPtr->iodone_lock);
    116 
    117  	/* Now shut down the DAG execution engine. */
    118  	DO_LOCK(raidPtr);
    119   	raidPtr->shutdown_engine = 1;
    120   	DO_SIGNAL(raidPtr);
    121  	DO_UNLOCK(raidPtr);
    122 
    123 	mutex_destroy(&raidPtr->iodone_lock);
    124 	cv_destroy(&raidPtr->iodone_cv);
    125 }
    126 
    127 int
    128 rf_ConfigureEngine(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
    129 		   RF_Config_t *cfgPtr)
    130 {
    131 
    132 	/*
    133 	 * Initialise iodone for the IO thread.
    134 	 */
    135 	TAILQ_INIT(&(raidPtr->iodone));
    136 	mutex_init(&raidPtr->iodone_lock, MUTEX_DEFAULT, IPL_VM);
    137 	cv_init(&raidPtr->iodone_cv, "raidiow");
    138 
    139 	rf_mutex_init(&raidPtr->node_queue_mutex);
    140 	raidPtr->node_queue = NULL;
    141 	raidPtr->dags_in_flight = 0;
    142 
    143 	/* we create the execution thread only once per system boot. no need
    144 	 * to check return code b/c the kernel panics if it can't create the
    145 	 * thread. */
    146 #if RF_DEBUG_ENGINE
    147 	if (rf_engineDebug) {
    148 		printf("raid%d: Creating engine thread\n", raidPtr->raidid);
    149 	}
    150 #endif
    151 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
    152 				    DAGExecutionThread, raidPtr,
    153 				    "raid%d", raidPtr->raidid)) {
    154 		printf("raid%d: Unable to create engine thread\n",
    155 		       raidPtr->raidid);
    156 		return (ENOMEM);
    157 	}
    158 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
    159 				    rf_RaidIOThread, raidPtr,
    160 				    "raidio%d", raidPtr->raidid)) {
    161 		printf("raid%d: Unable to create raidio thread\n",
    162 		       raidPtr->raidid);
    163 		return (ENOMEM);
    164 	}
    165 #if RF_DEBUG_ENGINE
    166 	if (rf_engineDebug) {
    167 		printf("raid%d: Created engine thread\n", raidPtr->raidid);
    168 	}
    169 #endif
    170 
    171 	/* engine thread is now running and waiting for work */
    172 #if RF_DEBUG_ENGINE
    173 	if (rf_engineDebug) {
    174 		printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
    175 	}
    176 #endif
    177 	rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
    178 
    179 	return (0);
    180 }
    181 
    182 #if 0
    183 static int
    184 BranchDone(RF_DagNode_t *node)
    185 {
    186 	int     i;
    187 
    188 	/* return true if forward execution is completed for a node and it's
    189 	 * succedents */
    190 	switch (node->status) {
    191 	case rf_wait:
    192 		/* should never be called in this state */
    193 		RF_PANIC();
    194 		break;
    195 	case rf_fired:
    196 		/* node is currently executing, so we're not done */
    197 		return (RF_FALSE);
    198 	case rf_good:
    199 		/* for each succedent recursively check branch */
    200 		for (i = 0; i < node->numSuccedents; i++)
    201 			if (!BranchDone(node->succedents[i]))
    202 				return RF_FALSE;
    203 		return RF_TRUE;	/* node and all succedent branches aren't in
    204 				 * fired state */
    205 	case rf_bad:
    206 		/* succedents can't fire */
    207 		return (RF_TRUE);
    208 	case rf_recover:
    209 		/* should never be called in this state */
    210 		RF_PANIC();
    211 		break;
    212 	case rf_undone:
    213 	case rf_panic:
    214 		/* XXX need to fix this case */
    215 		/* for now, assume that we're done */
    216 		return (RF_TRUE);
    217 	default:
    218 		/* illegal node status */
    219 		RF_PANIC();
    220 		break;
    221 	}
    222 }
    223 #endif
    224 
    225 static int
    226 NodeReady(RF_DagNode_t *node)
    227 {
    228 	int     ready;
    229 
    230 	switch (node->dagHdr->status) {
    231 	case rf_enable:
    232 	case rf_rollForward:
    233 		if ((node->status == rf_wait) &&
    234 		    (node->numAntecedents == node->numAntDone))
    235 			ready = RF_TRUE;
    236 		else
    237 			ready = RF_FALSE;
    238 		break;
    239 	case rf_rollBackward:
    240 		RF_ASSERT(node->numSuccDone <= node->numSuccedents);
    241 		RF_ASSERT(node->numSuccFired <= node->numSuccedents);
    242 		RF_ASSERT(node->numSuccFired <= node->numSuccDone);
    243 		if ((node->status == rf_good) &&
    244 		    (node->numSuccDone == node->numSuccedents))
    245 			ready = RF_TRUE;
    246 		else
    247 			ready = RF_FALSE;
    248 		break;
    249 	default:
    250 		printf("Execution engine found illegal DAG status in NodeReady\n");
    251 		RF_PANIC();
    252 		break;
    253 	}
    254 
    255 	return (ready);
    256 }
    257 
    258 
    259 
    260 /* user context and dag-exec-thread context: Fire a node.  The node's
    261  * status field determines which function, do or undo, to be fired.
