rf_evenodd_dagfuncs.c revision 1.24 1 1.24 christos /* $NetBSD: rf_evenodd_dagfuncs.c,v 1.24 2019/10/10 03:43:59 christos Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: ChangMing Wu
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * Code for RAID-EVENODD architecture.
31 1.1 oster */
32 1.11 lukem
33 1.11 lukem #include <sys/cdefs.h>
34 1.24 christos __KERNEL_RCSID(0, "$NetBSD: rf_evenodd_dagfuncs.c,v 1.24 2019/10/10 03:43:59 christos Exp $");
35 1.1 oster
36 1.7 oster #include "rf_archs.h"
37 1.19 ad
38 1.19 ad #ifdef _KERNEL_OPT
39 1.12 martin #include "opt_raid_diagnostic.h"
40 1.19 ad #endif
41 1.7 oster
42 1.7 oster #if RF_INCLUDE_EVENODD > 0
43 1.7 oster
44 1.10 oster #include <dev/raidframe/raidframevar.h>
45 1.10 oster
46 1.1 oster #include "rf_raid.h"
47 1.1 oster #include "rf_dag.h"
48 1.1 oster #include "rf_dagffrd.h"
49 1.1 oster #include "rf_dagffwr.h"
50 1.1 oster #include "rf_dagdegrd.h"
51 1.1 oster #include "rf_dagdegwr.h"
52 1.1 oster #include "rf_dagutils.h"
53 1.1 oster #include "rf_dagfuncs.h"
54 1.1 oster #include "rf_etimer.h"
55 1.1 oster #include "rf_general.h"
56 1.1 oster #include "rf_parityscan.h"
57 1.1 oster #include "rf_evenodd.h"
58 1.1 oster #include "rf_evenodd_dagfuncs.h"
59 1.1 oster
60 1.1 oster /* These redundant functions are for small write */
61 1.2 oster RF_RedFuncs_t rf_EOSmallWritePFuncs = {rf_RegularXorFunc, "Regular Old-New P", rf_SimpleXorFunc, "Simple Old-New P"};
62 1.2 oster RF_RedFuncs_t rf_EOSmallWriteEFuncs = {rf_RegularONEFunc, "Regular Old-New E", rf_SimpleONEFunc, "Regular Old-New E"};
63 1.1 oster /* These redundant functions are for degraded read */
64 1.2 oster RF_RedFuncs_t rf_eoPRecoveryFuncs = {rf_RecoveryXorFunc, "Recovery Xr", rf_RecoveryXorFunc, "Recovery Xr"};
65 1.2 oster RF_RedFuncs_t rf_eoERecoveryFuncs = {rf_RecoveryEFunc, "Recovery E Func", rf_RecoveryEFunc, "Recovery E Func"};
66 1.1 oster /**********************************************************************************************
67 1.2 oster * the following encoding node functions is used in EO_000_CreateLargeWriteDAG
68 1.1 oster **********************************************************************************************/
69 1.24 christos void
70 1.20 dsl rf_RegularPEFunc(RF_DagNode_t *node)
71 1.1 oster {
72 1.2 oster rf_RegularESubroutine(node, node->results[1]);
73 1.2 oster rf_RegularXorFunc(node);/* does the wakeup here! */
74 1.1 oster }
75 1.1 oster
76 1.1 oster
77 1.1 oster /************************************************************************************************
78 1.1 oster * For EO_001_CreateSmallWriteDAG, there are (i)RegularONEFunc() and (ii)SimpleONEFunc() to
79 1.1 oster * be used. The previous case is when write access at least sectors of full stripe unit.
80 1.1 oster * The later function is used when the write access two stripe units but with total sectors
81 1.1 oster * less than sectors per SU. In this case, the access of parity and 'E' are shown as disconnected
82 1.1 oster * areas in their stripe unit and parity write and 'E' write are both devided into two distinct
83 1.1 oster * writes( totally four). This simple old-new write and regular old-new write happen as in RAID-5
84 1.1 oster ************************************************************************************************/
85 1.1 oster
86 1.2 oster /* Algorithm:
87 1.1 oster 1. Store the difference of old data and new data in the Rod buffer.
88 1.2 oster 2. then encode this buffer into the buffer which already have old 'E' information inside it,
89 1.1 oster the result can be shown to be the new 'E' information.
90 1.1 oster 3. xor the Wnd buffer into the difference buffer to recover the original old data.
91 1.2 oster Here we have another alternative: to allocate a temporary buffer for storing the difference of
92 1.2 oster old data and new data, then encode temp buf into old 'E' buf to form new 'E', but this approach
93 1.1 oster take the same speed as the previous, and need more memory.
94 1.1 oster */
95 1.24 christos void
96 1.20 dsl rf_RegularONEFunc(RF_DagNode_t *node)
97 1.2 oster {
98 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
99 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
100 1.2 oster int EpdaIndex = (node->numParams - 1) / 2 - 1; /* the parameter of node
101 1.2 oster * where you can find
102 1.2 oster * e-pda */
103 1.22 christos int i, k;
104 1.2 oster int suoffset, length;
105 1.2 oster RF_RowCol_t scol;
106 1.2 oster char *srcbuf, *destbuf;
107 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
108 1.2 oster RF_Etimer_t timer;
109 1.9 thorpej RF_PhysDiskAddr_t *pda;
110 1.9 thorpej #ifdef RAID_DIAGNOSTIC
111 1.9 thorpej RF_PhysDiskAddr_t *EPDA =
112 1.9 thorpej (RF_PhysDiskAddr_t *) node->params[EpdaIndex].p;
113 1.9 thorpej int ESUOffset = rf_StripeUnitOffset(layoutPtr, EPDA->startSector);
114 1.2 oster
115 1.2 oster RF_ASSERT(EPDA->type == RF_PDA_TYPE_Q);
116 1.2 oster RF_ASSERT(ESUOffset == 0);
117 1.21 riz #endif /* RAID_DIAGNOSTIC */
118 1.2 oster
119 1.2 oster RF_ETIMER_START(timer);
120 1.2 oster
121 1.2 oster /* Xor the Wnd buffer into Rod buffer, the difference of old data and
122 1.2 oster * new data is stored in Rod buffer */
123 1.2 oster for (k = 0; k < EpdaIndex; k += 2) {
124 1.2 oster length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[k].p)->numSector);
125 1.22 christos rf_bxor(node->params[k + EpdaIndex + 3].p, node->params[k + 1].p, length);
126 1.2 oster }
127 1.2 oster /* Start to encoding the buffer storing the difference of old data and
128 1.2 oster * new data into 'E' buffer */
129 1.2 oster for (i = 0; i < EpdaIndex; i += 2)
130 1.2 oster if (node->params[i + 1].p != node->results[0]) { /* results[0] is buf ptr
131 1.2 oster * of E */
132 1.2 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
133 1.2 oster srcbuf = (char *) node->params[i + 1].p;
134 1.2 oster scol = rf_EUCol(layoutPtr, pda->raidAddress);
135 1.2 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
136 1.2 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset);
137 1.2 oster rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
138 1.2 oster }
139 1.2 oster /* Recover the original old data to be used by parity encoding
140 1.2 oster * function in XorNode */
141 1.2 oster for (k = 0; k < EpdaIndex; k += 2) {
142 1.2 oster length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[k].p)->numSector);
143 1.22 christos rf_bxor(node->params[k + EpdaIndex + 3].p, node->params[k + 1].p, length);
144 1.2 oster }
145 1.2 oster RF_ETIMER_STOP(timer);
