Home | History | Annotate | Line # | Download | only in raidframe
      1  1.25    andvar /*	$NetBSD: rf_evenodd_dagfuncs.c,v 1.25 2022/02/16 22:00:56 andvar Exp $	*/
      2   1.1     oster /*
      3   1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1     oster  * All rights reserved.
      5   1.1     oster  *
      6   1.1     oster  * Author: ChangMing Wu
      7   1.1     oster  *
      8   1.1     oster  * Permission to use, copy, modify and distribute this software and
      9   1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1     oster  * notice and this permission notice appear in all copies of the
     11   1.1     oster  * software, derivative works or modified versions, and any portions
     12   1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1     oster  *
     14   1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1     oster  *
     18   1.1     oster  * Carnegie Mellon requests users of this software to return to
     19   1.1     oster  *
     20   1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1     oster  *  School of Computer Science
     22   1.1     oster  *  Carnegie Mellon University
     23   1.1     oster  *  Pittsburgh PA 15213-3890
     24   1.1     oster  *
     25   1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1     oster  * rights to redistribute these changes.
     27   1.1     oster  */
     28   1.1     oster 
     29   1.1     oster /*
     30   1.1     oster  * Code for RAID-EVENODD  architecture.
     31   1.1     oster  */
     32  1.11     lukem 
     33  1.11     lukem #include <sys/cdefs.h>
     34  1.25    andvar __KERNEL_RCSID(0, "$NetBSD: rf_evenodd_dagfuncs.c,v 1.25 2022/02/16 22:00:56 andvar Exp $");
     35   1.1     oster 
     36   1.7     oster #include "rf_archs.h"
     37  1.19        ad 
     38  1.19        ad #ifdef _KERNEL_OPT
     39  1.12    martin #include "opt_raid_diagnostic.h"
     40  1.19        ad #endif
     41   1.7     oster 
     42   1.7     oster #if RF_INCLUDE_EVENODD > 0
     43   1.7     oster 
     44  1.10     oster #include <dev/raidframe/raidframevar.h>
     45  1.10     oster 
     46   1.1     oster #include "rf_raid.h"
     47   1.1     oster #include "rf_dag.h"
     48   1.1     oster #include "rf_dagffrd.h"
     49   1.1     oster #include "rf_dagffwr.h"
     50   1.1     oster #include "rf_dagdegrd.h"
     51   1.1     oster #include "rf_dagdegwr.h"
     52   1.1     oster #include "rf_dagutils.h"
     53   1.1     oster #include "rf_dagfuncs.h"
     54   1.1     oster #include "rf_etimer.h"
     55   1.1     oster #include "rf_general.h"
     56   1.1     oster #include "rf_parityscan.h"
     57   1.1     oster #include "rf_evenodd.h"
     58   1.1     oster #include "rf_evenodd_dagfuncs.h"
     59   1.1     oster 
     60   1.1     oster /* These redundant functions are for small write */
     61   1.2     oster RF_RedFuncs_t rf_EOSmallWritePFuncs = {rf_RegularXorFunc, "Regular Old-New P", rf_SimpleXorFunc, "Simple Old-New P"};
     62   1.2     oster RF_RedFuncs_t rf_EOSmallWriteEFuncs = {rf_RegularONEFunc, "Regular Old-New E", rf_SimpleONEFunc, "Regular Old-New E"};
     63   1.1     oster /* These redundant functions are for degraded read */
     64   1.2     oster RF_RedFuncs_t rf_eoPRecoveryFuncs = {rf_RecoveryXorFunc, "Recovery Xr", rf_RecoveryXorFunc, "Recovery Xr"};
     65   1.2     oster RF_RedFuncs_t rf_eoERecoveryFuncs = {rf_RecoveryEFunc, "Recovery E Func", rf_RecoveryEFunc, "Recovery E Func"};
     66   1.1     oster /**********************************************************************************************
     67   1.2     oster  *   the following encoding node functions is used in  EO_000_CreateLargeWriteDAG
     68   1.1     oster  **********************************************************************************************/
     69  1.24  christos void
     70  1.20       dsl rf_RegularPEFunc(RF_DagNode_t *node)
     71   1.1     oster {
     72   1.2     oster 	rf_RegularESubroutine(node, node->results[1]);
     73   1.2     oster 	rf_RegularXorFunc(node);/* does the wakeup here! */
     74   1.1     oster }
     75   1.1     oster 
     76   1.1     oster 
     77   1.1     oster /************************************************************************************************
     78   1.1     oster  *  For EO_001_CreateSmallWriteDAG, there are (i)RegularONEFunc() and (ii)SimpleONEFunc() to
     79   1.1     oster  *  be used. The previous case is when write access at least sectors of full stripe unit.
     80   1.1     oster  *  The later function is used when the write access two stripe units but with total sectors
     81   1.1     oster  *  less than sectors per SU. In this case, the access of parity and 'E' are shown as disconnected
     82  1.25    andvar  *  areas in their stripe unit and  parity write and 'E' write are both divided into two distinct
     83   1.1     oster  *  writes( totally four). This simple old-new write and regular old-new write happen as in RAID-5
     84   1.1     oster  ************************************************************************************************/
     85   1.1     oster 
     86   1.2     oster /* Algorithm:
     87   1.1     oster      1. Store the difference of old data and new data in the Rod buffer.
     88   1.2     oster      2. then encode this buffer into the buffer which already have old 'E' information inside it,
     89   1.1     oster 	the result can be shown to be the new 'E' information.
     90   1.1     oster      3. xor the Wnd buffer into the difference buffer to recover the  original old data.
     91   1.2     oster    Here we have another alternative: to allocate a temporary buffer for storing the difference of
     92   1.2     oster    old data and new data, then encode temp buf into old 'E' buf to form new 'E', but this approach
     93   1.1     oster    take the same speed as the previous, and need more memory.
