1 1.25 andvar /* $NetBSD: rf_evenodd_dagfuncs.c,v 1.25 2022/02/16 22:00:56 andvar Exp $ */ 2 1.1 oster /* 3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University. 4 1.1 oster * All rights reserved. 5 1.1 oster * 6 1.1 oster * Author: ChangMing Wu 7 1.1 oster * 8 1.1 oster * Permission to use, copy, modify and distribute this software and 9 1.1 oster * its documentation is hereby granted, provided that both the copyright 10 1.1 oster * notice and this permission notice appear in all copies of the 11 1.1 oster * software, derivative works or modified versions, and any portions 12 1.1 oster * thereof, and that both notices appear in supporting documentation. 13 1.1 oster * 14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 1.1 oster * 18 1.1 oster * Carnegie Mellon requests users of this software to return to 19 1.1 oster * 20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU 21 1.1 oster * School of Computer Science 22 1.1 oster * Carnegie Mellon University 23 1.1 oster * Pittsburgh PA 15213-3890 24 1.1 oster * 25 1.1 oster * any improvements or extensions that they make and grant Carnegie the 26 1.1 oster * rights to redistribute these changes. 27 1.1 oster */ 28 1.1 oster 29 1.1 oster /* 30 1.1 oster * Code for RAID-EVENODD architecture. 31 1.1 oster */ 32 1.11 lukem 33 1.11 lukem #include <sys/cdefs.h> 34 1.25 andvar __KERNEL_RCSID(0, "$NetBSD: rf_evenodd_dagfuncs.c,v 1.25 2022/02/16 22:00:56 andvar Exp $"); 35 1.1 oster 36 1.7 oster #include "rf_archs.h" 37 1.19 ad 38 1.19 ad #ifdef _KERNEL_OPT 39 1.12 martin #include "opt_raid_diagnostic.h" 40 1.19 ad #endif 41 1.7 oster 42 1.7 oster #if RF_INCLUDE_EVENODD > 0 43 1.7 oster 44 1.10 oster #include <dev/raidframe/raidframevar.h> 45 1.10 oster 46 1.1 oster #include "rf_raid.h" 47 1.1 oster #include "rf_dag.h" 48 1.1 oster #include "rf_dagffrd.h" 49 1.1 oster #include "rf_dagffwr.h" 50 1.1 oster #include "rf_dagdegrd.h" 51 1.1 oster #include "rf_dagdegwr.h" 52 1.1 oster #include "rf_dagutils.h" 53 1.1 oster #include "rf_dagfuncs.h" 54 1.1 oster #include "rf_etimer.h" 55 1.1 oster #include "rf_general.h" 56 1.1 oster #include "rf_parityscan.h" 57 1.1 oster #include "rf_evenodd.h" 58 1.1 oster #include "rf_evenodd_dagfuncs.h" 59 1.1 oster 60 1.1 oster /* These redundant functions are for small write */ 61 1.2 oster RF_RedFuncs_t rf_EOSmallWritePFuncs = {rf_RegularXorFunc, "Regular Old-New P", rf_SimpleXorFunc, "Simple Old-New P"}; 62 1.2 oster RF_RedFuncs_t rf_EOSmallWriteEFuncs = {rf_RegularONEFunc, "Regular Old-New E", rf_SimpleONEFunc, "Regular Old-New E"}; 63 1.1 oster /* These redundant functions are for degraded read */ 64 1.2 oster RF_RedFuncs_t rf_eoPRecoveryFuncs = {rf_RecoveryXorFunc, "Recovery Xr", rf_RecoveryXorFunc, "Recovery Xr"}; 65 1.2 oster RF_RedFuncs_t rf_eoERecoveryFuncs = {rf_RecoveryEFunc, "Recovery E Func", rf_RecoveryEFunc, "Recovery E Func"}; 66 1.1 oster /********************************************************************************************** 67 1.2 oster * the following encoding node functions is used in EO_000_CreateLargeWriteDAG 68 1.1 oster **********************************************************************************************/ 69 1.24 christos void 70 1.20 dsl rf_RegularPEFunc(RF_DagNode_t *node) 71 1.1 oster { 72 1.2 oster rf_RegularESubroutine(node, node->results[1]); 73 1.2 oster rf_RegularXorFunc(node);/* does the wakeup here! */ 74 1.1 oster } 75 1.1 oster 76 1.1 oster 77 1.1 oster /************************************************************************************************ 78 1.1 oster * For EO_001_CreateSmallWriteDAG, there are (i)RegularONEFunc() and (ii)SimpleONEFunc() to 79 1.1 oster * be used. The previous case is when write access at least sectors of full stripe unit. 80 1.1 oster * The later function is used when the write access two stripe units but with total sectors 81 1.1 oster * less than sectors per SU. In this case, the access of parity and 'E' are shown as disconnected 82 1.25 andvar * areas in their stripe unit and parity write and 'E' write are both divided into two distinct 83 1.1 oster * writes( totally four). This simple old-new write and regular old-new write happen as in RAID-5 84 1.1 oster ************************************************************************************************/ 85 1.1 oster 86 1.2 oster /* Algorithm: 87 1.1 oster 1. Store the difference of old data and new data in the Rod buffer. 88 1.2 oster 2. then encode this buffer into the buffer which already have old 'E' information inside it, 89 1.1 oster the result can be shown to be the new 'E' information. 90 1.1 oster 3. xor the Wnd buffer into the difference buffer to recover the original old data. 91 1.2 oster Here we have another alternative: to allocate a temporary buffer for storing the difference of 92 1.2 oster old data and new data, then encode temp buf into old 'E' buf to form new 'E', but this approach 93 1.1 oster take the same speed as the previous, and need more memory. 94 1.1 oster */ 95 1.24 christos void 96 1.20 dsl rf_RegularONEFunc(RF_DagNode_t *node) 97 1.2 oster { 98 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; 99 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout; 100 1.2 oster int EpdaIndex = (node->numParams - 1) / 2 - 1; /* the parameter of node 101 1.2 oster * where you can find 102 1.2 oster * e-pda */ 103 1.22 christos int i, k; 104 1.2 oster int suoffset, length; 105 1.2 oster RF_RowCol_t scol; 106 1.2 oster char *srcbuf, *destbuf; 107 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; 108 1.2 oster RF_Etimer_t timer; 109 1.9 thorpej RF_PhysDiskAddr_t *pda; 110 1.9 thorpej #ifdef RAID_DIAGNOSTIC 111 1.9 thorpej RF_PhysDiskAddr_t *EPDA = 112 1.9 thorpej (RF_PhysDiskAddr_t *) node->params[EpdaIndex].p; 113 1.9 thorpej int ESUOffset = rf_StripeUnitOffset(layoutPtr, EPDA->startSector); 114 1.2 oster 115 1.2 oster RF_ASSERT(EPDA->type == RF_PDA_TYPE_Q); 116 1.2 oster RF_ASSERT(ESUOffset == 0); 117 1.21 