146 1.2 oster RF_ETIMER_EVAL(timer);
147 1.2 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
148 1.2 oster rf_GenericWakeupFunc(node, 0);
149 1.1 oster }
150 1.1 oster
151 1.24 christos void
152 1.20 dsl rf_SimpleONEFunc(RF_DagNode_t *node)
153 1.2 oster {
154 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
155 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
156 1.2 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
157 1.2 oster int retcode = 0;
158 1.2 oster char *srcbuf, *destbuf;
159 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
160 1.2 oster int length;
161 1.2 oster RF_RowCol_t scol;
162 1.2 oster RF_Etimer_t timer;
163 1.2 oster
164 1.2 oster RF_ASSERT(((RF_PhysDiskAddr_t *) node->params[2].p)->type == RF_PDA_TYPE_Q);
165 1.2 oster if (node->dagHdr->status == rf_enable) {
166 1.2 oster RF_ETIMER_START(timer);
167 1.2 oster length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[4].p)->numSector); /* this is a pda of
168 1.2 oster * writeDataNodes */
169 1.2 oster /* bxor to buffer of readDataNodes */
170 1.16 oster retcode = rf_bxor(node->params[5].p, node->params[1].p, length);
171 1.2 oster /* find out the corresponding colume in encoding matrix for
172 1.2 oster * write colume to be encoded into redundant disk 'E' */
173 1.2 oster scol = rf_EUCol(layoutPtr, pda->raidAddress);
174 1.2 oster srcbuf = node->params[1].p;
175 1.2 oster destbuf = node->params[3].p;
176 1.2 oster /* Start encoding process */
177 1.2 oster rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
178 1.16 oster rf_bxor(node->params[5].p, node->params[1].p, length);
179 1.2 oster RF_ETIMER_STOP(timer);
180 1.2 oster RF_ETIMER_EVAL(timer);
181 1.2 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
182 1.2 oster
183 1.2 oster }
184 1.24 christos rf_GenericWakeupFunc(node, retcode); /* call wake func
185 1.24 christos * explicitly since no
186 1.24 christos * I/O in this node */
187 1.1 oster }
188 1.1 oster
189 1.1 oster
190 1.1 oster /****** called by rf_RegularPEFunc(node) and rf_RegularEFunc(node) in f.f. large write ********/
191 1.14 perry void
192 1.20 dsl rf_RegularESubroutine(RF_DagNode_t *node, char *ebuf)
193 1.2 oster {
194 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
195 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
196 1.2 oster RF_PhysDiskAddr_t *pda;
197 1.2 oster int i, suoffset;
198 1.2 oster RF_RowCol_t scol;
199 1.2 oster char *srcbuf, *destbuf;
200 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
201 1.2 oster RF_Etimer_t timer;
202 1.2 oster
203 1.2 oster RF_ETIMER_START(timer);
204 1.2 oster for (i = 0; i < node->numParams - 2; i += 2) {
205 1.2 oster RF_ASSERT(node->params[i + 1].p != ebuf);
206 1.2 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
207 1.2 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
208 1.2 oster scol = rf_EUCol(layoutPtr, pda->raidAddress);
209 1.2 oster srcbuf = (char *) node->params[i + 1].p;
210 1.2 oster destbuf = ebuf + rf_RaidAddressToByte(raidPtr, suoffset);
211 1.2 oster rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
212 1.2 oster }
213 1.2 oster RF_ETIMER_STOP(timer);
214 1.2 oster RF_ETIMER_EVAL(timer);
215 1.2 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer);
216 1.1 oster }
217 1.1 oster
218 1.1 oster
219 1.1 oster /*******************************************************************************************
220 1.2 oster * Used in EO_001_CreateLargeWriteDAG
221 1.1 oster ******************************************************************************************/
222 1.24 christos void
223 1.20 dsl rf_RegularEFunc(RF_DagNode_t *node)
224 1.1 oster {
225 1.2 oster rf_RegularESubroutine(node, node->results[0]);
226 1.2 oster rf_GenericWakeupFunc(node, 0);
227 1.1 oster }
228 1.1 oster /*******************************************************************************************
229 1.2 oster * This degraded function allow only two case:
230 1.2 oster * 1. when write access the full failed stripe unit, then the access can be more than
231 1.1 oster * one tripe units.
232 1.2 oster * 2. when write access only part of the failed SU, we assume accesses of more than
233 1.2 oster * one stripe unit is not allowed so that the write can be dealt with like a
234 1.2 oster * large write.
235 1.2 oster * The following function is based on these assumptions. So except in the second case,
236 1.1 oster * it looks the same as a large write encodeing function. But this is not exactly the
237 1.2 oster * normal way for doing a degraded write, since raidframe have to break cases of access
238 1.2 oster * other than the above two into smaller accesses. We may have to change
239 1.2 oster * DegrESubroutin in the future.
240 1.1 oster *******************************************************************************************/
241 1.14 perry void
242 1.20 dsl rf_DegrESubroutine(RF_DagNode_t *node, char *ebuf)
243 1.2 oster {
244 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
245 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
246 1.2 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
247 1.2 oster RF_PhysDiskAddr_t *pda;
248 1.2 oster int i, suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
249 1.2 oster RF_RowCol_t scol;
250 1.2 oster char *srcbuf, *destbuf;
251 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
252 1.2 oster RF_Etimer_t timer;
253 1.2 oster
254 1.2 oster RF_ETIMER_START(timer);
255 1.2 oster for (i = 0; i < node->numParams - 2; i += 2) {
256 1.2 oster RF_ASSERT(node->params[i + 1].p != ebuf);
257 1.2 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
258 1.2 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
259 1.2 oster scol = rf_EUCol(layoutPtr, pda->raidAddress);
260 1.2 oster srcbuf = (char *) node->params[i + 1].p;
261 1.2 oster destbuf = ebuf + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
262 1.2 oster rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
263 1.2 oster }
264 1.2 oster
265 1.2 oster RF_ETIMER_STOP(timer);
266 1.2 oster RF_ETIMER_EVAL(timer);
267 1.2 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
268 1.1 oster }
269 1.1 oster
270 1.1 oster
271 1.1 oster /**************************************************************************************
272 1.2 oster * This function is used in case where one data disk failed and both redundant disks
273 1.1 oster * alive. It is used in the EO_100_CreateWriteDAG. Note: if there is another disk
274 1.1 oster * failed in the stripe but not accessed at this time, then we should, instead, use
275 1.1 oster * the rf_EOWriteDoubleRecoveryFunc().