     94   1.1     oster */
     95  1.24  christos void
     96  1.20       dsl rf_RegularONEFunc(RF_DagNode_t *node)
     97   1.2     oster {
     98   1.2     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
     99   1.2     oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    100   1.2     oster 	int     EpdaIndex = (node->numParams - 1) / 2 - 1;	/* the parameter of node
    101   1.2     oster 								 * where you can find
    102   1.2     oster 								 * e-pda */
    103  1.22  christos 	int     i, k;
    104   1.2     oster 	int     suoffset, length;
    105   1.2     oster 	RF_RowCol_t scol;
    106   1.2     oster 	char   *srcbuf, *destbuf;
    107   1.2     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    108   1.2     oster 	RF_Etimer_t timer;
    109   1.9   thorpej 	RF_PhysDiskAddr_t *pda;
    110   1.9   thorpej #ifdef RAID_DIAGNOSTIC
    111   1.9   thorpej 	RF_PhysDiskAddr_t *EPDA =
    112   1.9   thorpej 	    (RF_PhysDiskAddr_t *) node->params[EpdaIndex].p;
    113   1.9   thorpej 	int     ESUOffset = rf_StripeUnitOffset(layoutPtr, EPDA->startSector);
    114   1.2     oster 
    115   1.2     oster 	RF_ASSERT(EPDA->type == RF_PDA_TYPE_Q);
    116   1.2     oster 	RF_ASSERT(ESUOffset == 0);
    117  1.21       riz #endif /* RAID_DIAGNOSTIC */
    118   1.2     oster 
    119   1.2     oster 	RF_ETIMER_START(timer);
    120   1.2     oster 
    121   1.2     oster 	/* Xor the Wnd buffer into Rod buffer, the difference of old data and
    122   1.2     oster 	 * new data is stored in Rod buffer */
    123   1.2     oster 	for (k = 0; k < EpdaIndex; k += 2) {
    124   1.2     oster 		length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[k].p)->numSector);
    125  1.22  christos 		rf_bxor(node->params[k + EpdaIndex + 3].p, node->params[k + 1].p, length);
    126   1.2     oster 	}
    127   1.2     oster 	/* Start to encoding the buffer storing the difference of old data and
    128   1.2     oster 	 * new data into 'E' buffer  */
    129   1.2     oster 	for (i = 0; i < EpdaIndex; i += 2)
    130   1.2     oster 		if (node->params[i + 1].p != node->results[0]) {	/* results[0] is buf ptr
    131   1.2     oster 									 * of E */
    132   1.2     oster 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    133   1.2     oster 			srcbuf = (char *) node->params[i + 1].p;
    134   1.2     oster 			scol = rf_EUCol(layoutPtr, pda->raidAddress);
    135   1.2     oster 			suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    136   1.2     oster 			destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset);
    137   1.2     oster 			rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
    138   1.2     oster 		}
    139   1.2     oster 	/* Recover the original old data to be used by parity encoding
    140   1.2     oster 	 * function in XorNode */
    141   1.2     oster 	for (k = 0; k < EpdaIndex; k += 2) {
    142   1.2     oster 		length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[k].p)->numSector);
    143  1.22  christos 		rf_bxor(node->params[k + EpdaIndex + 3].p, node->params[k + 1].p, length);
    144   1.2     oster 	}
    145   1.2     oster 	RF_ETIMER_STOP(timer);
    146   1.2     oster 	RF_ETIMER_EVAL(timer);
    147   1.2     oster 	tracerec->q_us += RF_ETIMER_VAL_US(timer);
    148   1.2     oster 	rf_GenericWakeupFunc(node, 0);
    149   1.1     oster }
    150   1.1     oster 
    151  1.24  christos void
    152  1.20       dsl rf_SimpleONEFunc(RF_DagNode_t *node)
    153   1.2     oster {
    154   1.2     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    155   1.2     oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    156   1.2     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    157   1.2     oster 	int     retcode = 0;
    158   1.2     oster 	char   *srcbuf, *destbuf;
    159   1.2     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    160   1.2     oster 	int     length;
    161   1.2     oster 	RF_RowCol_t scol;
    162   1.2     oster 	RF_Etimer_t timer;
    163   1.2     oster 
    164   1.2     oster 	RF_ASSERT(((RF_PhysDiskAddr_t *) node->params[2].p)->type == RF_PDA_TYPE_Q);
    165   1.2     oster 	if (node->dagHdr->status == rf_enable) {
    166   1.2     oster 		RF_ETIMER_START(timer);
    167   1.2     oster 		length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[4].p)->numSector);	/* this is a pda of
    168   1.2     oster 														 * writeDataNodes */
    169   1.2     oster 		/* bxor to buffer of readDataNodes */
    170  1.16     oster 		retcode = rf_bxor(node->params[5].p, node->params[1].p, length);
    171  1.25    andvar 		/* find out the corresponding column in encoding matrix for
    172  1.25    andvar 		 * write column to be encoded into redundant disk 'E' */
    173   1.2     oster 		scol = rf_EUCol(layoutPtr, pda->raidAddress);
    174   1.2     oster 		srcbuf = node->params[1].p;
    175   1.2     oster 		destbuf = node->params[3].p;
    176   1.2     oster 		/* Start encoding process */
    177   1.2     oster 		rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
    178  1.16     oster 		rf_bxor(node->params[5].p, node->params[1].p, length);
    179   1.2     oster 		RF_ETIMER_STOP(timer);
    180   1.2     oster 		RF_ETIMER_EVAL(timer);
    181   1.2     oster 		tracerec->q_us += RF_ETIMER_VAL_US(timer);
    182   1.2     oster 
    183   1.2     oster 	}
    184  1.24  christos 	rf_GenericWakeupFunc(node, retcode);	/* call wake func
    185  1.24  christos 						 * explicitly since no
    186  1.24  christos 						 * I/O in this node */
    187   1.1     oster }
    188   1.1     oster 
    189   1.1     oster 
    190   1.1     oster /****** called by rf_RegularPEFunc(node) and rf_RegularEFunc(node) in f.f. large write  ********/
    191  1.14     perry void
    192  1.20       dsl rf_RegularESubroutine(RF_DagNode_t *node, char *ebuf)
    193   1.2     oster {
    194   1.2     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    195   1.2     oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    196   1.2     oster 	RF_PhysDiskAddr_t *pda;
    197   1.2     oster 	int     i, suoffset;
    198   1.2     oster 	RF_RowCol_t scol;
    199   1.2     oster 	char   *srcbuf, *destbuf;
    200   1.2     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    201   1.2     oster 	RF_Etimer_t timer;
    202   1.2     oster 
    203   1.2     oster 	RF_ETIMER_START(timer);
    204   1.2     oster 	for (i = 0; i < node->numParams - 2; i += 2) {
    205   1.2     oster 		RF_ASSERT(node->params[i + 1].p != ebuf);
    206   1.2     oster 		pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    207   1.2     oster 		suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    208   1.2     oster 		scol = rf_EUCol(layoutPtr, pda->raidAddress);
    209   1.2     oster 		srcbuf = (char *) node->params[i + 1].p;
    210   1.2     oster 		destbuf = ebuf + rf_RaidAddressToByte(raidPtr, suoffset);
    211   1.2     oster 		rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
    212   1.2     oster 	}
    213   1.2     oster 	RF_ETIMER_STOP(timer);
    214   1.2     oster 	RF_ETIMER_EVAL(timer);
    215   1.2     oster 	tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    216   1.1     oster }
    217   1.1     oster 
    218   1.1     oster 
    219   1.1     oster /*******************************************************************************************
    220   1.2     oster  *			 Used in  EO_001_CreateLargeWriteDAG
    221   1.1     oster  ******************************************************************************************/
    222  1.24  christos void
    223  1.20       dsl rf_RegularEFunc(RF_DagNode_t *node)
    224   1.1     oster {
    225   1.2     oster 	rf_RegularESubroutine(node, node->results[0]);
    226   1.2     oster 	rf_GenericWakeupFunc(node, 0);
    227   1.1     oster }
    228   1.1     oster /*******************************************************************************************
    229   1.2     oster  * This degraded function allow only two case:
    230   1.2     oster  *  1. when write access the full failed stripe unit, then the access can be more than
    231   1.1     oster  *     one tripe units.
    232   1.2     oster  *  2. when write access only part of the failed SU, we assume accesses of more than
    233   1.2     oster  *     one stripe unit is not allowed so that the write can be dealt with like a
    234   1.2     oster  *     large write.
    235   1.2     oster  *  The following function is based on these assumptions. So except in the second case,
    236  1.25    andvar  *  it looks the same as a large write encoding function. But this is not exactly the
    237   1.2     oster  *  normal way for doing a degraded write, since raidframe have to break cases of access
    238   1.2     oster  *  other than the above two into smaller accesses. We may have to change
    239  1.25    andvar  *  DegrESubroutine in the future.
    240   1.1     oster  *******************************************************************************************/
    241  1.14     perry void
    242  1.20       dsl rf_DegrESubroutine(RF_DagNode_t *node, char *ebuf)
    243   1.2     oster {
    244   1.2     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    245   1.2     oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    246   1.2     oster 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    247   1.2     oster 	RF_PhysDiskAddr_t *pda;
    248   1.2     oster 	int     i, suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    249   1.2     oster 	RF_RowCol_t scol;
    250   1.2     oster 	char   *srcbuf, *destbuf;
    251   1.2     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    252   1.2     oster 	RF_Etimer_t timer;
    253   1.2     oster 
    254   1.2     oster 	RF_ETIMER_START(timer);
    255   1.2     oster 	for (i = 0; i < node->numParams - 2; i += 2) {
    256   1.2     oster 		RF_ASSERT(node->params[i + 1].p != ebuf);
    257   1.2     oster 		pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    258   1.2     oster 		suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    259   1.2     oster 		scol = rf_EUCol(layoutPtr, pda->raidAddress);
    260   1.2     oster 		srcbuf = (char *) node->params[i + 1].p;
    261   1.2     oster 		destbuf = ebuf + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    262   1.2     oster 		rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
    263   1.2     oster 	}
    264   1.2     oster 
    265   1.2     oster 	RF_ETIMER_STOP(timer);
    266   1.2     oster 	RF_ETIMER_EVAL(timer);
    267   1.2     oster 	tracerec->q_us += RF_ETIMER_VAL_US(timer);
    268   1.1     oster }
    269   1.1     oster 
    270   1.1     oster 
    271   1.1     oster /**************************************************************************************
    272   1.2     oster  * This function is used in case where one data disk failed and both redundant disks
    273   1.1     oster  * alive. It is used in the EO_100_CreateWriteDAG. Note: if there is another disk
    274   1.1     oster  * failed in the stripe but not accessed at this time, then we should, instead, use
    275   1.1     oster  * the rf_EOWriteDoubleRecoveryFunc().