    262  * This routine assumes that the node's status field has alread been
    263  * set to "fired" or "recover" to indicate the direction of execution.
    264  */
    265 static void
    266 FireNode(RF_DagNode_t *node)
    267 {
    268 	switch (node->status) {
    269 	case rf_fired:
    270 		/* fire the do function of a node */
    271 #if RF_DEBUG_ENGINE
    272 		if (rf_engineDebug) {
    273 			printf("raid%d: Firing node 0x%lx (%s)\n",
    274 			       node->dagHdr->raidPtr->raidid,
    275 			       (unsigned long) node, node->name);
    276 		}
    277 #endif
    278 		if (node->flags & RF_DAGNODE_FLAG_YIELD) {
    279 #if defined(__NetBSD__) && defined(_KERNEL)
    280 			/* thread_block(); */
    281 			/* printf("Need to block the thread here...\n");  */
    282 			/* XXX thread_block is actually mentioned in
    283 			 * /usr/include/vm/vm_extern.h */
    284 #else
    285 			thread_block();
    286 #endif
    287 		}
    288 		(*(node->doFunc)) (node);
    289 		break;
    290 	case rf_recover:
    291 		/* fire the undo function of a node */
    292 #if RF_DEBUG_ENGINE
    293 		if (rf_engineDebug) {
    294 			printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
    295 			       node->dagHdr->raidPtr->raidid,
    296 			       (unsigned long) node, node->name);
    297 		}
    298 #endif
    299 		if (node->flags & RF_DAGNODE_FLAG_YIELD)
    300 #if defined(__NetBSD__) && defined(_KERNEL)
    301 			/* thread_block(); */
    302 			/* printf("Need to block the thread here...\n"); */
    303 			/* XXX thread_block is actually mentioned in
    304 			 * /usr/include/vm/vm_extern.h */
    305 #else
    306 			thread_block();
    307 #endif
    308 		(*(node->undoFunc)) (node);
    309 		break;
    310 	default:
    311 		RF_PANIC();
    312 		break;
    313 	}
    314 }
    315 
    316 
    317 
    318 /* user context:
    319  * Attempt to fire each node in a linear array.
    320  * The entire list is fired atomically.
    321  */
    322 static void
    323 FireNodeArray(int numNodes, RF_DagNode_t **nodeList)
    324 {
    325 	RF_DagStatus_t dstat;
    326 	RF_DagNode_t *node;
    327 	int     i, j;
    328 
    329 	/* first, mark all nodes which are ready to be fired */
    330 	for (i = 0; i < numNodes; i++) {
    331 		node = nodeList[i];
    332 		dstat = node->dagHdr->status;
    333 		RF_ASSERT((node->status == rf_wait) ||
    334 			  (node->status == rf_good));
    335 		if (NodeReady(node)) {
    336 			if ((dstat == rf_enable) ||
    337 			    (dstat == rf_rollForward)) {
    338 				RF_ASSERT(node->status == rf_wait);
    339 				if (node->commitNode)
    340 					node->dagHdr->numCommits++;
    341 				node->status = rf_fired;
    342 				for (j = 0; j < node->numAntecedents; j++)
    343 					node->antecedents[j]->numSuccFired++;
    344 			} else {
    345 				RF_ASSERT(dstat == rf_rollBackward);
    346 				RF_ASSERT(node->status == rf_good);
    347 				/* only one commit node per graph */
    348 				RF_ASSERT(node->commitNode == RF_FALSE);
    349 				node->status = rf_recover;
    350 			}
    351 		}
    352 	}
    353 	/* now, fire the nodes */
    354 	for (i = 0; i < numNodes; i++) {
    355 		if ((nodeList[i]->status == rf_fired) ||
    356 		    (nodeList[i]->status == rf_recover))
    357 			FireNode(nodeList[i]);
    358 	}
    359 }
    360 
    361 
    362 /* user context:
    363  * Attempt to fire each node in a linked list.