276 1.1 oster **************************************************************************************/
277 1.24 christos void
278 1.20 dsl rf_Degraded_100_EOFunc(RF_DagNode_t *node)
279 1.1 oster {
280 1.2 oster rf_DegrESubroutine(node, node->results[1]);
281 1.2 oster rf_RecoveryXorFunc(node); /* does the wakeup here! */
282 1.1 oster }
283 1.1 oster /**************************************************************************************
284 1.1 oster * This function is to encode one sector in one of the data disks to the E disk.
285 1.2 oster * However, in evenodd this function can also be used as decoding function to recover
286 1.1 oster * data from dead disk in the case of parity failure and a single data failure.
287 1.1 oster **************************************************************************************/
288 1.14 perry void
289 1.2 oster rf_e_EncOneSect(
290 1.2 oster RF_RowCol_t srcLogicCol,
291 1.2 oster char *srcSecbuf,
292 1.2 oster RF_RowCol_t destLogicCol,
293 1.2 oster char *destSecbuf,
294 1.2 oster int bytesPerSector)
295 1.1 oster {
296 1.2 oster int S_index; /* index of the EU in the src col which need
297 1.2 oster * be Xored into all EUs in a dest sector */
298 1.2 oster int numRowInEncMatix = (RF_EO_MATRIX_DIM) - 1;
299 1.2 oster RF_RowCol_t j, indexInDest, /* row index of an encoding unit in
300 1.2 oster * the destination colume of encoding
301 1.2 oster * matrix */
302 1.2 oster indexInSrc; /* row index of an encoding unit in the source
303 1.2 oster * colume used for recovery */
304 1.2 oster int bytesPerEU = bytesPerSector / numRowInEncMatix;
305 1.1 oster
306 1.1 oster #if RF_EO_MATRIX_DIM > 17
307 1.2 oster int shortsPerEU = bytesPerEU / sizeof(short);
308 1.2 oster short *destShortBuf, *srcShortBuf1, *srcShortBuf2;
309 1.6 augustss short temp1;
310 1.1 oster #elif RF_EO_MATRIX_DIM == 17
311 1.2 oster int longsPerEU = bytesPerEU / sizeof(long);
312 1.2 oster long *destLongBuf, *srcLongBuf1, *srcLongBuf2;
313 1.6 augustss long temp1;
314 1.1 oster #endif
315 1.1 oster
316 1.1 oster #if RF_EO_MATRIX_DIM > 17
317 1.2 oster RF_ASSERT(sizeof(short) == 2 || sizeof(short) == 1);
318 1.2 oster RF_ASSERT(bytesPerEU % sizeof(short) == 0);
319 1.1 oster #elif RF_EO_MATRIX_DIM == 17
320 1.2 oster RF_ASSERT(sizeof(long) == 8 || sizeof(long) == 4);
321 1.2 oster RF_ASSERT(bytesPerEU % sizeof(long) == 0);
322 1.1 oster #endif
323 1.1 oster
324 1.2 oster S_index = rf_EO_Mod((RF_EO_MATRIX_DIM - 1 + destLogicCol - srcLogicCol), RF_EO_MATRIX_DIM);
325 1.1 oster #if RF_EO_MATRIX_DIM > 17
326 1.2 oster srcShortBuf1 = (short *) (srcSecbuf + S_index * bytesPerEU);
327 1.1 oster #elif RF_EO_MATRIX_DIM == 17
328 1.2 oster srcLongBuf1 = (long *) (srcSecbuf + S_index * bytesPerEU);
329 1.1 oster #endif
330 1.1 oster
331 1.2 oster for (indexInDest = 0; indexInDest < numRowInEncMatix; indexInDest++) {
332 1.2 oster indexInSrc = rf_EO_Mod((indexInDest + destLogicCol - srcLogicCol), RF_EO_MATRIX_DIM);
333 1.1 oster
334 1.1 oster #if RF_EO_MATRIX_DIM > 17
335 1.2 oster destShortBuf = (short *) (destSecbuf + indexInDest * bytesPerEU);
336 1.2 oster srcShortBuf2 = (short *) (srcSecbuf + indexInSrc * bytesPerEU);
337 1.2 oster for (j = 0; j < shortsPerEU; j++) {
338 1.2 oster temp1 = destShortBuf[j] ^ srcShortBuf1[j];
339 1.2 oster /* note: S_index won't be at the end row for any src
340 1.2 oster * col! */
341 1.2 oster if (indexInSrc != RF_EO_MATRIX_DIM - 1)
342 1.2 oster destShortBuf[j] = (srcShortBuf2[j]) ^ temp1;
343 1.2 oster /* if indexInSrc is at the end row, ie.
344 1.2 oster * RF_EO_MATRIX_DIM -1, then all elements are zero! */
345 1.2 oster else
346 1.2 oster destShortBuf[j] = temp1;
347 1.2 oster }
348 1.1 oster
349 1.1 oster #elif RF_EO_MATRIX_DIM == 17
350 1.2 oster destLongBuf = (long *) (destSecbuf + indexInDest * bytesPerEU);
351 1.2 oster srcLongBuf2 = (long *) (srcSecbuf + indexInSrc * bytesPerEU);
352 1.2 oster for (j = 0; j < longsPerEU; j++) {
353 1.2 oster temp1 = destLongBuf[j] ^ srcLongBuf1[j];
354 1.2 oster if (indexInSrc != RF_EO_MATRIX_DIM - 1)
355 1.2 oster destLongBuf[j] = (srcLongBuf2[j]) ^ temp1;
356 1.2 oster else
357 1.2 oster destLongBuf[j] = temp1;
358 1.2 oster }
359 1.1 oster #endif
360 1.2 oster }
361 1.1 oster }
362 1.1 oster
363 1.14 perry void
364 1.2 oster rf_e_encToBuf(
365 1.2 oster RF_Raid_t * raidPtr,
366 1.2 oster RF_RowCol_t srcLogicCol,
367 1.2 oster char *srcbuf,
368 1.2 oster RF_RowCol_t destLogicCol,
369 1.2 oster char *destbuf,
370 1.2 oster int numSector)
371 1.1 oster {
372 1.2 oster int i, bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
373 1.1 oster
374 1.2 oster for (i = 0; i < numSector; i++) {
375 1.2 oster rf_e_EncOneSect(srcLogicCol, srcbuf, destLogicCol, destbuf, bytesPerSector);
376 1.2 oster srcbuf += bytesPerSector;
377 1.2 oster destbuf += bytesPerSector;
378 1.2 oster }
379 1.1 oster }
380 1.2 oster /**************************************************************************************
381 1.2 oster * when parity die and one data die, We use second redundant information, 'E',
382 1.2 oster * to recover the data in dead disk. This function is used in the recovery node of
383 1.2 oster * for EO_110_CreateReadDAG
384 1.1 oster **************************************************************************************/
385 1.24 christos void
386 1.20 dsl rf_RecoveryEFunc(RF_DagNode_t *node)
387 1.2 oster {
388 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
389 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
390 1.2 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
391 1.2 oster RF_RowCol_t scol, /* source logical column */
392 1.2 oster fcol = rf_EUCol(layoutPtr, failedPDA->raidAddress); /* logical column of
393 1.2 oster * failed SU */
394 1.2 oster int i;
395 1.2 oster RF_PhysDiskAddr_t *pda;
396 1.2 oster int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
397 1.2 oster char *srcbuf, *destbuf;
398 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
399 1.2 oster RF_Etimer_t timer;
400 1.2 oster
401 1.23 christos memset(node->results[0], 0,
402 1.8 thorpej rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
403 1.2 oster if (node->dagHdr->status == rf_enable) {
404 1.2 oster RF_ETIMER_START(timer);
405 1.2 oster for (i = 0; i < node->numParams - 2; i += 2)
406 1.2 oster if (node->params[i + 1].p != node->results[0]) {
407 1.2 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
408 1.2 oster if (i == node->numParams - 4)
409 1.2 oster scol = RF_EO_MATRIX_DIM - 2; /* the colume of
410 1.2 oster * redundant E */
411 1.2 oster else
412 1.2 oster scol = rf_EUCol(layoutPtr, pda->raidAddress);
413 1.2 oster srcbuf = (char *) node->params[i + 1].p;
414 1.2 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
415 1.2 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
416 1.2 oster rf_e_encToBuf(raidPtr, scol, srcbuf, fcol, destbuf, pda->numSector);
417 1.2 oster }
418 1.2 oster RF_ETIMER_STOP(timer);
419 1.2 oster RF_ETIMER_EVAL(timer);
420 1.2 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer);
421 1.2 oster }
422 1.24 christos rf_GenericWakeupFunc(node, 0); /* node execute successfully */
423 1.1 oster }
424 1.1 oster /**************************************************************************************
425 1.1 oster * This function is used in the case where one data and the parity have filed.