    276   1.1     oster  **************************************************************************************/
    277  1.24  christos void
    278  1.20       dsl rf_Degraded_100_EOFunc(RF_DagNode_t *node)
    279   1.1     oster {
    280   1.2     oster 	rf_DegrESubroutine(node, node->results[1]);
    281   1.2     oster 	rf_RecoveryXorFunc(node);	/* does the wakeup here! */
    282   1.1     oster }
    283   1.1     oster /**************************************************************************************
    284   1.1     oster  * This function is to encode one sector in one of the data disks to the E disk.
    285   1.2     oster  * However, in evenodd this function can also be used as decoding function to recover
    286   1.1     oster  * data from dead disk in the case of parity failure and a single data failure.
    287   1.1     oster  **************************************************************************************/
    288  1.14     perry void
    289   1.2     oster rf_e_EncOneSect(
    290   1.2     oster     RF_RowCol_t srcLogicCol,
    291   1.2     oster     char *srcSecbuf,
    292   1.2     oster     RF_RowCol_t destLogicCol,
    293   1.2     oster     char *destSecbuf,
    294   1.2     oster     int bytesPerSector)
    295   1.1     oster {
    296   1.2     oster 	int     S_index;	/* index of the EU in the src col which need
    297   1.2     oster 				 * be Xored into all EUs in a dest sector */
    298   1.2     oster 	int     numRowInEncMatix = (RF_EO_MATRIX_DIM) - 1;
    299   1.2     oster 	RF_RowCol_t j, indexInDest,	/* row index of an encoding unit in
    300  1.25    andvar 					 * the destination column of encoding
    301   1.2     oster 					 * matrix */
    302   1.2     oster 	        indexInSrc;	/* row index of an encoding unit in the source
    303  1.25    andvar 				 * column used for recovery */
    304   1.2     oster 	int     bytesPerEU = bytesPerSector / numRowInEncMatix;
    305   1.1     oster 
    306   1.1     oster #if RF_EO_MATRIX_DIM > 17
    307   1.2     oster 	int     shortsPerEU = bytesPerEU / sizeof(short);
    308   1.2     oster 	short  *destShortBuf, *srcShortBuf1, *srcShortBuf2;
    309   1.6  augustss 	short temp1;
    310   1.1     oster #elif RF_EO_MATRIX_DIM == 17
    311   1.2     oster 	int     longsPerEU = bytesPerEU / sizeof(long);
    312   1.2     oster 	long   *destLongBuf, *srcLongBuf1, *srcLongBuf2;
    313   1.6  augustss 	long temp1;
    314   1.1     oster #endif
    315   1.1     oster 
    316   1.1     oster #if RF_EO_MATRIX_DIM > 17
    317   1.2     oster 	RF_ASSERT(sizeof(short) == 2 || sizeof(short) == 1);
    318   1.2     oster 	RF_ASSERT(bytesPerEU % sizeof(short) == 0);
    319   1.1     oster #elif RF_EO_MATRIX_DIM == 17
    320   1.2     oster 	RF_ASSERT(sizeof(long) == 8 || sizeof(long) == 4);
    321   1.2     oster 	RF_ASSERT(bytesPerEU % sizeof(long) == 0);
    322   1.1     oster #endif
    323   1.1     oster 
    324   1.2     oster 	S_index = rf_EO_Mod((RF_EO_MATRIX_DIM - 1 + destLogicCol - srcLogicCol), RF_EO_MATRIX_DIM);
    325   1.1     oster #if RF_EO_MATRIX_DIM > 17
    326   1.2     oster 	srcShortBuf1 = (short *) (srcSecbuf + S_index * bytesPerEU);
    327   1.1     oster #elif RF_EO_MATRIX_DIM == 17
    328   1.2     oster 	srcLongBuf1 = (long *) (srcSecbuf + S_index * bytesPerEU);
    329   1.1     oster #endif
    330   1.1     oster 
    331   1.2     oster 	for (indexInDest = 0; indexInDest < numRowInEncMatix; indexInDest++) {
    332   1.2     oster 		indexInSrc = rf_EO_Mod((indexInDest + destLogicCol - srcLogicCol), RF_EO_MATRIX_DIM);
    333   1.1     oster 
    334   1.1     oster #if RF_EO_MATRIX_DIM > 17
    335   1.2     oster 		destShortBuf = (short *) (destSecbuf + indexInDest * bytesPerEU);
    336   1.2     oster 		srcShortBuf2 = (short *) (srcSecbuf + indexInSrc * bytesPerEU);
    337   1.2     oster 		for (j = 0; j < shortsPerEU; j++) {
    338   1.2     oster 			temp1 = destShortBuf[j] ^ srcShortBuf1[j];
    339   1.2     oster 			/* note: S_index won't be at the end row for any src
    340   1.2     oster 			 * col! */
    341   1.2     oster 			if (indexInSrc != RF_EO_MATRIX_DIM - 1)
    342   1.2     oster 				destShortBuf[j] = (srcShortBuf2[j]) ^ temp1;
    343   1.2     oster 			/* if indexInSrc is at the end row, ie.