    364  * The entire list is fired atomically.
    365  */
    366 static void
    367 FireNodeList(RF_DagNode_t *nodeList)
    368 {
    369 	RF_DagNode_t *node, *next;
    370 	RF_DagStatus_t dstat;
    371 	int     j;
    372 
    373 	if (nodeList) {
    374 		/* first, mark all nodes which are ready to be fired */
    375 		for (node = nodeList; node; node = next) {
    376 			next = node->next;
    377 			dstat = node->dagHdr->status;
    378 			RF_ASSERT((node->status == rf_wait) ||
    379 				  (node->status == rf_good));
    380 			if (NodeReady(node)) {
    381 				if ((dstat == rf_enable) ||
    382 				    (dstat == rf_rollForward)) {
    383 					RF_ASSERT(node->status == rf_wait);
    384 					if (node->commitNode)
    385 						node->dagHdr->numCommits++;
    386 					node->status = rf_fired;
    387 					for (j = 0; j < node->numAntecedents; j++)
    388 						node->antecedents[j]->numSuccFired++;
    389 				} else {
    390 					RF_ASSERT(dstat == rf_rollBackward);
    391 					RF_ASSERT(node->status == rf_good);
    392 					/* only one commit node per graph */
    393 					RF_ASSERT(node->commitNode == RF_FALSE);
    394 					node->status = rf_recover;
    395 				}
    396 			}
    397 		}
    398 		/* now, fire the nodes */
    399 		for (node = nodeList; node; node = next) {
    400 			next = node->next;
    401 			if ((node->status == rf_fired) ||
    402 			    (node->status == rf_recover))
    403 				FireNode(node);
    404 		}
    405 	}
    406 }
    407 /* interrupt context:
    408  * for each succedent
    409  *    propagate required results from node to succedent
    410  *    increment succedent's numAntDone
    411  *    place newly-enable nodes on node queue for firing
    412  *
    413  * To save context switches, we don't place NIL nodes on the node queue,
    414  * but rather just process them as if they had fired.  Note that NIL nodes
    415  * that are the direct successors of the header will actually get fired by
    416  * DispatchDAG, which is fine because no context switches are involved.
    417  *
    418  * Important:  when running at user level, this can be called by any
    419  * disk thread, and so the increment and check of the antecedent count
    420  * must be locked.  I used the node queue mutex and locked down the
    421  * entire function, but this is certainly overkill.