426 1.1 oster * (in EO_110_CreateWriteDAG )
427 1.1 oster **************************************************************************************/
428 1.24 christos void
429 1.2 oster rf_EO_DegradedWriteEFunc(RF_DagNode_t * node)
430 1.1 oster {
431 1.2 oster rf_DegrESubroutine(node, node->results[0]);
432 1.2 oster rf_GenericWakeupFunc(node, 0);
433 1.1 oster }
434 1.1 oster
435 1.1 oster
436 1.2 oster
437 1.1 oster /**************************************************************************************
438 1.1 oster * THE FUNCTION IS FOR DOUBLE DEGRADED READ AND WRITE CASES
439 1.1 oster **************************************************************************************/
440 1.1 oster
441 1.14 perry void
442 1.2 oster rf_doubleEOdecode(
443 1.2 oster RF_Raid_t * raidPtr,
444 1.2 oster char **rrdbuf,
445 1.2 oster char **dest,
446 1.2 oster RF_RowCol_t * fcol,
447 1.2 oster char *pbuf,
448 1.2 oster char *ebuf)
449 1.2 oster {
450 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
451 1.2 oster int i, j, k, f1, f2, row;
452 1.2 oster int rrdrow, erow, count = 0;
453 1.2 oster int bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
454 1.2 oster int numRowInEncMatix = (RF_EO_MATRIX_DIM) - 1;
455 1.1 oster #if 0
456 1.2 oster int pcol = (RF_EO_MATRIX_DIM) - 1;
457 1.1 oster #endif
458 1.2 oster int ecol = (RF_EO_MATRIX_DIM) - 2;
459 1.2 oster int bytesPerEU = bytesPerSector / numRowInEncMatix;
460 1.2 oster int numDataCol = layoutPtr->numDataCol;
461 1.2 oster #if RF_EO_MATRIX_DIM > 17
462 1.2 oster int shortsPerEU = bytesPerEU / sizeof(short);
463 1.2 oster short *rrdbuf_current, *pbuf_current, *ebuf_current;
464 1.2 oster short *dest_smaller, *dest_smaller_current, *dest_larger, *dest_larger_current;
465 1.6 augustss short *temp;
466 1.2 oster short *P;
467 1.2 oster
468 1.2 oster RF_ASSERT(bytesPerEU % sizeof(short) == 0);
469 1.2 oster #elif RF_EO_MATRIX_DIM == 17
470 1.2 oster int longsPerEU = bytesPerEU / sizeof(long);
471 1.2 oster long *rrdbuf_current, *pbuf_current, *ebuf_current;
472 1.2 oster long *dest_smaller, *dest_smaller_current, *dest_larger, *dest_larger_current;
473 1.6 augustss long *temp;
474 1.2 oster long *P;
475 1.2 oster
476 1.2 oster RF_ASSERT(bytesPerEU % sizeof(long) == 0);
477 1.2 oster #endif
478 1.23 christos P = RF_Malloc(bytesPerEU);
479 1.23 christos temp = RF_Malloc(bytesPerEU);
480 1.2 oster RF_ASSERT(*((long *) dest[0]) == 0);
481 1.2 oster RF_ASSERT(*((long *) dest[1]) == 0);
482 1.2 oster RF_ASSERT(*P == 0);
483 1.2 oster /* calculate the 'P' parameter, which, not parity, is the Xor of all
484 1.2 oster * elements in the last two column, ie. 'E' and 'parity' colume, see
485 1.2 oster * the Ref. paper by Blaum, et al 1993 */
486 1.2 oster for (i = 0; i < numRowInEncMatix; i++)
487 1.2 oster for (k = 0; k < longsPerEU; k++) {
488 1.2 oster #if RF_EO_MATRIX_DIM > 17
489 1.2 oster ebuf_current = ((short *) ebuf) + i * shortsPerEU + k;
490 1.2 oster pbuf_current = ((short *) pbuf) + i * shortsPerEU + k;
491 1.2 oster #elif RF_EO_MATRIX_DIM == 17
492 1.2 oster ebuf_current = ((long *) ebuf) + i * longsPerEU + k;
493 1.2 oster pbuf_current = ((long *) pbuf) + i * longsPerEU + k;
494 1.2 oster #endif
495 1.2 oster P[k] ^= *ebuf_current;
496 1.2 oster P[k] ^= *pbuf_current;
497 1.2 oster }
498 1.2 oster RF_ASSERT(fcol[0] != fcol[1]);
499 1.2 oster if (fcol[0] < fcol[1]) {
500 1.2 oster #if RF_EO_MATRIX_DIM > 17
501 1.2 oster dest_smaller = (short *) (dest[0]);
502 1.2 oster dest_larger = (short *) (dest[1]);
503 1.2 oster #elif RF_EO_MATRIX_DIM == 17
504 1.2 oster dest_smaller = (long *) (dest[0]);
505 1.2 oster dest_larger = (long *) (dest[1]);
506 1.2 oster #endif
507 1.2 oster f1 = fcol[0];
508 1.2 oster f2 = fcol[1];
509 1.2 oster } else {
510 1.2 oster #if RF_EO_MATRIX_DIM > 17
511 1.2 oster dest_smaller = (short *) (dest[1]);
512 1.2 oster dest_larger = (short *) (dest[0]);
513 1.2 oster #elif RF_EO_MATRIX_DIM == 17
514 1.2 oster dest_smaller = (long *) (dest[1]);
515 1.2 oster dest_larger = (long *) (dest[0]);
516 1.2 oster #endif
517 1.2 oster f1 = fcol[1];
518 1.2 oster f2 = fcol[0];
519 1.2 oster }
520 1.2 oster row = (RF_EO_MATRIX_DIM) - 1;
521 1.2 oster while ((row = rf_EO_Mod((row + f1 - f2), RF_EO_MATRIX_DIM)) != ((RF_EO_MATRIX_DIM) - 1)) {
522 1.2 oster #if RF_EO_MATRIX_DIM > 17
523 1.2 oster dest_larger_current = dest_larger + row * shortsPerEU;
524 1.2 oster dest_smaller_current = dest_smaller + row * shortsPerEU;
525 1.2 oster #elif RF_EO_MATRIX_DIM == 17
526 1.2 oster dest_larger_current = dest_larger + row * longsPerEU;
527 1.2 oster dest_smaller_current = dest_smaller + row * longsPerEU;
528 1.2 oster #endif
529 1.2 oster /** Do the diagonal recovery. Initially, temp[k] = (failed 1),
530 1.2 oster which is the failed data in the colume which has smaller col index. **/
531 1.2 oster /* step 1: ^(SUM of nonfailed in-diagonal A(rrdrow,0..m-3)) */