    344   1.2     oster 			 * RF_EO_MATRIX_DIM -1, then all elements are zero! */
    345   1.2     oster 			else
    346   1.2     oster 				destShortBuf[j] = temp1;
    347   1.2     oster 		}
    348   1.1     oster 
    349   1.1     oster #elif RF_EO_MATRIX_DIM == 17
    350   1.2     oster 		destLongBuf = (long *) (destSecbuf + indexInDest * bytesPerEU);
    351   1.2     oster 		srcLongBuf2 = (long *) (srcSecbuf + indexInSrc * bytesPerEU);
    352   1.2     oster 		for (j = 0; j < longsPerEU; j++) {
    353   1.2     oster 			temp1 = destLongBuf[j] ^ srcLongBuf1[j];
    354   1.2     oster 			if (indexInSrc != RF_EO_MATRIX_DIM - 1)
    355   1.2     oster 				destLongBuf[j] = (srcLongBuf2[j]) ^ temp1;
    356   1.2     oster 			else
    357   1.2     oster 				destLongBuf[j] = temp1;
    358   1.2     oster 		}
    359   1.1     oster #endif
    360   1.2     oster 	}
    361   1.1     oster }
    362   1.1     oster 
    363  1.14     perry void
    364   1.2     oster rf_e_encToBuf(
    365   1.2     oster     RF_Raid_t * raidPtr,
    366   1.2     oster     RF_RowCol_t srcLogicCol,
    367   1.2     oster     char *srcbuf,
    368   1.2     oster     RF_RowCol_t destLogicCol,
    369   1.2     oster     char *destbuf,
    370   1.2     oster     int numSector)
    371   1.1     oster {
    372   1.2     oster 	int     i, bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
    373   1.1     oster 
    374   1.2     oster 	for (i = 0; i < numSector; i++) {
    375   1.2     oster 		rf_e_EncOneSect(srcLogicCol, srcbuf, destLogicCol, destbuf, bytesPerSector);
    376   1.2     oster 		srcbuf += bytesPerSector;
    377   1.2     oster 		destbuf += bytesPerSector;
    378   1.2     oster 	}
    379   1.1     oster }
    380   1.2     oster /**************************************************************************************
    381   1.2     oster  * when parity die and one data die, We use second redundant information, 'E',
    382   1.2     oster  * to recover the data in dead disk. This function is used in the recovery node of
    383   1.2     oster  * for EO_110_CreateReadDAG
    384   1.1     oster  **************************************************************************************/
    385  1.24  christos void
    386  1.20       dsl rf_RecoveryEFunc(RF_DagNode_t *node)
    387   1.2     oster {
    388   1.2     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    389   1.2     oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    390   1.2     oster 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    391   1.2     oster 	RF_RowCol_t scol,	/* source logical column */
    392   1.2     oster 	        fcol = rf_EUCol(layoutPtr, failedPDA->raidAddress);	/* logical column of
    393   1.2     oster 									 * failed SU */
    394   1.2     oster 	int     i;
    395   1.2     oster 	RF_PhysDiskAddr_t *pda;
    396   1.2     oster 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    397   1.2     oster 	char   *srcbuf, *destbuf;
    398   1.2     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    399   1.2     oster 	RF_Etimer_t timer;
    400   1.2     oster 
    401  1.23  christos 	memset(node->results[0], 0,
    402   1.8   thorpej 	    rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
    403   1.2     oster 	if (node->dagHdr->status == rf_enable) {
    404   1.2     oster 		RF_ETIMER_START(timer);
    405   1.2     oster 		for (i = 0; i < node->numParams - 2; i += 2)
    406   1.2     oster 			if (node->params[i + 1].p != node->results[0]) {
    407   1.2     oster 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    408   1.2     oster 				if (i == node->numParams - 4)
    409  1.25    andvar 					scol = RF_EO_MATRIX_DIM - 2;	/* the column of
    410   1.2     oster 									 * redundant E */
    411   1.2     oster 				else
    412   1.2     oster 					scol = rf_EUCol(layoutPtr, pda->raidAddress);
    413   1.2     oster 				srcbuf = (char *) node->params[i + 1].p;
    414   1.2     oster 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    415   1.2     oster 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    416   1.2     oster 				rf_e_encToBuf(raidPtr, scol, srcbuf, fcol, destbuf, pda->numSector);
    417   1.2     oster 			}
    418   1.2     oster 		RF_ETIMER_STOP(timer);
    419   1.2     oster 		RF_ETIMER_EVAL(timer);
    420   1.2     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    421   1.2     oster 	}
    422  1.24  christos 	rf_GenericWakeupFunc(node, 0);	/* node execute successfully */
    423   1.1     oster }
    424   1.1     oster /**************************************************************************************
    425   1.1     oster  * This function is used in the case where one data and the parity have filed.
    426   1.1     oster  * (in EO_110_CreateWriteDAG )
    427   1.1     oster  **************************************************************************************/
    428  1.24  christos void
    429   1.2     oster rf_EO_DegradedWriteEFunc(RF_DagNode_t * node)
    430   1.1     oster {
    431   1.2     oster 	rf_DegrESubroutine(node, node->results[0]);
    432   1.2     oster 	rf_GenericWakeupFunc(node, 0);
    433   1.1     oster }
    434   1.1     oster 
    435   1.1     oster 
    436   1.2     oster 
    437   1.1     oster /**************************************************************************************
    438   1.1     oster  *  		THE FUNCTION IS FOR DOUBLE DEGRADED READ AND WRITE CASES
    439   1.1     oster  **************************************************************************************/
    440   1.1     oster 
    441  1.14     perry void
    442   1.2     oster rf_doubleEOdecode(
    443   1.2     oster     RF_Raid_t * raidPtr,
    444   1.2     oster     char **rrdbuf,
    445   1.2     oster     char **dest,
    446   1.2     oster     RF_RowCol_t * fcol,
    447   1.2     oster     char *pbuf,
    448   1.2     oster     char *ebuf)
    449   1.2     oster {
    450   1.2     oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
    451   1.2     oster 	int     i, j, k, f1, f2, row;
    452   1.2     oster 	int     rrdrow, erow, count = 0;
    453   1.2     oster 	int     bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
    454   1.2     oster 	int     numRowInEncMatix = (RF_EO_MATRIX_DIM) - 1;
    455   1.1     oster #if 0
    456   1.2     oster 	int     pcol = (RF_EO_MATRIX_DIM) - 1;
    457   1.1     oster #endif
    458   1.2     oster 	int     ecol = (RF_EO_MATRIX_DIM) - 2;
    459   1.2     oster 	int     bytesPerEU = bytesPerSector / numRowInEncMatix;
    460   1.2     oster 	int     numDataCol = layoutPtr->numDataCol;
    461   1.2     oster #if RF_EO_MATRIX_DIM > 17
    462   1.2     oster 	int     shortsPerEU = bytesPerEU / sizeof(short);
    463   1.2     oster 	short  *rrdbuf_current, *pbuf_current, *ebuf_current;
    464   1.2     oster 	short  *dest_smaller, *dest_smaller_current, *dest_larger, *dest_larger_current;
    465   1.6  augustss 	short *temp;
    466   1.2     oster 	short  *P;
    467   1.2     oster 
    468   1.2     oster 	RF_ASSERT(bytesPerEU % sizeof(short) == 0);
    469   1.2     oster #elif RF_EO_MATRIX_DIM == 17
    470   1.2     oster 	int     longsPerEU = bytesPerEU / sizeof(long);
