rf_evenodd_dagfuncs.c revision 1.5 1 1.5 soren /* $NetBSD: rf_evenodd_dagfuncs.c,v 1.5 2000/03/13 23:52:36 soren Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: ChangMing Wu
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * Code for RAID-EVENODD architecture.
31 1.1 oster */
32 1.1 oster
33 1.1 oster #include "rf_types.h"
34 1.1 oster #include "rf_raid.h"
35 1.1 oster #include "rf_dag.h"
36 1.1 oster #include "rf_dagffrd.h"
37 1.1 oster #include "rf_dagffwr.h"
38 1.1 oster #include "rf_dagdegrd.h"
39 1.1 oster #include "rf_dagdegwr.h"
40 1.1 oster #include "rf_dagutils.h"
41 1.1 oster #include "rf_dagfuncs.h"
42 1.1 oster #include "rf_etimer.h"
43 1.1 oster #include "rf_general.h"
44 1.1 oster #include "rf_configure.h"
45 1.1 oster #include "rf_parityscan.h"
46 1.1 oster #include "rf_evenodd.h"
47 1.1 oster #include "rf_evenodd_dagfuncs.h"
48 1.1 oster
49 1.1 oster /* These redundant functions are for small write */
50 1.2 oster RF_RedFuncs_t rf_EOSmallWritePFuncs = {rf_RegularXorFunc, "Regular Old-New P", rf_SimpleXorFunc, "Simple Old-New P"};
51 1.2 oster RF_RedFuncs_t rf_EOSmallWriteEFuncs = {rf_RegularONEFunc, "Regular Old-New E", rf_SimpleONEFunc, "Regular Old-New E"};
52 1.1 oster /* These redundant functions are for degraded read */
53 1.2 oster RF_RedFuncs_t rf_eoPRecoveryFuncs = {rf_RecoveryXorFunc, "Recovery Xr", rf_RecoveryXorFunc, "Recovery Xr"};
54 1.2 oster RF_RedFuncs_t rf_eoERecoveryFuncs = {rf_RecoveryEFunc, "Recovery E Func", rf_RecoveryEFunc, "Recovery E Func"};
55 1.1 oster /**********************************************************************************************
56 1.2 oster * the following encoding node functions is used in EO_000_CreateLargeWriteDAG
57 1.1 oster **********************************************************************************************/
58 1.2 oster int
59 1.2 oster rf_RegularPEFunc(node)
60 1.2 oster RF_DagNode_t *node;
61 1.1 oster {
62 1.2 oster rf_RegularESubroutine(node, node->results[1]);
63 1.2 oster rf_RegularXorFunc(node);/* does the wakeup here! */
64 1.1 oster #if 1
65 1.2 oster return (0); /* XXX This was missing... GO */
66 1.1 oster #endif
67 1.1 oster }
68 1.1 oster
69 1.1 oster
70 1.1 oster /************************************************************************************************
71 1.1 oster * For EO_001_CreateSmallWriteDAG, there are (i)RegularONEFunc() and (ii)SimpleONEFunc() to
72 1.1 oster * be used. The previous case is when write access at least sectors of full stripe unit.
73 1.1 oster * The later function is used when the write access two stripe units but with total sectors
74 1.1 oster * less than sectors per SU. In this case, the access of parity and 'E' are shown as disconnected
75 1.1 oster * areas in their stripe unit and parity write and 'E' write are both devided into two distinct
76 1.1 oster * writes( totally four). This simple old-new write and regular old-new write happen as in RAID-5
77 1.1 oster ************************************************************************************************/
78 1.1 oster
79 1.2 oster /* Algorithm:
80 1.1 oster 1. Store the difference of old data and new data in the Rod buffer.
81 1.2 oster 2. then encode this buffer into the buffer which already have old 'E' information inside it,
82 1.1 oster the result can be shown to be the new 'E' information.
83 1.1 oster 3. xor the Wnd buffer into the difference buffer to recover the original old data.