riz #endif /* RAID_DIAGNOSTIC */ 118 1.2 oster 119 1.2 oster RF_ETIMER_START(timer); 120 1.2 oster 121 1.2 oster /* Xor the Wnd buffer into Rod buffer, the difference of old data and 122 1.2 oster * new data is stored in Rod buffer */ 123 1.2 oster for (k = 0; k < EpdaIndex; k += 2) { 124 1.2 oster length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[k].p)->numSector); 125 1.22 christos rf_bxor(node->params[k + EpdaIndex + 3].p, node->params[k + 1].p, length); 126 1.2 oster } 127 1.2 oster /* Start to encoding the buffer storing the difference of old data and 128 1.2 oster * new data into 'E' buffer */ 129 1.2 oster for (i = 0; i < EpdaIndex; i += 2) 130 1.2 oster if (node->params[i + 1].p != node->results[0]) { /* results[0] is buf ptr 131 1.2 oster * of E */ 132 1.2 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p; 133 1.2 oster srcbuf = (char *) node->params[i + 1].p; 134 1.2 oster scol = rf_EUCol(layoutPtr, pda->raidAddress); 135 1.2 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); 136 1.2 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset); 137 1.2 oster rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector); 138 1.2 oster } 139 1.2 oster /* Recover the original old data to be used by parity encoding 140 1.2 oster * function in XorNode */ 141 1.2 oster for (k = 0; k < EpdaIndex; k += 2) { 142 1.2 oster length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[k].p)->numSector); 143 1.22 christos rf_bxor(node->params[k + EpdaIndex + 3].p, node->params[k + 1].p, length); 144 1.2 oster } 145 1.2 oster RF_ETIMER_STOP(timer); 146 1.2 oster RF_ETIMER_EVAL(timer); 147 1.2 oster tracerec->q_us += RF_ETIMER_VAL_US(timer); 148 1.2 oster rf_GenericWakeupFunc(node, 0); 149 1.1 oster } 150 1.1 oster 151 1.24 christos void 152 1.20 dsl rf_SimpleONEFunc(RF_DagNode_t *node) 153 1.2 oster { 154 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; 155 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout; 156 1.2 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; 157 1.2 oster int retcode = 0; 158 1.2 oster char *srcbuf, *destbuf; 159 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; 160 1.2 oster int length; 161 1.2 oster RF_RowCol_t scol; 162 1.2 oster RF_Etimer_t timer; 163 1.2 oster 164 1.2 oster RF_ASSERT(((RF_PhysDiskAddr_t *) node->params[2].p)->type == RF_PDA_TYPE_Q); 165 1.2 oster if (node->dagHdr->status == rf_enable) { 166 1.2 oster RF_ETIMER_START(timer); 167 1.2 oster length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[4].p)->numSector); /* this is a pda of 168 1.2 oster * writeDataNodes */ 169 1.2 oster /* bxor to buffer of readDataNodes */ 170 1.16 oster retcode = rf_bxor(node->params[5].p, node->params[1].p, length); 171 1.25 andvar /* find out the corresponding column in encoding matrix for 172 1.25 andvar * write column to be encoded into redundant disk 'E' */ 173 1.2 oster scol = rf_EUCol(layoutPtr, pda->raidAddress); 174 1.2 oster srcbuf = node->params[1].p; 175 1.2 oster destbuf = node->params[3].p; 176 1.2 oster /* Start encoding process */ 177 1.2 oster rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector); 178 1.16 oster rf_bxor(node->params[5].p, node->params[1].p, length); 179 1.2 oster RF_ETIMER_STOP(timer); 180 1.2 oster RF_ETIMER_EVAL(timer); 181 1.2 oster tracerec->q_us += RF_ETIMER_VAL_US(timer); 182 1.2 oster 183 1.2 oster } 184 1.24 christos rf_GenericWakeupFunc(node, retcode); /* call wake func 185 1.24 christos * explicitly since no 186 1.24 christos * I/O in this node */ 187 1.1 oster } 188 1.1 oster 189 1.1 oster 190 1.1 oster /****** called by rf_RegularPEFunc(node) and rf_RegularEFunc(node) in f.f. large write ********/ 191 1.14 perry void 192 1.20 dsl rf_RegularESubroutine(RF_DagNode_t *node, char *ebuf) 193 1.2 oster { 194 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; 195 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout; 196 1.2 oster RF_PhysDiskAddr_t *pda; 197 1.2 oster int i, suoffset; 198 1.2 oster RF_RowCol_t scol; 199 1.2 oster char *srcbuf, *destbuf; 200 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; 201 1.2 oster RF_Etimer_t timer; 202 1.2 oster 203 1.2 oster RF_ETIMER_START(timer); 204 1.2 oster for (i = 0; i < node->numParams - 2; i += 2) { 205 1.2 oster RF_ASSERT(node->params[i + 1].p != ebuf); 206 1.2 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p; 207 1.2 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); 208 1.2 oster scol = rf_EUCol(layoutPtr, pda->raidAddress); 209 1.2 oster srcbuf = (char *) node->params[i + 1].p; 210 1.2 oster destbuf = ebuf + rf_RaidAddressToByte(raidPtr, suoffset); 211 1.2 oster rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector); 212 1.2 oster } 213 1.2 oster RF_ETIMER_STOP(timer); 214 1.2 oster RF_ETIMER_EVAL(timer); 215 1.2 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer); 216 1.1 oster } 217 1.1 oster 218 1.1 oster 219 1.1 oster /******************************************************************************************* 220 1.2 oster * Used in EO_001_CreateLargeWriteDAG 221 1.1 oster ******************************************************************************************/ 222 1.24 christos void 223 1.20 dsl rf_RegularEFunc(RF_DagNode_t *node) 224 1.1 oster { 225 1.2 oster rf_RegularESubroutine(node, node->results[0]); 226 1.2 oster rf_GenericWakeupFunc(node, 0); 227 1.1 oster } 228 1.1 oster /******************************************************************************************* 229 1.2 oster * This degraded function allow only two case: 230 1.2 oster * 1. when write access the full failed stripe unit, then the access can be more than 231 1.1 oster * one tripe units. 232 1.2 oster * 2. when write access only part of the failed SU, we assume accesses of more than 233 1.2 oster * one stripe unit is not allowed so that the write can be dealt with like a 234 1.2 oster * large write. 