    471   1.2     oster 	long   *rrdbuf_current, *pbuf_current, *ebuf_current;
    472   1.2     oster 	long   *dest_smaller, *dest_smaller_current, *dest_larger, *dest_larger_current;
    473   1.6  augustss 	long *temp;
    474   1.2     oster 	long   *P;
    475   1.2     oster 
    476   1.2     oster 	RF_ASSERT(bytesPerEU % sizeof(long) == 0);
    477   1.2     oster #endif
    478  1.23  christos 	P = RF_Malloc(bytesPerEU);
    479  1.23  christos 	temp = RF_Malloc(bytesPerEU);
    480   1.2     oster 	RF_ASSERT(*((long *) dest[0]) == 0);
    481   1.2     oster 	RF_ASSERT(*((long *) dest[1]) == 0);
    482   1.2     oster 	RF_ASSERT(*P == 0);
    483   1.2     oster 	/* calculate the 'P' parameter, which, not parity, is the Xor of all
    484  1.25    andvar 	 * elements in the last two columns, ie. 'E' and 'parity' columns, see
    485   1.2     oster 	 * the Ref. paper by Blaum, et al 1993  */
    486   1.2     oster 	for (i = 0; i < numRowInEncMatix; i++)
    487   1.2     oster 		for (k = 0; k < longsPerEU; k++) {
    488   1.2     oster #if RF_EO_MATRIX_DIM > 17
    489   1.2     oster 			ebuf_current = ((short *) ebuf) + i * shortsPerEU + k;
    490   1.2     oster 			pbuf_current = ((short *) pbuf) + i * shortsPerEU + k;
    491   1.2     oster #elif RF_EO_MATRIX_DIM == 17
    492   1.2     oster 			ebuf_current = ((long *) ebuf) + i * longsPerEU + k;
    493   1.2     oster 			pbuf_current = ((long *) pbuf) + i * longsPerEU + k;
    494   1.2     oster #endif
    495   1.2     oster 			P[k] ^= *ebuf_current;
    496   1.2     oster 			P[k] ^= *pbuf_current;
    497   1.2     oster 		}
    498   1.2     oster 	RF_ASSERT(fcol[0] != fcol[1]);
    499   1.2     oster 	if (fcol[0] < fcol[1]) {
    500   1.2     oster #if RF_EO_MATRIX_DIM > 17
    501   1.2     oster 		dest_smaller = (short *) (dest[0]);
    502   1.2     oster 		dest_larger = (short *) (dest[1]);
    503   1.2     oster #elif RF_EO_MATRIX_DIM == 17
    504   1.2     oster 		dest_smaller = (long *) (dest[0]);
    505   1.2     oster 		dest_larger = (long *) (dest[1]);
    506   1.2     oster #endif
    507   1.2     oster 		f1 = fcol[0];
    508   1.2     oster 		f2 = fcol[1];
    509   1.2     oster 	} else {
    510   1.2     oster #if RF_EO_MATRIX_DIM > 17
    511   1.2     oster 		dest_smaller = (short *) (dest[1]);
    512   1.2     oster 		dest_larger = (short *) (dest[0]);
    513   1.2     oster #elif RF_EO_MATRIX_DIM == 17
    514   1.2     oster 		dest_smaller = (long *) (dest[1]);
    515   1.2     oster 		dest_larger = (long *) (dest[0]);
    516   1.2     oster #endif
    517   1.2     oster 		f1 = fcol[1];
    518   1.2     oster 		f2 = fcol[0];
    519   1.2     oster 	}
    520   1.2     oster 	row = (RF_EO_MATRIX_DIM) - 1;
    521   1.2     oster 	while ((row = rf_EO_Mod((row + f1 - f2), RF_EO_MATRIX_DIM)) != ((RF_EO_MATRIX_DIM) - 1)) {
    522   1.2     oster #if RF_EO_MATRIX_DIM > 17
    523   1.2     oster 		dest_larger_current = dest_larger + row * shortsPerEU;
    524   1.2     oster 		dest_smaller_current = dest_smaller + row * shortsPerEU;
    525   1.2     oster #elif RF_EO_MATRIX_DIM == 17
    526   1.2     oster 		dest_larger_current = dest_larger + row * longsPerEU;
    527   1.2     oster 		dest_smaller_current = dest_smaller + row * longsPerEU;
    528   1.2     oster #endif
    529   1.2     oster 		/**    Do the diagonal recovery. Initially, temp[k] = (failed 1),
    530  1.25    andvar 		       which is the failed data in the column which has smaller col index. **/
    531   1.2     oster 		/* step 1:  ^(SUM of nonfailed in-diagonal A(rrdrow,0..m-3))         */
    532   1.2     oster 		for (j = 0; j < numDataCol; j++) {
    533   1.2     oster 			if (j == f1 || j == f2)
    534   1.2     oster 				continue;
    535   1.2     oster 			rrdrow = rf_EO_Mod((row + f2 - j), RF_EO_MATRIX_DIM);
    536   1.2     oster 			if (rrdrow != (RF_EO_MATRIX_DIM) - 1) {
    537   1.2     oster #if RF_EO_MATRIX_DIM > 17
    538   1.2     oster 				rrdbuf_current = (short *) (rrdbuf[j]) + rrdrow * shortsPerEU;
    539   1.2     oster 				for (k = 0; k < shortsPerEU; k++)
    540   1.2     oster 					temp[k] ^= *(rrdbuf_current + k);
    541   1.2     oster #elif RF_EO_MATRIX_DIM == 17
    542   1.2     oster 				rrdbuf_current = (long *) (rrdbuf[j]) + rrdrow * longsPerEU;
    543   1.2     oster 				for (k = 0; k < longsPerEU; k++)
    544   1.2     oster 					temp[k] ^= *(rrdbuf_current + k);
    545   1.2     oster #endif
    546   1.2     oster 			}
    547   1.2     oster 		}
    548  1.25    andvar 		/* step 2:  ^E(erow,m-2), If erow is at the bottom row, don't
    549   1.2     oster 		 * Xor into it  E(erow,m-2) = (principle diagonal) ^ (failed
    550   1.2     oster 		 * 1) ^ (failed 2) ^ ( SUM of nonfailed in-diagonal
    551   1.2     oster 		 * A(rrdrow,0..m-3) ) After this step, temp[k] = (principle
    552   1.2     oster 		 * diagonal) ^ (failed 2)       */
    553   1.2     oster 
    554   1.2     oster 		erow = rf_EO_Mod((row + f2 - ecol), (RF_EO_MATRIX_DIM));
    555   1.2     oster 		if (erow != (RF_EO_MATRIX_DIM) - 1) {
    556   1.2     oster #if RF_EO_MATRIX_DIM > 17
    557   1.2     oster 			ebuf_current = (short *) ebuf + shortsPerEU * erow;
    558   1.2     oster 			for (k = 0; k < shortsPerEU; k++)
    559   1.2     oster 				temp[k] ^= *(ebuf_current + k);
    560   1.2     oster #elif RF_EO_MATRIX_DIM == 17
    561   1.2     oster 			ebuf_current = (long *) ebuf + longsPerEU * erow;
    562   1.2     oster 			for (k = 0; k < longsPerEU; k++)
    563   1.2     oster 				temp[k] ^= *(ebuf_current + k);
    564   1.2     oster #endif
    565   1.2     oster 		}
    566   1.2     oster 		/* step 3: ^P to obtain the failed data (failed 2).  P can be
    567   1.2     oster 		 * proved to be actually  (principle diagonal)  After this
    568   1.2     oster 		 * step, temp[k] = (failed 2), the failed data to be recovered */
    569   1.2     oster #if RF_EO_MATRIX_DIM > 17
    570   1.2     oster 		for (k = 0; k < shortsPerEU; k++)
    571   1.2     oster 			temp[k] ^= P[k];
    572   1.2     oster 		/* Put the data to the destination buffer                              */
    573   1.2     oster 		for (k = 0; k < shortsPerEU; k++)
    574   1.2     oster 			dest_larger_current[k] = temp[k];
    575   1.2     oster #elif RF_EO_MATRIX_DIM == 17
    576   1.2     oster 		for (k = 0; k < longsPerEU; k++)
    577   1.2     oster 			temp[k] ^= P[k];
    578   1.2     oster 		/* Put the data to the destination buffer                              */
    579   1.2     oster 		for (k = 0; k < longsPerEU; k++)
    580   1.2     oster 			dest_larger_current[k] = temp[k];
    581   1.2     oster #endif
    582   1.2     oster 
    583   1.2     oster 		/**          THE FOLLOWING DO THE HORIZONTAL XOR                **/
    584   1.2     oster 		/* step 1:  ^(SUM of A(row,0..m-3)), ie. all nonfailed data
    585  1.25    andvar 		 * columns    */
    586   1.2     oster 		for (j = 0; j < numDataCol; j++) {
    587   1.2     oster 			if (j == f1 || j == f2)
    588   1.2     oster 				continue;
    589   1.2     oster #if RF_EO_MATRIX_DIM > 17
    590   1.2     oster 			rrdbuf_current = (short *) (rrdbuf[j]) + row * shortsPerEU;