84 1.2 oster Here we have another alternative: to allocate a temporary buffer for storing the difference of
85 1.2 oster old data and new data, then encode temp buf into old 'E' buf to form new 'E', but this approach
86 1.1 oster take the same speed as the previous, and need more memory.
87 1.1 oster */
88 1.2 oster int
89 1.2 oster rf_RegularONEFunc(node)
90 1.2 oster RF_DagNode_t *node;
91 1.2 oster {
92 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
93 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
94 1.2 oster int EpdaIndex = (node->numParams - 1) / 2 - 1; /* the parameter of node
95 1.2 oster * where you can find
96 1.2 oster * e-pda */
97 1.2 oster int i, k, retcode = 0;
98 1.2 oster int suoffset, length;
99 1.2 oster RF_RowCol_t scol;
100 1.2 oster char *srcbuf, *destbuf;
101 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
102 1.2 oster RF_Etimer_t timer;
103 1.2 oster RF_PhysDiskAddr_t *pda, *EPDA = (RF_PhysDiskAddr_t *) node->params[EpdaIndex].p;
104 1.2 oster int ESUOffset = rf_StripeUnitOffset(layoutPtr, EPDA->startSector); /* generally zero */
105 1.2 oster
106 1.2 oster RF_ASSERT(EPDA->type == RF_PDA_TYPE_Q);
107 1.2 oster RF_ASSERT(ESUOffset == 0);
108 1.2 oster
109 1.2 oster RF_ETIMER_START(timer);
110 1.2 oster
111 1.2 oster /* Xor the Wnd buffer into Rod buffer, the difference of old data and
112 1.2 oster * new data is stored in Rod buffer */
113 1.2 oster for (k = 0; k < EpdaIndex; k += 2) {
114 1.2 oster length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[k].p)->numSector);
115 1.2 oster retcode = rf_bxor(node->params[k + EpdaIndex + 3].p, node->params[k + 1].p, length, node->dagHdr->bp);
116 1.2 oster }
117 1.2 oster /* Start to encoding the buffer storing the difference of old data and
118 1.2 oster * new data into 'E' buffer */
119 1.2 oster for (i = 0; i < EpdaIndex; i += 2)
120 1.2 oster if (node->params[i + 1].p != node->results[0]) { /* results[0] is buf ptr
121 1.2 oster * of E */
122 1.2 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
123 1.2 oster srcbuf = (char *) node->params[i + 1].p;
124 1.2 oster scol = rf_EUCol(layoutPtr, pda->raidAddress);
125 1.2 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
126 1.2 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset);
127 1.2 oster rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
128 1.2 oster }
129 1.2 oster /* Recover the original old data to be used by parity encoding
130 1.2 oster * function in XorNode */
131 1.2 oster for (k = 0; k < EpdaIndex; k += 2) {
132 1.2 oster length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[k].p)->numSector);
133 1.2 oster retcode = rf_bxor(node->params[k + EpdaIndex + 3].p, node->params[k + 1].p, length, node->dagHdr->bp);
134 1.2 oster }
135 1.2 oster RF_ETIMER_STOP(timer);
136 1.2 oster RF_ETIMER_EVAL(timer);
137 1.2 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
138 1.2 oster rf_GenericWakeupFunc(node, 0);
139 1.1 oster #if 1
140 1.2 oster return (0); /* XXX this was missing.. GO */
141 1.1 oster #endif
142 1.1 oster }
143 1.1 oster
144 1.2 oster int
145 1.2 oster rf_SimpleONEFunc(node)
146 1.2 oster RF_DagNode_t *node;
147 1.2 oster {
148 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
149 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
150 1.2 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
151 1.2 oster int retcode = 0;
152 1.2 oster char *srcbuf, *destbuf;
153 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
154 1.2 oster int length;
155 1.2 oster RF_RowCol_t scol;
156 1.2 oster RF_Etimer_t timer;
157 1.2 oster
158 1.2 oster RF_ASSERT(((RF_PhysDiskAddr_t *) node->params[2].p)->type == RF_PDA_TYPE_Q);