532 1.2 oster for (j = 0; j < numDataCol; j++) {
533 1.2 oster if (j == f1 || j == f2)
534 1.2 oster continue;
535 1.2 oster rrdrow = rf_EO_Mod((row + f2 - j), RF_EO_MATRIX_DIM);
536 1.2 oster if (rrdrow != (RF_EO_MATRIX_DIM) - 1) {
537 1.2 oster #if RF_EO_MATRIX_DIM > 17
538 1.2 oster rrdbuf_current = (short *) (rrdbuf[j]) + rrdrow * shortsPerEU;
539 1.2 oster for (k = 0; k < shortsPerEU; k++)
540 1.2 oster temp[k] ^= *(rrdbuf_current + k);
541 1.2 oster #elif RF_EO_MATRIX_DIM == 17
542 1.2 oster rrdbuf_current = (long *) (rrdbuf[j]) + rrdrow * longsPerEU;
543 1.2 oster for (k = 0; k < longsPerEU; k++)
544 1.2 oster temp[k] ^= *(rrdbuf_current + k);
545 1.2 oster #endif
546 1.2 oster }
547 1.2 oster }
548 1.2 oster /* step 2: ^E(erow,m-2), If erow is at the buttom row, don't
549 1.2 oster * Xor into it E(erow,m-2) = (principle diagonal) ^ (failed
550 1.2 oster * 1) ^ (failed 2) ^ ( SUM of nonfailed in-diagonal
551 1.2 oster * A(rrdrow,0..m-3) ) After this step, temp[k] = (principle
552 1.2 oster * diagonal) ^ (failed 2) */
553 1.2 oster
554 1.2 oster erow = rf_EO_Mod((row + f2 - ecol), (RF_EO_MATRIX_DIM));
555 1.2 oster if (erow != (RF_EO_MATRIX_DIM) - 1) {
556 1.2 oster #if RF_EO_MATRIX_DIM > 17
557 1.2 oster ebuf_current = (short *) ebuf + shortsPerEU * erow;
558 1.2 oster for (k = 0; k < shortsPerEU; k++)
559 1.2 oster temp[k] ^= *(ebuf_current + k);
560 1.2 oster #elif RF_EO_MATRIX_DIM == 17
561 1.2 oster ebuf_current = (long *) ebuf + longsPerEU * erow;
562 1.2 oster for (k = 0; k < longsPerEU; k++)
563 1.2 oster temp[k] ^= *(ebuf_current + k);
564 1.2 oster #endif
565 1.2 oster }
566 1.2 oster /* step 3: ^P to obtain the failed data (failed 2). P can be
567 1.2 oster * proved to be actually (principle diagonal) After this
568 1.2 oster * step, temp[k] = (failed 2), the failed data to be recovered */
569 1.2 oster #if RF_EO_MATRIX_DIM > 17
570 1.2 oster for (k = 0; k < shortsPerEU; k++)
571 1.2 oster temp[k] ^= P[k];
572 1.2 oster /* Put the data to the destination buffer */
573 1.2 oster for (k = 0; k < shortsPerEU; k++)
574 1.2 oster dest_larger_current[k] = temp[k];
575 1.2 oster #elif RF_EO_MATRIX_DIM == 17
576 1.2 oster for (k = 0; k < longsPerEU; k++)
577 1.2 oster temp[k] ^= P[k];
578 1.2 oster /* Put the data to the destination buffer */
579 1.2 oster for (k = 0; k < longsPerEU; k++)
580 1.2 oster dest_larger_current[k] = temp[k];
581 1.2 oster #endif
582 1.2 oster
583 1.2 oster /** THE FOLLOWING DO THE HORIZONTAL XOR **/
584 1.2 oster /* step 1: ^(SUM of A(row,0..m-3)), ie. all nonfailed data
585 1.2 oster * columes */
586 1.2 oster for (j = 0; j < numDataCol; j++) {
587 1.2 oster if (j == f1 || j == f2)
588 1.2 oster continue;
589 1.2 oster #if RF_EO_MATRIX_DIM > 17
590 1.2 oster rrdbuf_current = (short *) (rrdbuf[j]) + row * shortsPerEU;
591 1.2 oster for (k = 0; k < shortsPerEU; k++)
592 1.2 oster temp[k] ^= *(rrdbuf_current + k);
593 1.2 oster #elif RF_EO_MATRIX_DIM == 17
594 1.2 oster rrdbuf_current = (long *) (rrdbuf[j]) + row * longsPerEU;
595 1.2 oster for (k = 0; k < longsPerEU; k++)
596 1.2 oster temp[k] ^= *(rrdbuf_current + k);
597 1.2 oster #endif
598 1.2 oster }
599 1.2 oster /* step 2: ^A(row,m-1) */
600 1.2 oster /* step 3: Put the data to the destination buffer */
601 1.2 oster #if RF_EO_MATRIX_DIM > 17
602 1.2 oster pbuf_current = (short *) pbuf + shortsPerEU * row;
603 1.2 oster for (k = 0; k < shortsPerEU; k++)
604 1.2 oster temp[k] ^= *(pbuf_current + k);
605 1.2 oster for (k = 0; k < shortsPerEU; k++)
606 1.2 oster dest_smaller_current[k] = temp[k];
607 1.2 oster #elif RF_EO_MATRIX_DIM == 17
608 1.2 oster pbuf_current = (long *) pbuf + longsPerEU * row;
609 1.2 oster for (k = 0; k < longsPerEU; k++)
610 1.2 oster temp[k] ^= *(pbuf_current + k);
611 1.2 oster for (k = 0; k < longsPerEU; k++)
612 1.2 oster dest_smaller_current[k] = temp[k];
613 1.2 oster #endif
614 1.2 oster count++;
615 1.2 oster }
616 1.2 oster /* Check if all Encoding Unit in the data buffer have been decoded,
617 1.2 oster * according EvenOdd theory, if "RF_EO_MATRIX_DIM" is a prime number,
618 1.2 oster * this algorithm will covered all buffer */
619 1.2 oster RF_ASSERT(count == numRowInEncMatix);
620 1.2 oster RF_Free((char *) P, bytesPerEU);
621 1.2 oster RF_Free((char *) temp, bytesPerEU);
622 1.1 oster }
623 1.2 oster
624 1.1 oster
625 1.1 oster /***************************************************************************************
626 1.1 oster * This function is called by double degragded read
627 1.2 oster * EO_200_CreateReadDAG
628 1.1 oster *
629 1.1 oster ***************************************************************************************/
630 1.24 christos void
631 1.20 dsl rf_EvenOddDoubleRecoveryFunc(RF_DagNode_t *node)
632 1.2 oster {
633 1.2 oster int ndataParam = 0;
634 1.2 oster int np = node->numParams;
635 1.2 oster RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