    591   1.2     oster 			for (k = 0; k < shortsPerEU; k++)
    592   1.2     oster 				temp[k] ^= *(rrdbuf_current + k);
    593   1.2     oster #elif RF_EO_MATRIX_DIM == 17
    594   1.2     oster 			rrdbuf_current = (long *) (rrdbuf[j]) + row * longsPerEU;
    595   1.2     oster 			for (k = 0; k < longsPerEU; k++)
    596   1.2     oster 				temp[k] ^= *(rrdbuf_current + k);
    597   1.2     oster #endif
    598   1.2     oster 		}
    599   1.2     oster 		/* step 2: ^A(row,m-1) */
    600   1.2     oster 		/* step 3: Put the data to the destination buffer                             	 */
    601   1.2     oster #if RF_EO_MATRIX_DIM > 17
    602   1.2     oster 		pbuf_current = (short *) pbuf + shortsPerEU * row;
    603   1.2     oster 		for (k = 0; k < shortsPerEU; k++)
    604   1.2     oster 			temp[k] ^= *(pbuf_current + k);
    605   1.2     oster 		for (k = 0; k < shortsPerEU; k++)
    606   1.2     oster 			dest_smaller_current[k] = temp[k];
    607   1.2     oster #elif RF_EO_MATRIX_DIM == 17
    608   1.2     oster 		pbuf_current = (long *) pbuf + longsPerEU * row;
    609   1.2     oster 		for (k = 0; k < longsPerEU; k++)
    610   1.2     oster 			temp[k] ^= *(pbuf_current + k);
    611   1.2     oster 		for (k = 0; k < longsPerEU; k++)
    612   1.2     oster 			dest_smaller_current[k] = temp[k];
    613   1.2     oster #endif
    614   1.2     oster 		count++;
    615   1.2     oster 	}
    616   1.2     oster 	/* Check if all Encoding Unit in the data buffer have been decoded,
    617   1.2     oster 	 * according EvenOdd theory, if "RF_EO_MATRIX_DIM" is a prime number,
    618   1.2     oster 	 * this algorithm will covered all buffer 				 */
    619   1.2     oster 	RF_ASSERT(count == numRowInEncMatix);
    620   1.2     oster 	RF_Free((char *) P, bytesPerEU);
    621   1.2     oster 	RF_Free((char *) temp, bytesPerEU);
    622   1.1     oster }
    623   1.2     oster 
    624   1.1     oster 
    625   1.1     oster /***************************************************************************************
    626  1.25    andvar * 	This function is called by double degraded read
    627   1.2     oster * 	EO_200_CreateReadDAG
    628   1.1     oster *
    629   1.1     oster ***************************************************************************************/
    630  1.24  christos void
    631  1.20       dsl rf_EvenOddDoubleRecoveryFunc(RF_DagNode_t *node)
    632   1.2     oster {
    633   1.2     oster 	int     ndataParam = 0;
    634   1.2     oster 	int     np = node->numParams;
    635   1.2     oster 	RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
    636   1.2     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
    637   1.2     oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
    638   1.2     oster 	int     i, prm, sector, nresults = node->numResults;
    639   1.2     oster 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    640   1.2     oster 	unsigned sosAddr;
    641  1.22  christos 	int     mallc_one = 0, mallc_two = 0;	/* flags to indicate if
    642  1.22  christos 						 * memory is allocated */
    643   1.2     oster 	int     bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
    644   1.2     oster 	RF_PhysDiskAddr_t *ppda, *ppda2, *epda, *epda2, *pda, *pda0, *pda1,
    645   1.2     oster 	        npda;
    646   1.2     oster 	RF_RowCol_t fcol[2], fsuoff[2], fsuend[2], numDataCol = layoutPtr->numDataCol;
    647   1.2     oster 	char  **buf, *ebuf, *pbuf, *dest[2];
    648  1.17  christos 	long   *suoff = NULL, *suend = NULL, *prmToCol = NULL,
    649  1.17  christos 	    psuoff = 0, esuoff = 0;
    650   1.2     oster 	RF_SectorNum_t startSector, endSector;
    651   1.2     oster 	RF_Etimer_t timer;
    652   1.2     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    653   1.2     oster 
    654   1.2     oster 	RF_ETIMER_START(timer);
    655   1.2     oster 
    656   1.2     oster 	/* Find out the number of parameters which are pdas for data
    657   1.2     oster 	 * information */
    658   1.2     oster 	for (i = 0; i <= np; i++)
    659   1.2     oster 		if (((RF_PhysDiskAddr_t *) node->params[i].p)->type != RF_PDA_TYPE_DATA) {
    660   1.2     oster 			ndataParam = i;
    661   1.2     oster 			break;
    662   1.2     oster 		}
    663  1.23  christos 	buf = RF_Malloc(numDataCol * sizeof(*buf));
    664   1.2     oster 	if (ndataParam != 0) {
    665  1.23  christos 		suoff = RF_Malloc(ndataParam * sizeof(*suoff));
    666  1.23  christos 		suend = RF_Malloc(ndataParam * sizeof(*suend));
    667  1.23  christos 		prmToCol = RF_Malloc(ndataParam * sizeof(*prmToCol));
    668   1.2     oster 	}
    669   1.2     oster 	if (asmap->failedPDAs[1] &&
    670   1.2     oster 	    (asmap->failedPDAs[1]->numSector + asmap->failedPDAs[0]->numSector < secPerSU)) {
    671   1.2     oster 		RF_ASSERT(0);	/* currently, no support for this situation */
    672   1.2     oster 		ppda = node->params[np - 6].p;
    673   1.2     oster 		ppda2 = node->params[np - 5].p;
    674   1.2     oster 		RF_ASSERT(ppda2->type == RF_PDA_TYPE_PARITY);
    675   1.2     oster 		epda = node->params[np - 4].p;
    676   1.2     oster 		epda2 = node->params[np - 3].p;
    677   1.2     oster 		RF_ASSERT(epda2->type == RF_PDA_TYPE_Q);
    678   1.2     oster 	} else {
    679   1.2     oster 		ppda = node->params[np - 4].p;
    680   1.2     oster 		epda = node->params[np - 3].p;
    681   1.2     oster 		psuoff = rf_StripeUnitOffset(layoutPtr, ppda->startSector);
    682   1.2     oster 		esuoff = rf_StripeUnitOffset(layoutPtr, epda->startSector);
    683   1.2     oster 		RF_ASSERT(psuoff == esuoff);
    684   1.2     oster 	}
    685   1.2     oster 	/*
    686   1.2     oster             the followings have three goals:
    687   1.2     oster             1. determine the startSector to begin decoding and endSector to end decoding.
    688  1.25    andvar             2. determine the column numbers of the two failed disks.
    689   1.2     oster             3. determine the offset and end offset of the access within each failed stripe unit.
    690   1.2     oster          */
    691   1.2     oster 	if (nresults == 1) {
    692   1.2     oster 		/* find the startSector to begin decoding */
    693   1.2     oster 		pda = node->results[0];
    694   1.8   thorpej 		memset(pda->bufPtr, 0, bytesPerSector * pda->numSector);
    695   1.2     oster 		fsuoff[0] = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    696   1.2     oster 		fsuend[0] = fsuoff[0] + pda->numSector;
    697  1.17  christos 		fsuoff[1] = 0;
    698  1.17  christos 		fsuend[1] = 0;
    699   1.2     oster 		startSector = fsuoff[0];
    700   1.2     oster 		endSector = fsuend[0];
    701   1.2     oster 
    702   1.5     soren 		/* find out the column of failed disk being accessed */
    703   1.2     oster 		fcol[0] = rf_EUCol(layoutPtr, pda->raidAddress);
    704   1.2     oster 
    705  1.25    andvar 		/* find out the other failed column not accessed */
    706   1.2     oster 		sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    707   1.2     oster 		for (i = 0; i < numDataCol; i++) {
    708   1.2     oster 			npda.raidAddress = sosAddr + (i * secPerSU);
    709  1.13     oster 			(raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.col), &(npda.startSector), 0);