235 1.2 oster * The following function is based on these assumptions. So except in the second case, 236 1.25 andvar * it looks the same as a large write encoding function. But this is not exactly the 237 1.2 oster * normal way for doing a degraded write, since raidframe have to break cases of access 238 1.2 oster * other than the above two into smaller accesses. We may have to change 239 1.25 andvar * DegrESubroutine in the future. 240 1.1 oster *******************************************************************************************/ 241 1.14 perry void 242 1.20 dsl rf_DegrESubroutine(RF_DagNode_t *node, char *ebuf) 243 1.2 oster { 244 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; 245 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout; 246 1.2 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p; 247 1.2 oster RF_PhysDiskAddr_t *pda; 248 1.2 oster int i, suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector); 249 1.2 oster RF_RowCol_t scol; 250 1.2 oster char *srcbuf, *destbuf; 251 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; 252 1.2 oster RF_Etimer_t timer; 253 1.2 oster 254 1.2 oster RF_ETIMER_START(timer); 255 1.2 oster for (i = 0; i < node->numParams - 2; i += 2) { 256 1.2 oster RF_ASSERT(node->params[i + 1].p != ebuf); 257 1.2 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p; 258 1.2 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); 259 1.2 oster scol = rf_EUCol(layoutPtr, pda->raidAddress); 260 1.2 oster srcbuf = (char *) node->params[i + 1].p; 261 1.2 oster destbuf = ebuf + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset); 262 1.2 oster rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector); 263 1.2 oster } 264 1.2 oster 265 1.2 oster RF_ETIMER_STOP(timer); 266 1.2 oster RF_ETIMER_EVAL(timer); 267 1.2 oster tracerec->q_us += RF_ETIMER_VAL_US(timer); 268 1.1 oster } 269 1.1 oster 270 1.1 oster 271 1.1 oster /************************************************************************************** 272 1.2 oster * This function is used in case where one data disk failed and both redundant disks 273 1.1 oster * alive. It is used in the EO_100_CreateWriteDAG. Note: if there is another disk 274 1.1 oster * failed in the stripe but not accessed at this time, then we should, instead, use 275 1.1 oster * the rf_EOWriteDoubleRecoveryFunc(). 276 1.1 oster **************************************************************************************/ 277 1.24 christos void 278 1.20 dsl rf_Degraded_100_EOFunc(RF_DagNode_t *node) 279 1.1 oster { 280 1.2 oster rf_DegrESubroutine(node, node->results[1]); 281 1.2 oster rf_RecoveryXorFunc(node); /* does the wakeup here! */ 282 1.1 oster } 283 1.1 oster /************************************************************************************** 284 1.1 oster * This function is to encode one sector in one of the data disks to the E disk. 285 1.2 oster * However, in evenodd this function can also be used as decoding function to recover 286 1.1 oster * data from dead disk in the case of parity failure and a single data failure. 287 1.1 oster **************************************************************************************/ 288 1.14 perry void 289 1.2 oster rf_e_EncOneSect( 290 1.2 oster RF_RowCol_t srcLogicCol, 291 1.2 oster char *srcSecbuf, 292 1.2 oster RF_RowCol_t destLogicCol, 293 1.2 oster char *destSecbuf, 294 1.2 oster int bytesPerSector) 295 1.1 oster { 296 1.2 oster int S_index; /* index of the EU in the src col which need 297 1.2 oster * be Xored into all EUs in a dest sector */ 298 1.2 oster int numRowInEncMatix = (RF_EO_MATRIX_DIM) - 1; 299 1.2 oster RF_RowCol_t j, indexInDest, /* row index of an encoding unit in 300 1.25 andvar * the destination column of encoding 301 1.2 oster * matrix */ 302 1.2 oster indexInSrc; /* row index of an encoding unit in the source 303 1.25 andvar * column used for recovery */ 304 1.2 oster int bytesPerEU = bytesPerSector / numRowInEncMatix; 305 1.1 oster 306 1.1 oster #if RF_EO_MATRIX_DIM > 17 307 1.2 oster int shortsPerEU = bytesPerEU / sizeof(short); 308 1.2 oster short *destShortBuf, *srcShortBuf1, *srcShortBuf2; 309 1.6 augustss short temp1; 310 1.1 oster #elif RF_EO_MATRIX_DIM == 17 311 1.2 oster int longsPerEU = bytesPerEU / sizeof(long); 312 1.2 oster long *destLongBuf, *srcLongBuf1, *srcLongBuf2; 313 1.6 augustss long temp1; 314 1.1 oster #endif 315 1.1 oster 316 1.1 oster #if RF_EO_MATRIX_DIM > 17 317 1.2 oster RF_ASSERT(sizeof(short) == 2 || sizeof(short) == 1); 318 1.2 oster RF_ASSERT(bytesPerEU % sizeof(short) == 0); 319 1.1 oster #elif RF_EO_MATRIX_DIM == 17 320 1.2 oster RF_ASSERT(sizeof(long) == 8 || sizeof(long) == 4); 321 1.2 oster RF_ASSERT(bytesPerEU % sizeof(long) == 0); 322 1.1 oster #endif 323 1.1 oster 324 1.2 oster S_index = rf_EO_Mod((RF_EO_MATRIX_DIM - 1 + destLogicCol - srcLogicCol), RF_EO_MATRIX_DIM); 325 1.1 oster #if RF_EO_MATRIX_DIM > 17 326 1.2 oster srcShortBuf1 = (short *) (srcSecbuf + S_index * bytesPerEU); 327 1.1 oster #elif RF_EO_MATRIX_DIM == 17 328 1.2 oster srcLongBuf1 = (long *) (srcSecbuf + S_index * bytesPerEU); 329 1.1 oster #endif 330 1.1 oster 331 1.2 oster for (indexInDest = 0; indexInDest < numRowInEncMatix; indexInDest++) { 332 1.2 oster indexInSrc = rf_EO_Mod((indexInDest + destLogicCol - srcLogicCol), RF_EO_MATRIX_DIM); 333 1.1 oster 334 1.1 oster #if RF_EO_MATRIX_DIM > 17 335 1.2 oster destShortBuf = (short *) (destSecbuf + indexInDest * bytesPerEU); 336 1.2 oster srcShortBuf2 = (short *) (srcSecbuf + indexInSrc * bytesPerEU); 337 1.2 oster for (j = 0; j < shortsPerEU; j++) { 338 1.2 oster temp1 = destShortBuf[j] ^ srcShortBuf1[j]; 339 1.2 oster /* note: S_index won't be at the end row for any src 340 1.2 oster * col! */ 341 1.2 oster if (indexInSrc != RF_EO_MATRIX_DIM - 1) 342 1.2 oster destShortBuf[j] = (srcShortBuf2[j]) ^ temp1; 343 1.2 oster /* if indexInSrc is at the end row, ie. 344 1.2 oster * RF_EO_MATRIX_DIM -1, then all elements are zero! */ 345 1.2 oster else 346 1.2 oster destShortBuf[j] = temp1; 347 1.2 oster } 348 1.1 oster 349 1.1 oster #elif RF_EO_MATRIX_DIM == 17 350 1.2 oster destLongBuf = (long *) (destSecbuf + indexInDest * bytesPerEU); 351 1.2 oster srcLongBuf2 = (long *) (srcSecbuf + indexInSrc * bytesPerEU); 352 1.2 oster for (j = 0; j < longsPerEU; j++) { 353 1.2 oster temp1 = destLongBuf[j] ^ srcLongBuf1[j]; 354 1.2 oster if (indexInSrc != RF_EO_MATRIX_DIM - 1) 355 1.2 oster destLongBuf[j] = (srcLongBuf2[j]) ^ temp1; 356 1.2 oster else 357 1.2 oster destLongBuf[j] = temp1; 358 1.2 oster } 359 1.1 oster #endif 360 1.2 oster } 361 1.1 oster } 362 1.1 oster 363 1.14 perry void 364 1.2 oster rf_e_encToBuf( 365 1.2 oster RF_Raid_t * raidPtr, 366 1.2 oster RF_RowCol_t srcLogicCol, 367 1.2 oster char *srcbuf, 368 1.2 oster RF_RowCol_t destLogicCol, 369 1.2 oster char *destbuf, 370 1.2 oster int numSector) 371 1.1 oster { 372 1.2 oster int i, bytesPerSector = rf_RaidAddressToByte(raidPtr, 1); 373 1.1 oster 374 1.2 oster for (i = 0; i < numSector; i++) { 375 1.2 oster rf_e_EncOneSect(srcLogicCol, srcbuf, destLogicCol, destbuf, bytesPerSector); 376 1.2 oster srcbuf += bytesPerSector; 377 1.2 oster destbuf += bytesPerSector; 378 1.2 oster } 379 1.1 oster } 380 1.2 oster /************************************************************************************** 381 1.2 oster * when parity die and one data die, We use second redundant information, 'E', 382 1.2 oster * to recover the data in dead disk. This function is used in the recovery node of 383 1.2 oster * for EO_110_CreateReadDAG 384 1.1 oster **************************************************************************************/ 385 1.24 christos void 386 1.20 dsl rf_RecoveryEFunc(RF_DagNode_t *node) 387 1.2 oster { 388 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; 389 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout; 390 1.2 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p; 391 1.2 oster RF_RowCol_t scol, /* source logical column */ 392 1.2 oster fcol = rf_EUCol(layoutPtr, failedPDA->raidAddress); /* logical column of 393 1.2 oster * failed SU */ 394 1.2 oster int i; 395 1.2 oster RF_PhysDiskAddr_t *pda; 396 1.2 oster int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector); 397 1.2 oster char *srcbuf, *destbuf; 398 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; 399 1.2 oster RF_Etimer_t timer; 400 1.2 oster 401 1.23 christos memset(node->results[0], 0, 402 1.8 thorpej rf_RaidAddressToByte(raidPtr, failedPDA->numSector)); 403 1.2 oster if (node->dagHdr->status == rf_enable) { 404 1.2 oster RF_ETIMER_START(timer); 405 1.2 oster for (i = 0; i < node->numParams - 2; i += 2) 406 1.2 oster if (node->params[i + 1].p != node->results[0]) { 407 1.2 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p; 408 1.2 oster if (i == node->numParams - 4) 409 1.25 andvar scol = RF_EO_MATRIX_DIM - 2; /* the column of 410 1.2 oster * redundant E */ 411 1.2 oster else 412 1.2 oster scol = rf_EUCol(layoutPtr, pda->raidAddress); 413 1.2 oster srcbuf = (char *) node->params[i + 1].p; 414 1.2 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); 415 1.2 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset); 416 1.2 oster rf_e_encToBuf(raidPtr, scol, srcbuf, fcol, destbuf, pda->numSector); 417 1.2 oster } 418 1.2 oster RF_ETIMER_STOP(timer); 419 1.2 oster RF_ETIMER_EVAL(timer); 420 1.2 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer); 421 1.2 oster } 422 1.24 christos rf_GenericWakeupFunc(node, 0); /* node execute successfully */ 423 1.1 oster } 424 1.1 oster /************************************************************************************** 425 1.1 oster * This function is used in the case where one data and the parity have filed. 426 1.1 oster * (in EO_110_CreateWriteDAG ) 427 1.1 oster **************************************************************************************/ 428 1.24 christos void 429 1.2 oster rf_EO_DegradedWriteEFunc(RF_DagNode_t * node) 430 1.1 oster { 431 1.2 oster rf_DegrESubroutine(node, node->results[0]); 432 1.2 oster rf_GenericWakeupFunc(node, 0); 433 1.1 oster } 434 1.1 oster 435 1.1 oster 436 1.2 oster 437 1.1 oster /************************************************************************************** 438 1.1 oster * THE FUNCTION IS FOR DOUBLE DEGRADED READ AND WRITE CASES 439 1.1 oster **************************************************************************************/ 440 1.1 oster 441 1.14 perry void 442 1.2 oster rf_doubleEOdecode( 443 1.2 oster RF_Raid_t * raidPtr, 444 1.2 oster char **rrdbuf, 445 1.2 oster char **dest, 446 1.2 oster RF_RowCol_t * fcol, 447 1.2 oster char *pbuf, 448 1.2 oster char *ebuf) 449 1.2 oster { 450 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout); 451 1.2 oster int i, j, k, f1, f2, row; 452 1.2 oster int rrdrow, erow, count = 0; 453 1.2 oster int bytesPerSector = rf_RaidAddressToByte(raidPtr, 1); 454 1.2 oster int numRowInEncMatix = (RF_EO_MATRIX_DIM) - 1; 455 1.1 oster #if 0 456 1.2 oster int pcol = (RF_EO_MATRIX_DIM) - 1; 457 1.1 oster #endif 458 1.2 oster int ecol = (RF_EO_MATRIX_DIM) - 2; 459 1.2 oster int bytesPerEU = bytesPerSector / numRowInEncMatix; 460 1.2 oster int numDataCol = layoutPtr->numDataCol; 461 1.2 oster #if RF_EO_MATRIX_DIM > 17 462 1.2 oster int shortsPerEU = bytesPerEU / sizeof(short); 463 1.2 oster short *rrdbuf_current, *pbuf_current, *ebuf_current; 464 1.2 oster short *dest_smaller, *dest_smaller_current, *dest_larger, *dest_larger_current; 465 1.6 augustss short *temp; 466 1.2 oster short *P; 467 1.2 oster 468 1.2 oster RF_ASSERT(bytesPerEU % sizeof(short) == 0); 469 1.2 oster #elif RF_EO_MATRIX_DIM == 17 470 1.2 oster int longsPerEU = bytesPerEU / sizeof(long); 471 1.2 oster long *rrdbuf_current, *pbuf_current, *ebuf_current; 472 1.2 oster long *dest_smaller, *dest_smaller_current, *dest_larger, *dest_larger_current; 473 1.6 augustss long *temp; 474 1.2 oster long *P; 475 1.2 oster 476 1.2 oster RF_ASSERT(bytesPerEU % sizeof(long) == 0); 477 1.2 oster #endif 478 1.23 christos P = RF_Malloc(bytesPerEU); 479 1.23 christos temp = RF_Malloc(bytesPerEU); 480 1.2 oster RF_ASSERT(*((long *) dest[0]) == 0); 481 1.2 oster RF_ASSERT(*((long *) dest[1]) == 0); 482 1.2 oster RF_ASSERT(*P == 0); 483 1.2 oster /* calculate the 'P' parameter, which, not parity, is the Xor of all 484 1.25 andvar * elements in the last two columns, ie. 