636 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
637 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
638 1.2 oster int i, prm, sector, nresults = node->numResults;
639 1.2 oster RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
640 1.2 oster unsigned sosAddr;
641 1.22 christos int mallc_one = 0, mallc_two = 0; /* flags to indicate if
642 1.22 christos * memory is allocated */
643 1.2 oster int bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
644 1.2 oster RF_PhysDiskAddr_t *ppda, *ppda2, *epda, *epda2, *pda, *pda0, *pda1,
645 1.2 oster npda;
646 1.2 oster RF_RowCol_t fcol[2], fsuoff[2], fsuend[2], numDataCol = layoutPtr->numDataCol;
647 1.2 oster char **buf, *ebuf, *pbuf, *dest[2];
648 1.17 christos long *suoff = NULL, *suend = NULL, *prmToCol = NULL,
649 1.17 christos psuoff = 0, esuoff = 0;
650 1.2 oster RF_SectorNum_t startSector, endSector;
651 1.2 oster RF_Etimer_t timer;
652 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
653 1.2 oster
654 1.2 oster RF_ETIMER_START(timer);
655 1.2 oster
656 1.2 oster /* Find out the number of parameters which are pdas for data
657 1.2 oster * information */
658 1.2 oster for (i = 0; i <= np; i++)
659 1.2 oster if (((RF_PhysDiskAddr_t *) node->params[i].p)->type != RF_PDA_TYPE_DATA) {
660 1.2 oster ndataParam = i;
661 1.2 oster break;
662 1.2 oster }
663 1.23 christos buf = RF_Malloc(numDataCol * sizeof(*buf));
664 1.2 oster if (ndataParam != 0) {
665 1.23 christos suoff = RF_Malloc(ndataParam * sizeof(*suoff));
666 1.23 christos suend = RF_Malloc(ndataParam * sizeof(*suend));
667 1.23 christos prmToCol = RF_Malloc(ndataParam * sizeof(*prmToCol));
668 1.2 oster }
669 1.2 oster if (asmap->failedPDAs[1] &&
670 1.2 oster (asmap->failedPDAs[1]->numSector + asmap->failedPDAs[0]->numSector < secPerSU)) {
671 1.2 oster RF_ASSERT(0); /* currently, no support for this situation */
672 1.2 oster ppda = node->params[np - 6].p;
673 1.2 oster ppda2 = node->params[np - 5].p;
674 1.2 oster RF_ASSERT(ppda2->type == RF_PDA_TYPE_PARITY);
675 1.2 oster epda = node->params[np - 4].p;
676 1.2 oster epda2 = node->params[np - 3].p;
677 1.2 oster RF_ASSERT(epda2->type == RF_PDA_TYPE_Q);
678 1.2 oster } else {
679 1.2 oster ppda = node->params[np - 4].p;
680 1.2 oster epda = node->params[np - 3].p;
681 1.2 oster psuoff = rf_StripeUnitOffset(layoutPtr, ppda->startSector);
682 1.2 oster esuoff = rf_StripeUnitOffset(layoutPtr, epda->startSector);
683 1.2 oster RF_ASSERT(psuoff == esuoff);
684 1.2 oster }
685 1.2 oster /*
686 1.2 oster the followings have three goals:
687 1.2 oster 1. determine the startSector to begin decoding and endSector to end decoding.
688 1.2 oster 2. determine the colume numbers of the two failed disks.
689 1.2 oster 3. determine the offset and end offset of the access within each failed stripe unit.
690 1.2 oster */
691 1.2 oster if (nresults == 1) {
692 1.2 oster /* find the startSector to begin decoding */
693 1.2 oster pda = node->results[0];
694 1.8 thorpej memset(pda->bufPtr, 0, bytesPerSector * pda->numSector);
695 1.2 oster fsuoff[0] = rf_StripeUnitOffset(layoutPtr, pda->startSector);
696 1.2 oster fsuend[0] = fsuoff[0] + pda->numSector;
697 1.17 christos fsuoff[1] = 0;
698 1.17 christos fsuend[1] = 0;
699 1.2 oster startSector = fsuoff[0];
700 1.2 oster endSector = fsuend[0];
701 1.2 oster
702 1.5 soren /* find out the column of failed disk being accessed */
703 1.2 oster fcol[0] = rf_EUCol(layoutPtr, pda->raidAddress);
704 1.2 oster
705 1.2 oster /* find out the other failed colume not accessed */
706 1.2 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
707 1.2 oster for (i = 0; i < numDataCol; i++) {
708 1.2 oster npda.raidAddress = sosAddr + (i * secPerSU);
709 1.13 oster (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.col), &(npda.startSector), 0);
710 1.2 oster /* skip over dead disks */
711 1.13 oster if (RF_DEAD_DISK(raidPtr->Disks[npda.col].status))
712 1.2 oster if (i != fcol[0])
713 1.2 oster break;
714 1.2 oster }
715 1.2 oster RF_ASSERT(i < numDataCol);
716 1.2 oster fcol[1] = i;
717 1.2 oster } else {
718 1.2 oster RF_ASSERT(nresults == 2);
719 1.2 oster pda0 = node->results[0];
720 1.8 thorpej memset(pda0->bufPtr, 0, bytesPerSector * pda0->numSector);
721 1.2 oster pda1 = node->results[1];
722 1.8 thorpej memset(pda1->bufPtr, 0, bytesPerSector * pda1->numSector);
723 1.2 oster /* determine the failed colume numbers of the two failed
724 1.2 oster * disks. */
725 1.2 oster fcol[0] = rf_EUCol(layoutPtr, pda0->raidAddress);
726 1.2 oster fcol[1] = rf_EUCol(layoutPtr, pda1->raidAddress);
727 1.2 oster /* determine the offset and end offset of the access within
728 1.2 oster * each failed stripe unit. */
729 1.2 oster fsuoff[0] = rf_StripeUnitOffset(layoutPtr, pda0->startSector);
730 1.2 oster fsuend[0] = fsuoff[0] + pda0->numSector;