    422  */
    423 static void
    424 PropagateResults(RF_DagNode_t *node, int context)
    425 {
    426 	RF_DagNode_t *s, *a;
    427 	RF_Raid_t *raidPtr;
    428 	int     i, ks;
    429 	RF_DagNode_t *finishlist = NULL;	/* a list of NIL nodes to be
    430 						 * finished */
    431 	RF_DagNode_t *skiplist = NULL;	/* list of nodes with failed truedata
    432 					 * antecedents */
    433 	RF_DagNode_t *firelist = NULL;	/* a list of nodes to be fired */
    434 	RF_DagNode_t *q = NULL, *qh = NULL, *next;
    435 	int     j, skipNode;
    436 
    437 	raidPtr = node->dagHdr->raidPtr;
    438 
    439 	DO_LOCK(raidPtr);
    440 
    441 	/* debug - validate fire counts */
    442 	for (i = 0; i < node->numAntecedents; i++) {
    443 		a = *(node->antecedents + i);
    444 		RF_ASSERT(a->numSuccFired >= a->numSuccDone);
    445 		RF_ASSERT(a->numSuccFired <= a->numSuccedents);
    446 		a->numSuccDone++;
    447 	}
    448 
    449 	switch (node->dagHdr->status) {
    450 	case rf_enable:
    451 	case rf_rollForward:
    452 		for (i = 0; i < node->numSuccedents; i++) {
    453 			s = *(node->succedents + i);
    454 			RF_ASSERT(s->status == rf_wait);
    455 			(s->numAntDone)++;
    456 			if (s->numAntDone == s->numAntecedents) {
    457 				/* look for NIL nodes */
    458 				if (s->doFunc == rf_NullNodeFunc) {
    459 					/* don't fire NIL nodes, just process
    460 					 * them */
    461 					s->next = finishlist;
    462 					finishlist = s;
    463 				} else {
    464 					/* look to see if the node is to be
    465 					 * skipped */
    466 					skipNode = RF_FALSE;
    467 					for (j = 0; j < s->numAntecedents; j++)
    468 						if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
    469 							skipNode = RF_TRUE;
    470 					if (skipNode) {
    471 						/* this node has one or more
    472 						 * failed true data
    473 						 * dependencies, so skip it */
    474 						s->next = skiplist;
    475 						skiplist = s;
    476 					} else
    477 						/* add s to list of nodes (q)
    478 						 * to execute */
    479 						if (context != RF_INTR_CONTEXT) {
    480 							/* we only have to
    481 							 * enqueue if we're at
    482 							 * intr context */
    483 							/* put node on
    484                                                            a list to
    485                                                            be fired
    486                                                            after we
    487                                                            unlock */
    488 							s->next = firelist;
    489 							firelist = s;
    490 						} else {
    491 							/* enqueue the
    492 							   node for
    493 							   the dag
    494 							   exec thread
    495 							   to fire */
    496 							RF_ASSERT(NodeReady(s));
    497 							if (q) {
    498 								q->next = s;
    499 								q = s;
    500 							} else {
    501 								qh = q = s;
    502 								qh->next = NULL;
    503 							}
    504 						}
    505 				}
    506 			}
    507 		}
    508 
    509 		if (q) {
    510 			/* xfer our local list of nodes to the node queue */
    511 			q->next = raidPtr->node_queue;
    512 			raidPtr->node_queue = qh;
    513 			DO_SIGNAL(raidPtr);
    514 		}
    515 		DO_UNLOCK(raidPtr);
    516 
    517 		for (; skiplist; skiplist = next) {
    518 			next = skiplist->next;
    519 			skiplist->status = rf_skipped;
    520 			for (i = 0; i < skiplist->numAntecedents; i++) {
    521 				skiplist->antecedents[i]->numSuccFired++;
    522 			}
    523 			if (skiplist->commitNode) {
    524 				skiplist->dagHdr->numCommits++;
    525 			}
    526 			rf_FinishNode(skiplist, context);
    527 		}
    528 		for (; finishlist; finishlist = next) {
    529 			/* NIL nodes: no need to fire them */
    530 			next = finishlist->next;
    531 			finishlist->status = rf_good;
    532 			for (i = 0; i < finishlist->numAntecedents; i++) {
    533 				finishlist->antecedents[i]->numSuccFired++;
    534 			}
    535 			if (finishlist->commitNode)
    536 				finishlist->dagHdr->numCommits++;
    537 			/*
    538 		         * Okay, here we're calling rf_FinishNode() on
    539 		         * nodes that have the null function as their
    540 		         * work proc. Such a node could be the
    541 		         * terminal node in a DAG. If so, it will
    542 		         * cause the DAG to complete, which will in
    543 		         * turn free memory used by the DAG, which
    544 		         * includes the node in question. Thus, we