'E' and 'parity' columns, see 485 1.2 oster * the Ref. paper by Blaum, et al 1993 */ 486 1.2 oster for (i = 0; i < numRowInEncMatix; i++) 487 1.2 oster for (k = 0; k < longsPerEU; k++) { 488 1.2 oster #if RF_EO_MATRIX_DIM > 17 489 1.2 oster ebuf_current = ((short *) ebuf) + i * shortsPerEU + k; 490 1.2 oster pbuf_current = ((short *) pbuf) + i * shortsPerEU + k; 491 1.2 oster #elif RF_EO_MATRIX_DIM == 17 492 1.2 oster ebuf_current = ((long *) ebuf) + i * longsPerEU + k; 493 1.2 oster pbuf_current = ((long *) pbuf) + i * longsPerEU + k; 494 1.2 oster #endif 495 1.2 oster P[k] ^= *ebuf_current; 496 1.2 oster P[k] ^= *pbuf_current; 497 1.2 oster } 498 1.2 oster RF_ASSERT(fcol[0] != fcol[1]); 499 1.2 oster if (fcol[0] < fcol[1]) { 500 1.2 oster #if RF_EO_MATRIX_DIM > 17 501 1.2 oster dest_smaller = (short *) (dest[0]); 502 1.2 oster dest_larger = (short *) (dest[1]); 503 1.2 oster #elif RF_EO_MATRIX_DIM == 17 504 1.2 oster dest_smaller = (long *) (dest[0]); 505 1.2 oster dest_larger = (long *) (dest[1]); 506 1.2 oster #endif 507 1.2 oster f1 = fcol[0]; 508 1.2 oster f2 = fcol[1]; 509 1.2 oster } else { 510 1.2 oster #if RF_EO_MATRIX_DIM > 17 511 1.2 oster dest_smaller = (short *) (dest[1]); 512 1.2 oster dest_larger = (short *) (dest[0]); 513 1.2 oster #elif RF_EO_MATRIX_DIM == 17 514 1.2 oster dest_smaller = (long *) (dest[1]); 515 1.2 oster dest_larger = (long *) (dest[0]); 516 1.2 oster #endif 517 1.2 oster f1 = fcol[1]; 518 1.2 oster f2 = fcol[0]; 519 1.2 oster } 520 1.2 oster row = (RF_EO_MATRIX_DIM) - 1; 521 1.2 oster while ((row = rf_EO_Mod((row + f1 - f2), RF_EO_MATRIX_DIM)) != ((RF_EO_MATRIX_DIM) - 1)) { 522 1.2 oster #if RF_EO_MATRIX_DIM > 17 523 1.2 oster dest_larger_current = dest_larger + row * shortsPerEU; 524 1.2 oster dest_smaller_current = dest_smaller + row * shortsPerEU; 525 1.2 oster #elif RF_EO_MATRIX_DIM == 17 526 1.2 oster dest_larger_current = dest_larger + row * longsPerEU; 527 1.2 oster dest_smaller_current = dest_smaller + row * longsPerEU; 528 1.2 oster #endif 529 1.2 oster /** Do the diagonal recovery. Initially, temp[k] = (failed 1), 530 1.25 andvar which is the failed data in the column which has smaller col index. **/ 531 1.2 oster /* step 1: ^(SUM of nonfailed in-diagonal A(rrdrow,0..m-3)) */ 532 1.2 oster for (j = 0; j < numDataCol; j++) { 533 1.2 oster if (j == f1 || j == f2) 534 1.2 oster continue; 535 1.2 oster rrdrow = rf_EO_Mod((row + f2 - j), RF_EO_MATRIX_DIM); 536 1.2 oster if (rrdrow != (RF_EO_MATRIX_DIM) - 1) { 537 1.2 oster #if RF_EO_MATRIX_DIM > 17 538 1.2 oster rrdbuf_current = (short *) (rrdbuf[j]) + rrdrow * shortsPerEU; 539 1.2 oster for (k = 0; k < shortsPerEU; k++) 540 1.2 oster temp[k] ^= *(rrdbuf_current + k); 541 1.2 oster #elif RF_EO_MATRIX_DIM == 17 542 1.2 oster rrdbuf_current = (long *) (rrdbuf[j]) + rrdrow * longsPerEU; 543 1.2 oster for (k = 0; k < longsPerEU; k++) 544 1.2 oster temp[k] ^= *(rrdbuf_current + k); 545 1.2 oster #endif 546 1.2 oster } 547 1.2 oster } 548 1.25 andvar /* step 2: ^E(erow,m-2), If erow is at the bottom row, don't 549 1.2 oster * Xor into it E(erow,m-2) = (principle diagonal) ^ (failed 550 1.2 oster * 1) ^ (failed 2) ^ ( SUM of nonfailed in-diagonal 551 1.2 oster * A(rrdrow,0..m-3) ) After this step, temp[k] = (principle 552 1.2 oster * diagonal) ^ (failed 2) */ 553 1.2 oster 554 1.2 oster erow = rf_EO_Mod((row + f2 - ecol), (RF_EO_MATRIX_DIM)); 555 1.2 oster if (erow != (RF_EO_MATRIX_DIM) - 1) { 556 1.2 oster #if RF_EO_MATRIX_DIM > 17 557 1.2 oster ebuf_current = (short *) ebuf + shortsPerEU * erow; 558 1.2 oster for (k = 0; k < shortsPerEU; k++) 559 1.2 oster temp[k] ^= *(ebuf_current + k); 560 1.2 oster #elif RF_EO_MATRIX_DIM == 17 561 1.2 oster ebuf_current = (long *) ebuf + longsPerEU * erow; 562 1.2 oster for (k = 0; k < longsPerEU; k++) 563 1.2 oster temp[k] ^= *(ebuf_current + k); 564 1.2 oster #endif 565 1.2 oster } 566 1.2 oster /* step 3: ^P to obtain the failed data (failed 2). P can be 567 1.2 oster * proved to be actually (principle diagonal) After this 568 1.2 oster * step, temp[k] = (failed 2), the failed data to be recovered */ 569 1.2 oster #if RF_EO_MATRIX_DIM > 17 570 1.2 oster for (k = 0; k < shortsPerEU; k++) 571 1.2 oster temp[k] ^= P[k]; 572 1.2 oster /* Put the data to the destination buffer */ 573 1.2 oster for (k = 0; k < shortsPerEU; k++) 574 1.2 oster dest_larger_current[k] = temp[k]; 575 1.2 oster #elif RF_EO_MATRIX_DIM == 17 576 1.2 oster for (k = 0; k < longsPerEU; k++) 577 1.2 oster temp[k] ^= P[k]; 578 1.2 oster /* Put the data to the destination buffer */ 579 1.2 oster for (k = 0; k < longsPerEU; k++) 580 1.2 oster dest_larger_current[k] = temp[k]; 581 1.2 oster #endif 582 1.2 oster 583 1.2 oster /** THE FOLLOWING DO THE HORIZONTAL XOR **/ 584 1.2 oster /* step 1: ^(SUM of A(row,0..m-3)), ie. all nonfailed data 585 1.25 andvar * columns */ 586 1.2 oster for (j = 0; j < numDataCol; j++) { 587 1.2 oster if (j == f1 || j == f2) 588 1.2 oster continue; 589 1.2 oster #if RF_EO_MATRIX_DIM > 17 590 1.2 oster rrdbuf_current = (short *) (rrdbuf[j]) + row * shortsPerEU; 591 1.2 oster for (k = 0; k < shortsPerEU; k++) 592 1.2 oster temp[k] ^= *(rrdbuf_current + k); 593 1.2 oster #elif RF_EO_MATRIX_DIM == 17 594 1.2 oster rrdbuf_current = (long *) (rrdbuf[j]) + row * longsPerEU; 595 1.2 oster for (k = 0; k < longsPerEU; k++) 596 1.2 oster temp[k] ^= *(rrdbuf_current + k); 597 1.2 oster #endif 598 1.2 oster } 599 1.2 oster /* step 2: ^A(row,m-1) */ 600 1.2 oster /* step 3: Put the data to the destination buffer */ 601 1.2 oster #if RF_EO_MATRIX_DIM > 17 602 1.2 oster pbuf_current = (short *) pbuf + shortsPerEU * row; 603 1.2 oster for (k = 