731 1.2 oster fsuoff[1] = rf_StripeUnitOffset(layoutPtr, pda1->startSector);
732 1.2 oster fsuend[1] = fsuoff[1] + pda1->numSector;
733 1.2 oster /* determine the startSector to begin decoding */
734 1.2 oster startSector = RF_MIN(pda0->startSector, pda1->startSector);
735 1.2 oster /* determine the endSector to end decoding */
736 1.2 oster endSector = RF_MAX(fsuend[0], fsuend[1]);
737 1.2 oster }
738 1.2 oster /*
739 1.2 oster assign the beginning sector and the end sector for each parameter
740 1.2 oster find out the corresponding colume # for each parameter
741 1.2 oster */
742 1.2 oster for (prm = 0; prm < ndataParam; prm++) {
743 1.2 oster pda = node->params[prm].p;
744 1.2 oster suoff[prm] = rf_StripeUnitOffset(layoutPtr, pda->startSector);
745 1.2 oster suend[prm] = suoff[prm] + pda->numSector;
746 1.2 oster prmToCol[prm] = rf_EUCol(layoutPtr, pda->raidAddress);
747 1.2 oster }
748 1.2 oster /* 'sector' is the sector for the current decoding algorithm. For each
749 1.2 oster * sector in the failed SU, find out the corresponding parameters that
750 1.2 oster * cover the current sector and that are needed for decoding of this
751 1.2 oster * sector in failed SU. 2. Find out if sector is in the shadow of any
752 1.2 oster * accessed failed SU. If not, malloc a temporary space of a sector in
753 1.2 oster * size. */
754 1.2 oster for (sector = startSector; sector < endSector; sector++) {
755 1.2 oster if (nresults == 2)
756 1.2 oster if (!(fsuoff[0] <= sector && sector < fsuend[0]) && !(fsuoff[1] <= sector && sector < fsuend[1]))
757 1.2 oster continue;
758 1.2 oster for (prm = 0; prm < ndataParam; prm++)
759 1.2 oster if (suoff[prm] <= sector && sector < suend[prm])
760 1.18 christos buf[(prmToCol[prm])] = (char *)((RF_PhysDiskAddr_t *) node->params[prm].p)->bufPtr +
761 1.2 oster rf_RaidAddressToByte(raidPtr, sector - suoff[prm]);
762 1.2 oster /* find out if sector is in the shadow of any accessed failed
763 1.2 oster * SU. If yes, assign dest[0], dest[1] to point at suitable
764 1.2 oster * position of the buffer corresponding to failed SUs. if no,
765 1.2 oster * malloc a temporary space of a sector in size for
766 1.2 oster * destination of decoding. */
767 1.2 oster RF_ASSERT(nresults == 1 || nresults == 2);
768 1.2 oster if (nresults == 1) {
769 1.18 christos dest[0] = (char *)((RF_PhysDiskAddr_t *) node->results[0])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[0]);
770 1.2 oster /* Always malloc temp buffer to dest[1] */
771 1.23 christos dest[1] = RF_Malloc(bytesPerSector);
772 1.2 oster mallc_two = 1;
773 1.2 oster } else {
774 1.2 oster if (fsuoff[0] <= sector && sector < fsuend[0])
775 1.18 christos dest[0] = (char *)((RF_PhysDiskAddr_t *) node->results[0])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[0]);
776 1.2 oster else {
777 1.23 christos dest[0] = RF_Malloc(bytesPerSector);
778 1.2 oster mallc_one = 1;
779 1.2 oster }
780 1.2 oster if (fsuoff[1] <= sector && sector < fsuend[1])
781 1.18 christos dest[1] = (char *)((RF_PhysDiskAddr_t *) node->results[1])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[1]);
782 1.2 oster else {
783 1.23 christos dest[1] = RF_Malloc(bytesPerSector);
784 1.2 oster mallc_two = 1;
785 1.2 oster }
786 1.2 oster RF_ASSERT(mallc_one == 0 || mallc_two == 0);
787 1.2 oster }
788 1.18 christos pbuf = (char *)ppda->bufPtr + rf_RaidAddressToByte(raidPtr, sector - psuoff);
789 1.18 christos ebuf = (char *)epda->bufPtr + rf_RaidAddressToByte(raidPtr, sector - esuoff);
790 1.2 oster /*
791 1.2 oster * After finish finding all needed sectors, call doubleEOdecode function for decoding
792 1.2 oster * one sector to destination.
793 1.2 oster */
794 1.2 oster rf_doubleEOdecode(raidPtr, buf, dest, fcol, pbuf, ebuf);
795 1.2 oster /* free all allocated memory, and mark flag to indicate no
796 1.2 oster * memory is being allocated */
797 1.2 oster if (mallc_one == 1)
798 1.2 oster RF_Free(dest[0], bytesPerSector);
799 1.2 oster if (mallc_two == 1)
800 1.2 oster RF_Free(dest[1], bytesPerSector);
801 1.2 oster mallc_one = mallc_two = 0;
802 1.2 oster }
803 1.2 oster RF_Free(buf, numDataCol * sizeof(char *));
804 1.2 oster if (ndataParam != 0) {
805 1.2 oster RF_Free(suoff, ndataParam * sizeof(long));
806 1.2 oster RF_Free(suend, ndataParam * sizeof(long));
807 1.2 oster RF_Free(prmToCol, ndataParam * sizeof(long));
808 1.2 oster }
809 1.2 oster RF_ETIMER_STOP(timer);
810 1.2 oster RF_ETIMER_EVAL(timer);
811 1.2 oster if (tracerec) {
812 1.2 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
813 1.2 oster }
814 1.2 oster rf_GenericWakeupFunc(node, 0);
815 1.1 oster }
816 1.1 oster
817 1.1 oster
818 1.2 oster /* currently, only access of one of the two failed SU is allowed in this function.
819 1.2 oster * also, asmap->numStripeUnitsAccessed is limited to be one, the RaidFrame will break large access into
820 1.1 oster * many accesses of single stripe unit.