159 1.2 oster if (node->dagHdr->status == rf_enable) {
160 1.2 oster RF_ETIMER_START(timer);
161 1.2 oster length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[4].p)->numSector); /* this is a pda of
162 1.2 oster * writeDataNodes */
163 1.2 oster /* bxor to buffer of readDataNodes */
164 1.2 oster retcode = rf_bxor(node->params[5].p, node->params[1].p, length, node->dagHdr->bp);
165 1.2 oster /* find out the corresponding colume in encoding matrix for
166 1.2 oster * write colume to be encoded into redundant disk 'E' */
167 1.2 oster scol = rf_EUCol(layoutPtr, pda->raidAddress);
168 1.2 oster srcbuf = node->params[1].p;
169 1.2 oster destbuf = node->params[3].p;
170 1.2 oster /* Start encoding process */
171 1.2 oster rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
172 1.2 oster rf_bxor(node->params[5].p, node->params[1].p, length, node->dagHdr->bp);
173 1.2 oster RF_ETIMER_STOP(timer);
174 1.2 oster RF_ETIMER_EVAL(timer);
175 1.2 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
176 1.2 oster
177 1.2 oster }
178 1.2 oster return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
179 1.2 oster * explicitly since no
180 1.2 oster * I/O in this node */
181 1.1 oster }
182 1.1 oster
183 1.1 oster
184 1.1 oster /****** called by rf_RegularPEFunc(node) and rf_RegularEFunc(node) in f.f. large write ********/
185 1.2 oster void
186 1.2 oster rf_RegularESubroutine(node, ebuf)
187 1.2 oster RF_DagNode_t *node;
188 1.2 oster char *ebuf;
189 1.2 oster {
190 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
191 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
192 1.2 oster RF_PhysDiskAddr_t *pda;
193 1.2 oster int i, suoffset;
194 1.2 oster RF_RowCol_t scol;
195 1.2 oster char *srcbuf, *destbuf;
196 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
197 1.2 oster RF_Etimer_t timer;
198 1.2 oster
199 1.2 oster RF_ETIMER_START(timer);
200 1.2 oster for (i = 0; i < node->numParams - 2; i += 2) {
201 1.2 oster RF_ASSERT(node->params[i + 1].p != ebuf);
202 1.2 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
203 1.2 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
204 1.2 oster scol = rf_EUCol(layoutPtr, pda->raidAddress);
205 1.2 oster srcbuf = (char *) node->params[i + 1].p;
206 1.2 oster destbuf = ebuf + rf_RaidAddressToByte(raidPtr, suoffset);
207 1.2 oster rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
208 1.2 oster }
209 1.2 oster RF_ETIMER_STOP(timer);
210 1.2 oster RF_ETIMER_EVAL(timer);
211 1.2 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer);
212 1.1 oster }
213 1.1 oster
214 1.1 oster
215 1.1 oster /*******************************************************************************************
216 1.2 oster * Used in EO_001_CreateLargeWriteDAG
217 1.1 oster ******************************************************************************************/
218 1.2 oster int
219 1.2 oster rf_RegularEFunc(node)
220 1.2 oster RF_DagNode_t *node;
221 1.1 oster {
222 1.2 oster rf_RegularESubroutine(node, node->results[0]);
223 1.2 oster rf_GenericWakeupFunc(node, 0);
224 1.1 oster #if 1
225 1.2 oster return (0); /* XXX this was missing?.. GO */
226 1.1 oster #endif
227 1.1 oster }
228 1.1 oster /*******************************************************************************************
229 1.2 oster * This degraded function allow only two case:
230 1.2 oster * 1. when write access the full failed stripe unit, then the access can be more than
231 1.1 oster * one tripe units.
232 1.2 oster * 2. when write access only part of the failed SU, we assume accesses of more than
233 1.2 oster * one stripe unit is not allowed so that the write can be dealt with like a
234 1.2 oster * large write.