0; k < shortsPerEU; k++) 604 1.2 oster temp[k] ^= *(pbuf_current + k); 605 1.2 oster for (k = 0; k < shortsPerEU; k++) 606 1.2 oster dest_smaller_current[k] = temp[k]; 607 1.2 oster #elif RF_EO_MATRIX_DIM == 17 608 1.2 oster pbuf_current = (long *) pbuf + longsPerEU * row; 609 1.2 oster for (k = 0; k < longsPerEU; k++) 610 1.2 oster temp[k] ^= *(pbuf_current + k); 611 1.2 oster for (k = 0; k < longsPerEU; k++) 612 1.2 oster dest_smaller_current[k] = temp[k]; 613 1.2 oster #endif 614 1.2 oster count++; 615 1.2 oster } 616 1.2 oster /* Check if all Encoding Unit in the data buffer have been decoded, 617 1.2 oster * according EvenOdd theory, if "RF_EO_MATRIX_DIM" is a prime number, 618 1.2 oster * this algorithm will covered all buffer */ 619 1.2 oster RF_ASSERT(count == numRowInEncMatix); 620 1.2 oster RF_Free((char *) P, bytesPerEU); 621 1.2 oster RF_Free((char *) temp, bytesPerEU); 622 1.1 oster } 623 1.2 oster 624 1.1 oster 625 1.1 oster /*************************************************************************************** 626 1.25 andvar * This function is called by double degraded read 627 1.2 oster * EO_200_CreateReadDAG 628 1.1 oster * 629 1.1 oster ***************************************************************************************/ 630 1.24 christos void 631 1.20 dsl rf_EvenOddDoubleRecoveryFunc(RF_DagNode_t *node) 632 1.2 oster { 633 1.2 oster int ndataParam = 0; 634 1.2 oster int np = node->numParams; 635 1.2 oster RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p; 636 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p; 637 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout); 638 1.2 oster int i, prm, sector, nresults = node->numResults; 639 1.2 oster RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit; 640 1.2 oster unsigned sosAddr; 641 1.22 christos int mallc_one = 0, mallc_two = 0; /* flags to indicate if 642 1.22 christos * memory is allocated */ 643 1.2 oster int bytesPerSector = rf_RaidAddressToByte(raidPtr, 1); 644 1.2 oster RF_PhysDiskAddr_t *ppda, *ppda2, *epda, *epda2, *pda, *pda0, *pda1, 645 1.2 oster npda; 646 1.2 oster RF_RowCol_t fcol[2], fsuoff[2], fsuend[2], numDataCol = layoutPtr->numDataCol; 647 1.2 oster char **buf, *ebuf, *pbuf, *dest[2]; 648 1.17 christos long *suoff = NULL, *suend = NULL, *prmToCol = NULL, 649 1.17 christos psuoff = 0, esuoff = 0; 650 1.2 oster RF_SectorNum_t startSector, endSector; 651 1.2 oster RF_Etimer_t timer; 652 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; 653 1.2 oster 654 1.2 oster RF_ETIMER_START(timer); 655 1.2 oster 656 1.2 oster /* Find out the number of parameters which are pdas for data 657 1.2 oster * information */ 658 1.2 oster for (i = 0; i <= np; i++) 659 1.2 oster if (((RF_PhysDiskAddr_t *) node->params[i].p)->type != RF_PDA_TYPE_DATA) { 660 1.2 oster ndataParam = i; 661 1.2 oster break; 662 1.2 oster } 663 1.23 christos buf = RF_Malloc(numDataCol * sizeof(*buf)); 664 1.2 oster if (ndataParam != 0) { 665 1.23 christos suoff = RF_Malloc(ndataParam * sizeof(*suoff)); 666 1.23 christos suend = RF_Malloc(ndataParam * sizeof(*suend)); 667 1.23 christos prmToCol = RF_Malloc(ndataParam * sizeof(*prmToCol)); 668 1.2 oster } 669 1.2 oster if (asmap->failedPDAs[1] && 670 1.2 oster (asmap->failedPDAs[1]->numSector + asmap->failedPDAs[0]->numSector < secPerSU)) { 671 1.2 oster RF_ASSERT(0); /* currently, no support for this situation */ 672 1.2 oster ppda = node->params[np - 6].p; 673 1.2 oster ppda2 = node->params[np - 5].p; 674 1.2 oster RF_ASSERT(ppda2->type == RF_PDA_TYPE_PARITY); 675 1.2 oster epda = node->params[np - 4].p; 676 1.2 oster epda2 = node->params[np - 3].p; 677 1.2 oster RF_ASSERT(epda2->type == RF_PDA_TYPE_Q); 678 1.2 oster } else { 679 1.2 oster ppda = node->params[np - 4].p; 680 1.2 oster epda = node->params[np - 3].p; 681 1.2 oster psuoff = rf_StripeUnitOffset(layoutPtr, ppda->startSector); 682 1.2 oster esuoff = rf_StripeUnitOffset(layoutPtr, epda->startSector); 683 1.2 oster RF_ASSERT(psuoff == esuoff); 684 1.2 oster } 685 1.2 oster /* 686 1.2 oster the followings have three goals: 687 1.2 oster 1. determine the startSector to begin decoding and endSector to end decoding. 688 1.25 andvar 2. determine the column numbers of the two failed disks. 689 1.2 oster 3. determine the offset and end offset of the access within each failed stripe unit. 690 1.2 oster */ 691 1.2 oster if (nresults == 1) { 692 1.2 oster /* find the startSector to begin decoding */ 693 1.2 oster pda = node->results[0]; 694 1.8 thorpej memset(pda->bufPtr, 0, bytesPerSector * pda->numSector); 695 1.2 oster fsuoff[0] = rf_StripeUnitOffset(layoutPtr, pda->startSector); 696 1.2 oster fsuend[0] = fsuoff[0] + pda->numSector; 697 1.17 christos fsuoff[1] = 0; 698 1.17 christos fsuend[1] = 0; 699 1.2 oster startSector = fsuoff[0]; 700 1.2 oster endSector = fsuend[0]; 701 1.2 oster 702 1.5 soren /* find out the column of failed disk being accessed */ 703 1.2 oster fcol[0] = rf_EUCol(layoutPtr, pda->raidAddress); 704 1.2 oster 705 1.25 andvar /* find out the other failed column not accessed */ 706 1.2 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); 707 1.2 oster for (i = 0; i < numDataCol; i++) { 708 1.2 oster npda.raidAddress = sosAddr + (i * secPerSU); 709 1.13 oster (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.col), &(npda.startSector), 0); 710 1.2 oster /* skip over dead disks */ 711 1.13 oster if (RF_DEAD_DISK(raidPtr->Disks[npda.col].status)) 712 1.2 oster if (i != fcol[0]) 713 1.2 oster break; 714 1.2 oster } 715 1.2 oster RF_ASSERT(i < numDataCol); 716 1.2 oster fcol[1] = i; 717 1.2 oster } else { 718 1.2 oster RF_ASSERT(nresults == 2); 719 1.2 oster pda0 = node->results[0]; 720 1.8 thorpej memset(pda0->bufPtr, 0, bytesPerSector * pda0->numSector); 721 1.2 oster pda1 = node->results[1]; 722 1.8 thorpej memset(pda1->bufPtr, 0, bytesPerSector * pda1->numSector); 723 1.25 andvar /* determine the failed column numbers of the two failed 724 1.2 oster * disks. */ 