    710   1.2     oster 			/* skip over dead disks */
    711  1.13     oster 			if (RF_DEAD_DISK(raidPtr->Disks[npda.col].status))
    712   1.2     oster 				if (i != fcol[0])
    713   1.2     oster 					break;
    714   1.2     oster 		}
    715   1.2     oster 		RF_ASSERT(i < numDataCol);
    716   1.2     oster 		fcol[1] = i;
    717   1.2     oster 	} else {
    718   1.2     oster 		RF_ASSERT(nresults == 2);
    719   1.2     oster 		pda0 = node->results[0];
    720   1.8   thorpej 		memset(pda0->bufPtr, 0, bytesPerSector * pda0->numSector);
    721   1.2     oster 		pda1 = node->results[1];
    722   1.8   thorpej 		memset(pda1->bufPtr, 0, bytesPerSector * pda1->numSector);
    723  1.25    andvar 		/* determine the failed column numbers of the two failed
    724   1.2     oster 		 * disks. */
    725   1.2     oster 		fcol[0] = rf_EUCol(layoutPtr, pda0->raidAddress);
    726   1.2     oster 		fcol[1] = rf_EUCol(layoutPtr, pda1->raidAddress);
    727   1.2     oster 		/* determine the offset and end offset of the access within
    728   1.2     oster 		 * each failed stripe unit. */
    729   1.2     oster 		fsuoff[0] = rf_StripeUnitOffset(layoutPtr, pda0->startSector);
    730   1.2     oster 		fsuend[0] = fsuoff[0] + pda0->numSector;
    731   1.2     oster 		fsuoff[1] = rf_StripeUnitOffset(layoutPtr, pda1->startSector);
    732   1.2     oster 		fsuend[1] = fsuoff[1] + pda1->numSector;
    733   1.2     oster 		/* determine the startSector to begin decoding */
    734   1.2     oster 		startSector = RF_MIN(pda0->startSector, pda1->startSector);
    735   1.2     oster 		/* determine the endSector to end decoding */
    736   1.2     oster 		endSector = RF_MAX(fsuend[0], fsuend[1]);
    737   1.2     oster 	}
    738   1.2     oster 	/*
    739   1.2     oster 	      assign the beginning sector and the end sector for each parameter
    740  1.25    andvar 	      find out the corresponding column # for each parameter
    741   1.2     oster         */
    742   1.2     oster 	for (prm = 0; prm < ndataParam; prm++) {
    743   1.2     oster 		pda = node->params[prm].p;
    744   1.2     oster 		suoff[prm] = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    745   1.2     oster 		suend[prm] = suoff[prm] + pda->numSector;
    746   1.2     oster 		prmToCol[prm] = rf_EUCol(layoutPtr, pda->raidAddress);
    747   1.2     oster 	}
    748   1.2     oster 	/* 'sector' is the sector for the current decoding algorithm. For each
    749   1.2     oster 	 * sector in the failed SU, find out the corresponding parameters that
    750   1.2     oster 	 * cover the current sector and that are needed for decoding of this
    751   1.2     oster 	 * sector in failed SU. 2.  Find out if sector is in the shadow of any
    752   1.2     oster 	 * accessed failed SU. If not, malloc a temporary space of a sector in
    753   1.2     oster 	 * size. */
    754   1.2     oster 	for (sector = startSector; sector < endSector; sector++) {
    755   1.2     oster 		if (nresults == 2)
    756   1.2     oster 			if (!(fsuoff[0] <= sector && sector < fsuend[0]) && !(fsuoff[1] <= sector && sector < fsuend[1]))
    757   1.2     oster 				continue;
    758   1.2     oster 		for (prm = 0; prm < ndataParam; prm++)
    759   1.2     oster 			if (suoff[prm] <= sector && sector < suend[prm])
    760  1.18  christos 				buf[(prmToCol[prm])] = (char *)((RF_PhysDiskAddr_t *) node->params[prm].p)->bufPtr +
    761   1.2     oster 				    rf_RaidAddressToByte(raidPtr, sector - suoff[prm]);
    762   1.2     oster 		/* find out if sector is in the shadow of any accessed failed
    763   1.2     oster 		 * SU. If yes, assign dest[0], dest[1] to point at suitable
    764   1.2     oster 		 * position of the buffer corresponding to failed SUs. if no,
    765   1.2     oster 		 * malloc a temporary space of a sector in size for
    766   1.2     oster 		 * destination of decoding. */
    767   1.2     oster 		RF_ASSERT(nresults == 1 || nresults == 2);
    768   1.2     oster 		if (nresults == 1) {
    769  1.18  christos 			dest[0] = (char *)((RF_PhysDiskAddr_t *) node->results[0])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[0]);
    770   1.2     oster 			/* Always malloc temp buffer to dest[1]  */
    771  1.23  christos 			dest[1] = RF_Malloc(bytesPerSector);
    772   1.2     oster 			mallc_two = 1;
    773   1.2     oster 		} else {
    774   1.2     oster 			if (fsuoff[0] <= sector && sector < fsuend[0])
    775  1.18  christos 				dest[0] = (char *)((RF_PhysDiskAddr_t *) node->results[0])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[0]);
    776   1.2     oster 			else {
    777  1.23  christos 				dest[0] = RF_Malloc(bytesPerSector);
    778   1.2     oster 				mallc_one = 1;
    779   1.2     oster 			}
    780   1.2     oster 			if (fsuoff[1] <= sector && sector < fsuend[1])
    781  1.18  christos 				dest[1] = (char *)((RF_PhysDiskAddr_t *) node->results[1])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[1]);
    782   1.2     oster 			else {
    783  1.23  christos 				dest[1] = RF_Malloc(bytesPerSector);
    784   1.2     oster 				mallc_two = 1;
    785   1.2     oster 			}
    786   1.2     oster 			RF_ASSERT(mallc_one == 0 || mallc_two == 0);
    787   1.2     oster 		}
    788  1.18  christos 		pbuf = (char *)ppda->bufPtr + rf_RaidAddressToByte(raidPtr, sector - psuoff);
    789  1.18  christos 		ebuf = (char *)epda->bufPtr + rf_RaidAddressToByte(raidPtr, sector - esuoff);
    790   1.2     oster 		/*
    791   1.2     oster 	         * After finish finding all needed sectors, call doubleEOdecode function for decoding
    792   1.2     oster 	         * one sector to destination.
    793   1.2     oster 	         */
    794   1.2     oster 		rf_doubleEOdecode(raidPtr, buf, dest, fcol, pbuf, ebuf);
    795   1.2     oster 		/* free all allocated memory, and mark flag to indicate no
    796   1.2     oster 		 * memory is being allocated */
    797   1.2     oster 		if (mallc_one == 1)
    798   1.2     oster 			RF_Free(dest[0], bytesPerSector);
    799   1.2     oster 		if (mallc_two == 1)
    800   1.2     oster 			RF_Free(dest[1], bytesPerSector);
    801   1.2     oster 		mallc_one = mallc_two = 0;
    802   1.2     oster 	}
    803   1.2     oster 	RF_Free(buf, numDataCol * sizeof(char *));
    804   1.2     oster 	if (ndataParam != 0) {
    805   1.2     oster 		RF_Free(suoff, ndataParam * sizeof(long));
    806   1.2     oster 		RF_Free(suend, ndataParam * sizeof(long));
    807   1.2     oster 		RF_Free(prmToCol, ndataParam * sizeof(long));
    808   1.2     oster 	}
    809   1.2     oster 	RF_ETIMER_STOP(timer);
    810   1.2     oster 	RF_ETIMER_EVAL(timer);
    811   1.2     oster 	if (tracerec) {
    812   1.2     oster 		tracerec->q_us += RF_ETIMER_VAL_US(timer);
    813   1.2     oster 	}
    814   1.2     oster 	rf_GenericWakeupFunc(node, 0);
    815   1.1     oster }
    816   1.1     oster 
    817   1.1     oster 
    818   1.2     oster /* currently, only access of one of the two failed SU is allowed in this function.
    819   1.2     oster  * also, asmap->numStripeUnitsAccessed is limited to be one, the RaidFrame will break large access into
    820   1.1     oster  * many accesses of single stripe unit.