821 1.1 oster */
822 1.1 oster
823 1.24 christos void
824 1.20 dsl rf_EOWriteDoubleRecoveryFunc(RF_DagNode_t *node)
825 1.2 oster {
826 1.2 oster int np = node->numParams;
827 1.2 oster RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
828 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
829 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
830 1.2 oster RF_SectorNum_t sector;
831 1.2 oster RF_RowCol_t col, scol;
832 1.2 oster int prm, i, j;
833 1.2 oster RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
834 1.2 oster unsigned sosAddr;
835 1.2 oster unsigned bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
836 1.2 oster RF_int64 numbytes;
837 1.2 oster RF_SectorNum_t startSector, endSector;
838 1.2 oster RF_PhysDiskAddr_t *ppda, *epda, *pda, *fpda, npda;
839 1.2 oster RF_RowCol_t fcol[2], numDataCol = layoutPtr->numDataCol;
840 1.2 oster char **buf; /* buf[0], buf[1], buf[2], ...etc. point to
841 1.2 oster * buffer storing data read from col0, col1,
842 1.2 oster * col2 */
843 1.2 oster char *ebuf, *pbuf, *dest[2], *olddata[2];
844 1.2 oster RF_Etimer_t timer;
845 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
846 1.2 oster
847 1.2 oster RF_ASSERT(asmap->numDataFailed == 1); /* currently only support this
848 1.2 oster * case, the other failed SU
849 1.2 oster * is not being accessed */
850 1.2 oster RF_ETIMER_START(timer);
851 1.23 christos buf = RF_Malloc(numDataCol * sizeof(*buf));
852 1.2 oster
853 1.2 oster ppda = node->results[0];/* Instead of being buffers, node->results[0]
854 1.2 oster * and [1] are Ppda and Epda */
855 1.2 oster epda = node->results[1];
856 1.2 oster fpda = asmap->failedPDAs[0];
857 1.2 oster
858 1.2 oster /* First, recovery the failed old SU using EvenOdd double decoding */
859 1.2 oster /* determine the startSector and endSector for decoding */
860 1.2 oster startSector = rf_StripeUnitOffset(layoutPtr, fpda->startSector);
861 1.2 oster endSector = startSector + fpda->numSector;
862 1.2 oster /* Assign buf[col] pointers to point to each non-failed colume and
863 1.2 oster * initialize the pbuf and ebuf to point at the beginning of each
864 1.2 oster * source buffers and destination buffers */
865 1.2 oster for (prm = 0; prm < numDataCol - 2; prm++) {
866 1.2 oster pda = (RF_PhysDiskAddr_t *) node->params[prm].p;
867 1.2 oster col = rf_EUCol(layoutPtr, pda->raidAddress);
868 1.2 oster buf[col] = pda->bufPtr;
869 1.2 oster }
870 1.2 oster /* pbuf and ebuf: they will change values as double recovery decoding
871 1.2 oster * goes on */
872 1.2 oster pbuf = ppda->bufPtr;
873 1.2 oster ebuf = epda->bufPtr;
874 1.2 oster /* find out the logical colume numbers in the encoding matrix of the
875 1.2 oster * two failed columes */
876 1.2 oster fcol[0] = rf_EUCol(layoutPtr, fpda->raidAddress);
877 1.2 oster
878 1.2 oster /* find out the other failed colume not accessed this time */
879 1.2 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
880 1.2 oster for (i = 0; i < numDataCol; i++) {
881 1.2 oster npda.raidAddress = sosAddr + (i * secPerSU);
882 1.13 oster (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.col), &(npda.startSector), 0);
883 1.2 oster /* skip over dead disks */
884 1.13 oster if (RF_DEAD_DISK(raidPtr->Disks[npda.col].status))
885 1.2 oster if (i != fcol[0])
886 1.2 oster break;
887 1.2 oster }
888 1.2 oster RF_ASSERT(i < numDataCol);
889 1.2 oster fcol[1] = i;
890 1.2 oster /* assign temporary space to put recovered failed SU */
891 1.2 oster numbytes = fpda->numSector * bytesPerSector;
892 1.23 christos olddata[0] = RF_Malloc(numbytes);
893 1.23 christos olddata[1] = RF_Malloc(numbytes);
894 1.2 oster dest[0] = olddata[0];
895 1.2 oster dest[1] = olddata[1];
896 1.2 oster /* Begin the recovery decoding, initially buf[j], ebuf, pbuf, dest[j]
897 1.2 oster * have already pointed at the beginning of each source buffers and
898 1.2 oster * destination buffers */
899 1.2 oster for (sector = startSector, i = 0; sector < endSector; sector++, i++) {
900 1.2 oster rf_doubleEOdecode(raidPtr, buf, dest, fcol, pbuf, ebuf);
901 1.2 oster for (j = 0; j < numDataCol; j++)
902 1.2 oster if ((j != fcol[0]) && (j != fcol[1]))
903 1.2 oster buf[j] += bytesPerSector;
904 1.2 oster dest[0] += bytesPerSector;
905 1.2 oster dest[1] += bytesPerSector;
906 1.2 oster ebuf += bytesPerSector;
907 1.2 oster pbuf += bytesPerSector;
908 1.2 oster }
909 1.2 oster /* after recovery, the buffer pointed by olddata[0] is the old failed
910 1.2 oster * data. With new writing data and this old data, use small write to
911 1.2 oster * calculate the new redundant informations */
912 1.2 oster /* node->params[ 0, ... PDAPerDisk * (numDataCol - 2)-1 ] are Pdas of
913 1.2 oster * Rrd; params[ PDAPerDisk*(numDataCol - 2), ... PDAPerDisk*numDataCol
914 1.2 oster * -1 ] are Pdas of Rp, ( Rp2 ), Re, ( Re2 ) ; params[
915 1.2 oster * PDAPerDisk*numDataCol, ... PDAPerDisk*numDataCol
916 1.2 oster * +asmap->numStripeUnitsAccessed -asmap->numDataFailed-1] are Pdas of
917 1.2 oster * wudNodes; For current implementation, we assume the simplest case:
918 1.2 oster * asmap->numStripeUnitsAccessed == 1 and asmap->numDataFailed == 1
919 1.2 oster * ie. PDAPerDisk = 1 then node->params[numDataCol] must be the new
920 1.2 oster * data to be writen to the failed disk. We first bxor the new data
921 1.2 oster * into the old recovered data, then do the same things as small
922 1.2 oster * write. */
923 1.2 oster
924 1.16 oster rf_bxor(((RF_PhysDiskAddr_t *) node->params[numDataCol].p)->bufPtr, olddata[0], numbytes);
925 1.2 oster /* do new 'E' calculation */
926 1.2 oster /* find out the corresponding colume in encoding matrix for write
927 1.2 oster * colume to be encoded into redundant disk 'E' */
928 1.2 oster scol = rf_EUCol(layoutPtr, fpda->raidAddress);
929 1.2 oster /* olddata[0] now is source buffer pointer; epda->bufPtr is the dest
930 1.2 oster * buffer pointer */
931 1.2 oster rf_e_encToBuf(raidPtr, scol, olddata[0], RF_EO_MATRIX_DIM - 2, epda->bufPtr, fpda->numSector);
932 1.2 oster
933 1.2 oster /* do new 'P' calculation */
934 1.16 oster rf_bxor(olddata[0], ppda->bufPtr, numbytes);
935 1.2 oster /* Free the allocated buffer */
936 1.2 oster RF_Free(olddata[0], numbytes);
937 1.2 oster RF_Free(olddata[1], numbytes);
938 1.2 oster RF_Free(buf, numDataCol * sizeof(char *));
939 1.2 oster
940 1.2 oster RF_ETIMER_STOP(timer);
941 1.2 oster RF_ETIMER_EVAL(timer);
942 1.2 oster if (tracerec) {
943 1.2 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
944 1.2 oster }
945 1.2 oster rf_GenericWakeupFunc(node, 0);
946 1.1 oster }
947 1.7 oster #endif /* RF_INCLUDE_EVENODD > 0 */
948