725 1.2 oster fcol[0] = rf_EUCol(layoutPtr, pda0->raidAddress); 726 1.2 oster fcol[1] = rf_EUCol(layoutPtr, pda1->raidAddress); 727 1.2 oster /* determine the offset and end offset of the access within 728 1.2 oster * each failed stripe unit. */ 729 1.2 oster fsuoff[0] = rf_StripeUnitOffset(layoutPtr, pda0->startSector); 730 1.2 oster fsuend[0] = fsuoff[0] + pda0->numSector; 731 1.2 oster fsuoff[1] = rf_StripeUnitOffset(layoutPtr, pda1->startSector); 732 1.2 oster fsuend[1] = fsuoff[1] + pda1->numSector; 733 1.2 oster /* determine the startSector to begin decoding */ 734 1.2 oster startSector = RF_MIN(pda0->startSector, pda1->startSector); 735 1.2 oster /* determine the endSector to end decoding */ 736 1.2 oster endSector = RF_MAX(fsuend[0], fsuend[1]); 737 1.2 oster } 738 1.2 oster /* 739 1.2 oster assign the beginning sector and the end sector for each parameter 740 1.25 andvar find out the corresponding column # for each parameter 741 1.2 oster */ 742 1.2 oster for (prm = 0; prm < ndataParam; prm++) { 743 1.2 oster pda = node->params[prm].p; 744 1.2 oster suoff[prm] = rf_StripeUnitOffset(layoutPtr, pda->startSector); 745 1.2 oster suend[prm] = suoff[prm] + pda->numSector; 746 1.2 oster prmToCol[prm] = rf_EUCol(layoutPtr, pda->raidAddress); 747 1.2 oster } 748 1.2 oster /* 'sector' is the sector for the current decoding algorithm. For each 749 1.2 oster * sector in the failed SU, find out the corresponding parameters that 750 1.2 oster * cover the current sector and that are needed for decoding of this 751 1.2 oster * sector in failed SU. 2. Find out if sector is in the shadow of any 752 1.2 oster * accessed failed SU. If not, malloc a temporary space of a sector in 753 1.2 oster * size. */ 754 1.2 oster for (sector = startSector; sector < endSector; sector++) { 755 1.2 oster if (nresults == 2) 756 1.2 oster if (!(fsuoff[0] <= sector && sector < fsuend[0]) && !(fsuoff[1] <= sector && sector < fsuend[1])) 757 1.2 oster continue; 758 1.2 oster for (prm = 0; prm < ndataParam; prm++) 759 1.2 oster if (suoff[prm] <= sector && sector < suend[prm]) 760 1.18 christos buf[(prmToCol[prm])] = (char *)((RF_PhysDiskAddr_t *) node->params[prm].p)->bufPtr + 761 1.2 oster rf_RaidAddressToByte(raidPtr, sector - suoff[prm]); 762 1.2 oster /* find out if sector is in the shadow of any accessed failed 763 1.2 oster * SU. If yes, assign dest[0], dest[1] to point at suitable 764 1.2 oster * position of the buffer corresponding to failed SUs. if no, 765 1.2 oster * malloc a temporary space of a sector in size for 766 1.2 oster * destination of decoding. */ 767 1.2 oster RF_ASSERT(nresults == 1 || nresults == 2); 768 1.2 oster if (nresults == 1) { 769 1.18 christos dest[0] = (char *)((RF_PhysDiskAddr_t *) node->results[0])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[0]); 770 1.2 oster /* Always malloc temp buffer to dest[1] */ 771 1.23 christos dest[1] = RF_Malloc(bytesPerSector); 772 1.2 oster mallc_two = 1; 773 1.2 oster } else { 774 1.2 oster if (fsuoff[0] <= sector && sector < fsuend[0]) 775 1.18 christos dest[0] = (char *)((RF_PhysDiskAddr_t *) node->results[0])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[0]); 776 1.2 oster else { 777 1.23 christos dest[0] = RF_Malloc(bytesPerSector); 778 1.2 oster mallc_one = 1; 779 1.2 oster } 780 1.2 oster if (fsuoff[1] <= sector && sector < fsuend[1]) 781 1.18 christos dest[1] = (char *)((RF_PhysDiskAddr_t *) node->results[1])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[1]); 782 1.2 oster else { 783 1.23 christos dest[1] = RF_Malloc(bytesPerSector); 784 1.2 oster mallc_two = 1; 785 1.2 oster } 786 1.2 oster RF_ASSERT(mallc_one == 0 || mallc_two == 0); 787 1.2 oster } 788 1.18 christos pbuf = (char *)ppda->bufPtr + rf_RaidAddressToByte(raidPtr, sector - psuoff); 789 1.18 christos ebuf = (char *)epda->bufPtr + rf_RaidAddressToByte(raidPtr, sector - esuoff); 790 1.2 oster /* 791 1.2 oster * After finish finding all needed sectors, call doubleEOdecode function for decoding 792 1.2 oster * one sector to destination. 793 1.2 oster */ 794 1.2 oster rf_doubleEOdecode(raidPtr, buf, dest, fcol, pbuf, ebuf); 795 1.2 oster /* free all allocated memory, and mark flag to indicate no 796 1.2 oster * memory is being allocated */ 797 1.2 oster if (mallc_one == 1) 798 1.2 oster RF_Free(dest[0], bytesPerSector); 799 1.2 oster if (mallc_two == 1) 800 1.2 oster RF_Free(dest[1], bytesPerSector); 801 1.2 oster mallc_one = mallc_two = 0; 802 1.2 oster } 803 1.2 oster RF_Free(buf, numDataCol * sizeof(char *)); 804 1.2 oster if (ndataParam != 0) { 805 1.2 oster RF_Free(suoff, ndataParam * sizeof(long)); 806 1.2 oster RF_Free(suend, ndataParam * sizeof(long)); 807 1.2 oster RF_Free(prmToCol, ndataParam * sizeof(long)); 808 1.2 oster } 809 1.2 oster RF_ETIMER_STOP(timer); 810 1.2 oster RF_ETIMER_EVAL(timer); 811 1.2 oster if (tracerec) { 812 1.2 oster tracerec->q_us += RF_ETIMER_VAL_US(timer); 813 1.2 oster } 814 1.2 oster rf_GenericWakeupFunc(node, 0); 815 1.1 oster } 816 1.1 oster 817 1.1 oster 818 1.2 oster /* currently, only access of one of the two failed SU is allowed in this function. 