    821   1.1     oster  */
    822   1.1     oster 
    823  1.24  christos void
    824  1.20       dsl rf_EOWriteDoubleRecoveryFunc(RF_DagNode_t *node)
    825   1.2     oster {
    826   1.2     oster 	int     np = node->numParams;
    827   1.2     oster 	RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
    828   1.2     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
    829   1.2     oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
    830   1.2     oster 	RF_SectorNum_t sector;
    831   1.2     oster 	RF_RowCol_t col, scol;
    832   1.2     oster 	int     prm, i, j;
    833   1.2     oster 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    834   1.2     oster 	unsigned sosAddr;
    835   1.2     oster 	unsigned bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
    836   1.2     oster 	RF_int64 numbytes;
    837   1.2     oster 	RF_SectorNum_t startSector, endSector;
    838   1.2     oster 	RF_PhysDiskAddr_t *ppda, *epda, *pda, *fpda, npda;
    839   1.2     oster 	RF_RowCol_t fcol[2], numDataCol = layoutPtr->numDataCol;
    840   1.2     oster 	char  **buf;		/* buf[0], buf[1], buf[2], ...etc. point to
    841   1.2     oster 				 * buffer storing data read from col0, col1,
    842   1.2     oster 				 * col2 */
    843   1.2     oster 	char   *ebuf, *pbuf, *dest[2], *olddata[2];
    844   1.2     oster 	RF_Etimer_t timer;
    845   1.2     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    846   1.2     oster 
    847   1.2     oster 	RF_ASSERT(asmap->numDataFailed == 1);	/* currently only support this
    848   1.2     oster 						 * case, the other failed SU
    849   1.2     oster 						 * is not being accessed */
    850   1.2     oster 	RF_ETIMER_START(timer);
    851  1.23  christos 	buf = RF_Malloc(numDataCol * sizeof(*buf));
    852   1.2     oster 
    853   1.2     oster 	ppda = node->results[0];/* Instead of being buffers, node->results[0]
    854   1.2     oster 				 * and [1] are Ppda and Epda  */
    855   1.2     oster 	epda = node->results[1];
    856   1.2     oster 	fpda = asmap->failedPDAs[0];
    857   1.2     oster 
    858   1.2     oster 	/* First, recovery the failed old SU using EvenOdd double decoding      */
    859   1.2     oster 	/* determine the startSector and endSector for decoding */
    860   1.2     oster 	startSector = rf_StripeUnitOffset(layoutPtr, fpda->startSector);
    861   1.2     oster 	endSector = startSector + fpda->numSector;
    862  1.25    andvar 	/* Assign buf[col] pointers to point to each non-failed column  and
    863   1.2     oster 	 * initialize the pbuf and ebuf to point at the beginning of each
    864   1.2     oster 	 * source buffers and destination buffers */
    865   1.2     oster 	for (prm = 0; prm < numDataCol - 2; prm++) {
    866   1.2     oster 		pda = (RF_PhysDiskAddr_t *) node->params[prm].p;
    867   1.2     oster 		col = rf_EUCol(layoutPtr, pda->raidAddress);
    868   1.2     oster 		buf[col] = pda->bufPtr;
    869   1.2     oster 	}
    870   1.2     oster 	/* pbuf and ebuf:  they will change values as double recovery decoding
    871   1.2     oster 	 * goes on */
    872   1.2     oster 	pbuf = ppda->bufPtr;
    873   1.2     oster 	ebuf = epda->bufPtr;
    874  1.25    andvar 	/* find out the logical column numbers in the encoding matrix of the
    875  1.25    andvar 	 * two failed columns */
    876   1.2     oster 	fcol[0] = rf_EUCol(layoutPtr, fpda->raidAddress);
    877   1.2     oster 
    878  1.25    andvar 	/* find out the other failed column not accessed this time */
    879   1.2     oster 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    880   1.2     oster 	for (i = 0; i < numDataCol; i++) {
    881   1.2     oster 		npda.raidAddress = sosAddr + (i * secPerSU);
    882  1.13     oster 		(raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.col), &(npda.startSector), 0);
    883   1.2     oster 		/* skip over dead disks */
    884  1.13     oster 		if (RF_DEAD_DISK(raidPtr->Disks[npda.col].status))
    885   1.2     oster 			if (i != fcol[0])
    886   1.2     oster 				break;
    887   1.2     oster 	}
    888   1.2     oster 	RF_ASSERT(i < numDataCol);
    889   1.2     oster 	fcol[1] = i;
    890   1.2     oster 	/* assign temporary space to put recovered failed SU */
    891   1.2     oster 	numbytes = fpda->numSector * bytesPerSector;
    892  1.23  christos 	olddata[0] = RF_Malloc(numbytes);
    893  1.23  christos 	olddata[1] = RF_Malloc(numbytes);
    894   1.2     oster 	dest[0] = olddata[0];
    895   1.2     oster 	dest[1] = olddata[1];
    896   1.2     oster 	/* Begin the recovery decoding, initially buf[j],  ebuf, pbuf, dest[j]
    897   1.2     oster 	 * have already pointed at the beginning of each source buffers and
    898   1.2     oster 	 * destination buffers */
    899   1.2     oster 	for (sector = startSector, i = 0; sector < endSector; sector++, i++) {
    900   1.2     oster 		rf_doubleEOdecode(raidPtr, buf, dest, fcol, pbuf, ebuf);
    901   1.2     oster 		for (j = 0; j < numDataCol; j++)
    902   1.2     oster 			if ((j != fcol[0]) && (j != fcol[1]))
    903   1.2     oster 				buf[j] += bytesPerSector;
    904   1.2     oster 		dest[0] += bytesPerSector;
    905   1.2     oster 		dest[1] += bytesPerSector;
    906   1.2     oster 		ebuf += bytesPerSector;
    907   1.2     oster 		pbuf += bytesPerSector;
    908   1.2     oster 	}
    909   1.2     oster 	/* after recovery, the buffer pointed by olddata[0] is the old failed
    910   1.2     oster 	 * data. With new writing data and this old data, use small write to
    911  1.25    andvar 	 * calculate the new redundant information */
    912   1.2     oster 	/* node->params[ 0, ... PDAPerDisk * (numDataCol - 2)-1 ] are Pdas of
    913   1.2     oster 	 * Rrd; params[ PDAPerDisk*(numDataCol - 2), ... PDAPerDisk*numDataCol
    914   1.2     oster 	 * -1 ] are Pdas of Rp, ( Rp2 ), Re, ( Re2 ) ; params[
    915   1.2     oster 	 * PDAPerDisk*numDataCol, ... PDAPerDisk*numDataCol
    916   1.2     oster 	 * +asmap->numStripeUnitsAccessed -asmap->numDataFailed-1] are Pdas of
    917   1.2     oster 	 * wudNodes; For current implementation, we assume the simplest case:
    918   1.2     oster 	 * asmap->numStripeUnitsAccessed == 1 and asmap->numDataFailed == 1
    919   1.2     oster 	 * ie. PDAPerDisk = 1 then node->params[numDataCol] must be the new
    920  1.25    andvar 	 * data to be written to the failed disk. We first bxor the new data
    921   1.2     oster 	 * into the old recovered data, then do the same things as small
    922   1.2     oster 	 * write. */
    923   1.2     oster 
    924  1.16     oster 	rf_bxor(((RF_PhysDiskAddr_t *) node->params[numDataCol].p)->bufPtr, olddata[0], numbytes);
    925   1.2     oster 	/* do new 'E' calculation  */
    926  1.25    andvar 	/* find out the corresponding column in encoding matrix for write
    927  1.25    andvar 	 * column to be encoded into redundant disk 'E' */
    928   1.2     oster 	scol = rf_EUCol(layoutPtr, fpda->raidAddress);
    929   1.2     oster 	/* olddata[0] now is source buffer pointer; epda->bufPtr is the dest
    930   1.2     oster 	 * buffer pointer               */
    931   1.2     oster 	rf_e_encToBuf(raidPtr, scol, olddata[0], RF_EO_MATRIX_DIM - 2, epda->bufPtr, fpda->numSector);
    932   1.2     oster 
    933   1.2     oster 	/* do new 'P' calculation  */
    934  1.16     oster 	rf_bxor(olddata[0], ppda->bufPtr, numbytes);
    935   1.2     oster 	/* Free the allocated buffer  */
    936   1.2     oster 	RF_Free(olddata[0], numbytes);
    937   1.2     oster 	RF_Free(olddata[1], numbytes);
    938   1.2     oster 	RF_Free(buf, numDataCol * sizeof(char *));
    939   1.2     oster 
    940   1.2     oster 	RF_ETIMER_STOP(timer);
    941   1.2     oster 	RF_ETIMER_EVAL(timer);
    942   1.2     oster 	if (tracerec) {
    943   1.2     oster 		tracerec->q_us += RF_ETIMER_VAL_US(timer);
    944   1.2     oster 	}
    945   1.2     oster 	rf_GenericWakeupFunc(node, 0);
    946   1.1     oster }
    947   1.7     oster #endif				/* RF_INCLUDE_EVENODD > 0 */
    948