    545 		         * must avoid referencing the node at all
    546 		         * after calling rf_FinishNode() on it.  */
    547 			rf_FinishNode(finishlist, context);	/* recursive call */
    548 		}
    549 		/* fire all nodes in firelist */
    550 		FireNodeList(firelist);
    551 		break;
    552 
    553 	case rf_rollBackward:
    554 		for (i = 0; i < node->numAntecedents; i++) {
    555 			a = *(node->antecedents + i);
    556 			RF_ASSERT(a->status == rf_good);
    557 			RF_ASSERT(a->numSuccDone <= a->numSuccedents);
    558 			RF_ASSERT(a->numSuccDone <= a->numSuccFired);
    559 
    560 			if (a->numSuccDone == a->numSuccFired) {
    561 				if (a->undoFunc == rf_NullNodeFunc) {
    562 					/* don't fire NIL nodes, just process
    563 					 * them */
    564 					a->next = finishlist;
    565 					finishlist = a;
    566 				} else {
    567 					if (context != RF_INTR_CONTEXT) {
    568 						/* we only have to enqueue if
    569 						 * we're at intr context */
    570 						/* put node on a list to be
    571 						   fired after we unlock */
    572 						a->next = firelist;
    573 
    574 						firelist = a;
    575 					} else {
    576 						/* enqueue the node for the
    577 						   dag exec thread to fire */
    578 						RF_ASSERT(NodeReady(a));
    579 						if (q) {
    580 							q->next = a;
    581 							q = a;
    582 						} else {
    583 							qh = q = a;
    584 							qh->next = NULL;
    585 						}
    586 					}
    587 				}
    588 			}
    589 		}
    590 		if (q) {
    591 			/* xfer our local list of nodes to the node queue */
    592 			q->next = raidPtr->node_queue;
    593 			raidPtr->node_queue = qh;
    594 			DO_SIGNAL(raidPtr);
    595 		}
    596 		DO_UNLOCK(raidPtr);
    597 		for (; finishlist; finishlist = next) {
    598 			/* NIL nodes: no need to fire them */
    599 			next = finishlist->next;
    600 			finishlist->status = rf_good;
    601 			/*
    602 		         * Okay, here we're calling rf_FinishNode() on
    603 		         * nodes that have the null function as their
    604 		         * work proc. Such a node could be the first
    605 		         * node in a DAG. If so, it will cause the DAG
    606 		         * to complete, which will in turn free memory
    607 		         * used by the DAG, which includes the node in
    608 		         * question. Thus, we must avoid referencing
    609 		         * the node at all after calling
    610 		         * rf_FinishNode() on it.  */
    611 			rf_FinishNode(finishlist, context);	/* recursive call */
    612 		}
    613 		/* fire all nodes in firelist */
    614 		FireNodeList(firelist);
    615 
    616 		break;
    617 	default:
    618 		printf("Engine found illegal DAG status in PropagateResults()\n");
    619 		RF_PANIC();
    620 		break;
    621 	}
    622 }
    623 
    624 
    625 
    626 /*
    627  * Process a fired node which has completed
    628  */
    629 static void
    630 ProcessNode(RF_DagNode_t *node, int context)
    631 {
    632 	RF_Raid_t *raidPtr;
    633 
    634 	raidPtr = node->dagHdr->raidPtr;
    635 
    636 	switch (node->status) {
    637 	case rf_good:
    638 		/* normal case, don't need to do anything */
    639 		break;
    640 	case rf_bad:
    641 		if ((node->dagHdr->numCommits > 0) ||
    642 		    (node->dagHdr->numCommitNodes == 0)) {
    643 			/* crossed commit barrier */
    644 			node->dagHdr->status = rf_rollForward;
    645 #if RF_DEBUG_ENGINE
    646 			if (rf_engineDebug) {
    647 				printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
    648 			}
    649 #endif
    650 		} else {
    651 			/* never reached commit barrier */
    652 			node->dagHdr->status = rf_rollBackward;
    653 #if RF_DEBUG_ENGINE
    654 			if (rf_engineDebug) {
    655 				printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
    656 			}
    657 #endif
    658 		}
    659 		break;
    660 	case rf_undone:
    661 		/* normal rollBackward case, don't need to do anything */
    662 		break;
    663 	case rf_panic:
    664 		/* an undo node failed!!! */
    665 		printf("UNDO of a node failed!!!/n");
    666 		break;
    667 	default:
    668 		printf("node finished execution with an illegal status!!!\n");
    669 		RF_PANIC();
    670 		break;
    671 	}
    672 
    673 	/* enqueue node's succedents (antecedents if rollBackward) for
    674 	 * execution */
    675 	PropagateResults(node, context);
    676 }
    677 
    678 
    679 
    680 /* user context or dag-exec-thread context:
    681  * This is the first step in post-processing a newly-completed node.