819 1.2 oster * also, asmap->numStripeUnitsAccessed is limited to be one, the RaidFrame will break large access into 820 1.1 oster * many accesses of single stripe unit. 821 1.1 oster */ 822 1.1 oster 823 1.24 christos void 824 1.20 dsl rf_EOWriteDoubleRecoveryFunc(RF_DagNode_t *node) 825 1.2 oster { 826 1.2 oster int np = node->numParams; 827 1.2 oster RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p; 828 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p; 829 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout); 830 1.2 oster RF_SectorNum_t sector; 831 1.2 oster RF_RowCol_t col, scol; 832 1.2 oster int prm, i, j; 833 1.2 oster RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit; 834 1.2 oster unsigned sosAddr; 835 1.2 oster unsigned bytesPerSector = rf_RaidAddressToByte(raidPtr, 1); 836 1.2 oster RF_int64 numbytes; 837 1.2 oster RF_SectorNum_t startSector, endSector; 838 1.2 oster RF_PhysDiskAddr_t *ppda, *epda, *pda, *fpda, npda; 839 1.2 oster RF_RowCol_t fcol[2], numDataCol = layoutPtr->numDataCol; 840 1.2 oster char **buf; /* buf[0], buf[1], buf[2], ...etc. point to 841 1.2 oster * buffer storing data read from col0, col1, 842 1.2 oster * col2 */ 843 1.2 oster char *ebuf, *pbuf, *dest[2], *olddata[2]; 844 1.2 oster RF_Etimer_t timer; 845 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; 846 1.2 oster 847 1.2 oster RF_ASSERT(asmap->numDataFailed == 1); /* currently only support this 848 1.2 oster * case, the other failed SU 849 1.2 oster * is not being accessed */ 850 1.2 oster RF_ETIMER_START(timer); 851 1.23 christos buf = RF_Malloc(numDataCol * sizeof(*buf)); 852 1.2 oster 853 1.2 oster ppda = node->results[0];/* Instead of being buffers, node->results[0] 854 1.2 oster * and [1] are Ppda and Epda */ 855 1.2 oster epda = node->results[1]; 856 1.2 oster fpda = asmap->failedPDAs[0]; 857 1.2 oster 858 1.2 oster /* First, recovery the failed old SU using EvenOdd double decoding */ 859 1.2 oster /* determine the startSector and endSector for decoding */ 860 1.2 oster startSector = rf_StripeUnitOffset(layoutPtr, fpda->startSector); 861 1.2 oster endSector = startSector + fpda->numSector; 862 1.25 andvar /* Assign buf[col] pointers to point to each non-failed column and 863 1.2 oster * initialize the pbuf and ebuf to point at the beginning of each 864 1.2 oster * source buffers and destination buffers */ 865 1.2 oster for (prm = 0; prm < numDataCol - 2; prm++) { 866 1.2 oster pda = (RF_PhysDiskAddr_t *) node->params[prm].p; 867 1.2 oster col = rf_EUCol(layoutPtr, pda->raidAddress); 868 1.2 oster buf[col] = pda->bufPtr; 869 1.2 oster } 870 1.2 oster /* pbuf and ebuf: they will change values as double recovery decoding 871 1.2 oster * goes on */ 872 1.2 oster pbuf = ppda->bufPtr; 873 1.2 oster ebuf = epda->bufPtr; 874 1.25 andvar /* find out the logical column numbers in the encoding matrix of the 875 1.25 andvar * two failed columns */ 876 1.2 oster fcol[0] = rf_EUCol(layoutPtr, fpda->raidAddress); 877 1.2 oster 878 1.25 andvar /* find out the other failed column not accessed this time */ 879 1.2 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); 880 1.2 oster for (i = 0; i < numDataCol; i++) { 881 1.2 oster npda.raidAddress = sosAddr + (i * secPerSU); 882 1.13 oster (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.col), &(npda.startSector), 0); 883 1.2 oster /* skip over dead disks */ 884 1.13 oster if (RF_DEAD_DISK(raidPtr->Disks[npda.col].status)) 885 1.2 oster if (i != fcol[0]) 886 1.2 oster break; 887 1.2 oster } 888 1.2 oster RF_ASSERT(i < numDataCol); 889 1.2 oster fcol[1] = i; 890 1.2 oster /* assign temporary space to put recovered failed SU */ 891 1.2 oster numbytes = fpda->numSector * bytesPerSector; 892 1.23 christos olddata[0] = RF_Malloc(numbytes); 893 1.23 christos olddata[1] = RF_Malloc(numbytes); 894 1.2 oster dest[0] = olddata[0]; 895 1.2 oster dest[1] = olddata[1]; 896 1.2 oster /* Begin the recovery decoding, initially buf[j], ebuf, pbuf, dest[j] 897 1.2 oster * have already pointed at the beginning of each source buffers and 898 1.2 oster * destination buffers */ 899 1.2 oster for (sector = startSector, i = 0; sector < endSector; sector++, i++) { 900 1.2 oster rf_doubleEOdecode(raidPtr, buf, dest, fcol, pbuf, ebuf); 901 1.2 oster for (j = 0; j < numDataCol; j++) 902 1.2 oster if ((j != fcol[0]) && (j != fcol[1])) 903 1.2 oster buf[j] += bytesPerSector; 904 1.2 oster dest[0] += bytesPerSector; 905 1.2 oster dest[1] += bytesPerSector; 906 1.2 oster ebuf += bytesPerSector; 907 1.2 oster pbuf += bytesPerSector; 908 1.2 oster } 909 1.2 oster /* after recovery, the buffer pointed by olddata[0] is the old failed 910 1.2 oster * data. With new writing data and this old data, use small write to 911 1.25 andvar * calculate the new redundant information */ 912 1.2 oster /* node->params[ 0, ... PDAPerDisk * (numDataCol - 2)-1 ] are Pdas of 913 1.2 oster * Rrd; params[ PDAPerDisk*(numDataCol - 2), ... PDAPerDisk*numDataCol 914 1.2 oster * -1 ] are Pdas of Rp, ( Rp2 ), Re, ( Re2 ) ; params[ 915 1.2 oster * PDAPerDisk*numDataCol, ... PDAPerDisk*numDataCol 916 1.2 oster * +asmap->numStripeUnitsAccessed -asmap->numDataFailed-1] are Pdas of 917 1.2 oster * wudNodes; For current implementation, we assume the simplest case: 918 1.2 oster * asmap->numStripeUnitsAccessed == 1 and asmap->numDataFailed == 1 919 1.2 oster * ie. PDAPerDisk = 1 then node->params[numDataCol] must be the new 920 1.25 andvar * data to be written to the failed disk. We first bxor the new data 921 1.2 oster * into the old recovered data, then do the same things as small 922 1.2 oster * write. */ 923 1.2 oster 924 1.16 oster rf_bxor(((RF_PhysDiskAddr_t *) node->params[numDataCol].p)->bufPtr, olddata[0], numbytes); 925 1.2 oster /* do new 'E' calculation */ 926 1.25 andvar /* find out the corresponding column in encoding matrix for write 927 1.25 andvar * column to be encoded into redundant disk 'E' */ 928 1.2 oster scol = rf_EUCol(layoutPtr, fpda->raidAddress); 929 1.2 oster /* olddata[0] now is source buffer pointer; epda->bufPtr is the dest 930 1.2 oster * buffer pointer */ 931 1.2 oster rf_e_encToBuf(raidPtr, scol, olddata[0], RF_EO_MATRIX_DIM - 2, epda->bufPtr, fpda->numSector); 932 1.2 oster 933 1.2 oster /* do new 'P' calculation */ 934 1.16 oster rf_bxor(olddata[0], ppda->bufPtr, numbytes); 935 1.2 oster /* Free the allocated buffer */ 936 1.2 oster RF_Free(olddata[0], numbytes); 937 1.2 oster RF_Free(olddata[1], numbytes); 938 1.2 oster RF_Free(buf, numDataCol * sizeof(char *)); 939 1.2 oster 940 1.2 oster RF_ETIMER_STOP(timer); 941 1.2 oster RF_ETIMER_EVAL(timer); 942 1.2 oster if (tracerec) { 943 1.2 oster tracerec->q_us += RF_ETIMER_VAL_US(timer); 944 1.2 oster } 945 1.2 oster rf_GenericWakeupFunc(node, 0); 946 1.1 oster } 947 1.7 oster #endif /* RF_INCLUDE_EVENODD > 0 */ 948