235 1.2 oster * The following function is based on these assumptions. So except in the second case,
236 1.1 oster * it looks the same as a large write encodeing function. But this is not exactly the
237 1.2 oster * normal way for doing a degraded write, since raidframe have to break cases of access
238 1.2 oster * other than the above two into smaller accesses. We may have to change
239 1.2 oster * DegrESubroutin in the future.
240 1.1 oster *******************************************************************************************/
241 1.2 oster void
242 1.2 oster rf_DegrESubroutine(node, ebuf)
243 1.2 oster RF_DagNode_t *node;
244 1.2 oster char *ebuf;
245 1.2 oster {
246 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
247 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
248 1.2 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
249 1.2 oster RF_PhysDiskAddr_t *pda;
250 1.2 oster int i, suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
251 1.2 oster RF_RowCol_t scol;
252 1.2 oster char *srcbuf, *destbuf;
253 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
254 1.2 oster RF_Etimer_t timer;
255 1.2 oster
256 1.2 oster RF_ETIMER_START(timer);
257 1.2 oster for (i = 0; i < node->numParams - 2; i += 2) {
258 1.2 oster RF_ASSERT(node->params[i + 1].p != ebuf);
259 1.2 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
260 1.2 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
261 1.2 oster scol = rf_EUCol(layoutPtr, pda->raidAddress);
262 1.2 oster srcbuf = (char *) node->params[i + 1].p;
263 1.2 oster destbuf = ebuf + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
264 1.2 oster rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
265 1.2 oster }
266 1.2 oster
267 1.2 oster RF_ETIMER_STOP(timer);
268 1.2 oster RF_ETIMER_EVAL(timer);
269 1.2 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
270 1.1 oster }
271 1.1 oster
272 1.1 oster
273 1.1 oster /**************************************************************************************
274 1.2 oster * This function is used in case where one data disk failed and both redundant disks
275 1.1 oster * alive. It is used in the EO_100_CreateWriteDAG. Note: if there is another disk
276 1.1 oster * failed in the stripe but not accessed at this time, then we should, instead, use
277 1.1 oster * the rf_EOWriteDoubleRecoveryFunc().
278 1.1 oster **************************************************************************************/
279 1.2 oster int
280 1.2 oster rf_Degraded_100_EOFunc(node)
281 1.2 oster RF_DagNode_t *node;
282 1.1 oster {
283 1.2 oster rf_DegrESubroutine(node, node->results[1]);
284 1.2 oster rf_RecoveryXorFunc(node); /* does the wakeup here! */
285 1.1 oster #if 1
286 1.2 oster return (0); /* XXX this was missing... SHould these be
287 1.2 oster * void functions??? GO */
288 1.1 oster #endif
289 1.1 oster }
290 1.1 oster /**************************************************************************************
291 1.1 oster * This function is to encode one sector in one of the data disks to the E disk.
292 1.2 oster * However, in evenodd this function can also be used as decoding function to recover
293 1.1 oster * data from dead disk in the case of parity failure and a single data failure.