    682  * This routine is called by each node execution function to mark the node
    683  * as complete and fire off any successors that have been enabled.
    684  */
    685 int
    686 rf_FinishNode(RF_DagNode_t *node, int context)
    687 {
    688 	int     retcode = RF_FALSE;
    689 	node->dagHdr->numNodesCompleted++;
    690 	ProcessNode(node, context);
    691 
    692 	return (retcode);
    693 }
    694 
    695 
    696 /* user context: submit dag for execution, return non-zero if we have
    697  * to wait for completion.  if and only if we return non-zero, we'll
    698  * cause cbFunc to get invoked with cbArg when the DAG has completed.
    699  *
    700  * for now we always return 1.  If the DAG does not cause any I/O,
    701  * then the callback may get invoked before DispatchDAG returns.
    702  * There's code in state 5 of ContinueRaidAccess to handle this.
    703  *
    704  * All we do here is fire the direct successors of the header node.
    705  * The DAG execution thread does the rest of the dag processing.  */
    706 int
    707 rf_DispatchDAG(RF_DagHeader_t *dag, void (*cbFunc) (void *),
    708 	       void *cbArg)
    709 {
    710 	RF_Raid_t *raidPtr;
    711 
    712 	raidPtr = dag->raidPtr;
    713 #if RF_ACC_TRACE > 0
    714 	if (dag->tracerec) {
    715 		RF_ETIMER_START(dag->tracerec->timer);
    716 	}
    717 #endif
    718 #if DEBUG
    719 #if RF_DEBUG_VALIDATE_DAG
    720 	if (rf_engineDebug || rf_validateDAGDebug) {
    721 		if (rf_ValidateDAG(dag))
    722 			RF_PANIC();
    723 	}
    724 #endif
    725 #endif
    726 #if RF_DEBUG_ENGINE
    727 	if (rf_engineDebug) {
    728 		printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
    729 	}
    730 #endif
    731 	raidPtr->dags_in_flight++;	/* debug only:  blow off proper
    732 					 * locking */
    733 	dag->cbFunc = cbFunc;
    734 	dag->cbArg = cbArg;
    735 	dag->numNodesCompleted = 0;
    736 	dag->status = rf_enable;
    737 	FireNodeArray(dag->numSuccedents, dag->succedents);
    738 	return (1);
    739 }
    740 /* dedicated kernel thread: the thread that handles all DAG node
    741  * firing.  To minimize locking and unlocking, we grab a copy of the
    742  * entire node queue and then set the node queue to NULL before doing
    743  * any firing of nodes.  This way we only have to release the lock
    744  * once.  Of course, it's probably rare that there's more than one
    745  * node in the queue at any one time, but it sometimes happens.
    746  */
    747 
    748 static void
    749 DAGExecutionThread(RF_ThreadArg_t arg)
    750 {
    751 	RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
    752 	RF_Raid_t *raidPtr;
    753 	int     ks;
    754 	int     s;
    755 
    756 	raidPtr = (RF_Raid_t *) arg;
    757 
    758 #if RF_DEBUG_ENGINE
    759 	if (rf_engineDebug) {
    760 		printf("raid%d: Engine thread is running\n", raidPtr->raidid);
    761 	}
    762 #endif
    763 	s = splbio();
    764 
    765 	DO_LOCK(raidPtr);
    766 	while (!raidPtr->shutdown_engine) {
    767 
    768 		while (raidPtr->node_queue != NULL) {
    769 			local_nq = raidPtr->node_queue;
    770 			fire_nq = NULL;
    771 			term_nq = NULL;
    772 			raidPtr->node_queue = NULL;
    773 			DO_UNLOCK(raidPtr);
    774 
    775 			/* first, strip out the terminal nodes */
    776 			while (local_nq) {
    777 				nd = local_nq;
    778 				local_nq = local_nq->next;
    779 				switch (nd->dagHdr->status) {
    780 				case rf_enable:
    781 				case rf_rollForward:
    782 					if (nd->numSuccedents == 0) {
    783 						/* end of the dag, add to
    784 						 * callback list */
    785 						nd->next = term_nq;
    786 						term_nq = nd;
    787 					} else {
    788 						/* not the end, add to the
    789 						 * fire queue */
    790 						nd->next = fire_nq;
    791 						fire_nq = nd;
    792 					}
    793 					break;
    794 				case rf_rollBackward:
    795 					if (nd->numAntecedents == 0) {
    796 						/* end of the dag, add to the
    797 						 * callback list */
    798 						nd->next = term_nq;
    799 						term_nq = nd;
    800 					} else {
    801 						/* not the end, add to the
    802 						 * fire queue */
    803 						nd->next = fire_nq;
    804 						fire_nq = nd;
    805 					}
    806 					break;
    807 				default:
    808 					RF_PANIC();
    809 					break;
    810 				}
    811 			}
    812 
    813 			/* execute callback of dags which have reached the
    814 			 * terminal node */
    815 			while (term_nq) {
    816 				nd = term_nq;
    817 				term_nq = term_nq->next;
    818 				nd->next = NULL;
    819 				(nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
    820 				raidPtr->dags_in_flight--;	/* debug only */
    821 			}
    822 
    823 			/* fire remaining nodes */
    824 			FireNodeList(fire_nq);
    825 
    826 			DO_LOCK(raidPtr);
    827 		}
    828 		while (!raidPtr->shutdown_engine &&
    829 		       raidPtr->node_queue == NULL) {
    830 			DO_WAIT(raidPtr);
    831 		}
    832 	}
    833 	DO_UNLOCK(raidPtr);
    834 
    835 	splx(s);
    836 	kthread_exit(0);
    837 }
    838 
    839 /*
    840  * rf_RaidIOThread() -- When I/O to a component begins, raidstrategy()
    841  * puts the I/O on a buf_queue, and then signals raidPtr->iodone.  If
    842  * necessary, this function calls raidstart() to initiate the I/O.
    843  * When I/O to a component completes, KernelWakeupFunc() puts the
    844  * completed request onto raidPtr->iodone TAILQ.  This function looks
    845  * after requests on that queue by calling rf_DiskIOComplete() for the
    846  * request, and by calling any required CompleteFunc for the request.
    847  */
    848 
    849 static void
    850 rf_RaidIOThread(RF_ThreadArg_t arg)
    851 {
    852 	RF_Raid_t *raidPtr;
    853 	RF_DiskQueueData_t *req;
    854 	int s;
    855 
    856 	raidPtr = (RF_Raid_t *) arg;
    857 
    858 	s = splbio();
    859 	mutex_enter(&raidPtr->iodone_lock);
    860 
    861 	while (!raidPtr->shutdown_raidio) {
    862 		/* if there is nothing to do, then snooze. */
    863 		if (TAILQ_EMPTY(&(raidPtr->iodone)) &&
    864 		    rf_buf_queue_check(raidPtr->raidid)) {
    865 			cv_wait(&raidPtr->iodone_cv, &raidPtr->iodone_lock);
    866 		}
    867 
    868 		/* Check for deferred parity-map-related work. */
    869 		if (raidPtr->parity_map != NULL) {
    870 			mutex_exit(&raidPtr->iodone_lock);
    871 			rf_paritymap_checkwork(raidPtr->parity_map);
    872 			mutex_enter(&raidPtr->iodone_lock);
    873 		}
    874 
    875 		/* See what I/Os, if any, have arrived */
    876 		while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
    877 			TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
    878 			mutex_exit(&raidPtr->iodone_lock);
    879 			rf_DiskIOComplete(req->queue, req, req->error);
    880 			(req->CompleteFunc) (req->argument, req->error);
    881 			mutex_enter(&raidPtr->iodone_lock);
    882 		}
    883 
    884 		/* process any pending outgoing IO */
    885 		mutex_exit(&raidPtr->iodone_lock);
    886 		raidstart(raidPtr);
    887 		mutex_enter(&raidPtr->iodone_lock);
    888 
    889 	}
    890 
    891 	/* Let rf_ShutdownEngine know that we're done... */
    892 	raidPtr->shutdown_raidio = 0;
    893 	cv_signal(&raidPtr->iodone_cv);
    894 
    895 	mutex_exit(&raidPtr->iodone_lock);
    896 	splx(s);
    897 
    898 	kthread_exit(0);
    899 }
    900