294 1.1 oster **************************************************************************************/
295 1.2 oster void
296 1.2 oster rf_e_EncOneSect(
297 1.2 oster RF_RowCol_t srcLogicCol,
298 1.2 oster char *srcSecbuf,
299 1.2 oster RF_RowCol_t destLogicCol,
300 1.2 oster char *destSecbuf,
301 1.2 oster int bytesPerSector)
302 1.1 oster {
303 1.2 oster int S_index; /* index of the EU in the src col which need
304 1.2 oster * be Xored into all EUs in a dest sector */
305 1.2 oster int numRowInEncMatix = (RF_EO_MATRIX_DIM) - 1;
306 1.2 oster RF_RowCol_t j, indexInDest, /* row index of an encoding unit in
307 1.2 oster * the destination colume of encoding
308 1.2 oster * matrix */
309 1.2 oster indexInSrc; /* row index of an encoding unit in the source
310 1.2 oster * colume used for recovery */
311 1.2 oster int bytesPerEU = bytesPerSector / numRowInEncMatix;
312 1.1 oster
313 1.1 oster #if RF_EO_MATRIX_DIM > 17
314 1.2 oster int shortsPerEU = bytesPerEU / sizeof(short);
315 1.2 oster short *destShortBuf, *srcShortBuf1, *srcShortBuf2;
316 1.2 oster register short temp1;
317 1.1 oster #elif RF_EO_MATRIX_DIM == 17
318 1.2 oster int longsPerEU = bytesPerEU / sizeof(long);
319 1.2 oster long *destLongBuf, *srcLongBuf1, *srcLongBuf2;
320 1.2 oster register long temp1;
321 1.1 oster #endif
322 1.1 oster
323 1.1 oster #if RF_EO_MATRIX_DIM > 17
324 1.2 oster RF_ASSERT(sizeof(short) == 2 || sizeof(short) == 1);
325 1.2 oster RF_ASSERT(bytesPerEU % sizeof(short) == 0);
326 1.1 oster #elif RF_EO_MATRIX_DIM == 17
327 1.2 oster RF_ASSERT(sizeof(long) == 8 || sizeof(long) == 4);
328 1.2 oster RF_ASSERT(bytesPerEU % sizeof(long) == 0);
329 1.1 oster #endif
330 1.1 oster
331 1.2 oster S_index = rf_EO_Mod((RF_EO_MATRIX_DIM - 1 + destLogicCol - srcLogicCol), RF_EO_MATRIX_DIM);
332 1.1 oster #if RF_EO_MATRIX_DIM > 17
333 1.2 oster srcShortBuf1 = (short *) (srcSecbuf + S_index * bytesPerEU);
334 1.1 oster #elif RF_EO_MATRIX_DIM == 17
335 1.2 oster srcLongBuf1 = (long *) (srcSecbuf + S_index * bytesPerEU);
336 1.1 oster #endif
337 1.1 oster
338 1.2 oster for (indexInDest = 0; indexInDest < numRowInEncMatix; indexInDest++) {
339 1.2 oster indexInSrc = rf_EO_Mod((indexInDest + destLogicCol - srcLogicCol), RF_EO_MATRIX_DIM);
340 1.1 oster
341 1.1 oster #if RF_EO_MATRIX_DIM > 17
342 1.2 oster destShortBuf = (short *) (destSecbuf + indexInDest * bytesPerEU);
343 1.2 oster srcShortBuf2 = (short *) (srcSecbuf + indexInSrc * bytesPerEU);
344 1.2 oster for (j = 0; j < shortsPerEU; j++) {
345 1.2 oster temp1 = destShortBuf[j] ^ srcShortBuf1[j];
346 1.2 oster /* note: S_index won't be at the end row for any src
347 1.2 oster * col! */
348 1.2 oster if (indexInSrc != RF_EO_MATRIX_DIM - 1)
349 1.2 oster destShortBuf[j] = (srcShortBuf2[j]) ^ temp1;
350 1.2 oster /* if indexInSrc is at the end row, ie.
351 1.2 oster * RF_EO_MATRIX_DIM -1, then all elements are zero! */
352 1.2 oster else
353 1.2 oster destShortBuf[j] = temp1;
354 1.2 oster }
355 1.1 oster
356 1.1 oster #elif RF_EO_MATRIX_DIM == 17
357 1.2 oster destLongBuf = (long *) (destSecbuf + indexInDest * bytesPerEU);
358 1.2 oster srcLongBuf2 = (long *) (srcSecbuf + indexInSrc * bytesPerEU);
359 1.2 oster for (j = 0; j < longsPerEU; j++) {
360 1.2 oster temp1 = destLongBuf[j] ^ srcLongBuf1[j];
361 1.2 oster if (indexInSrc != RF_EO_MATRIX_DIM - 1)
362 1.2 oster destLongBuf[j] = (srcLongBuf2[j]) ^ temp1;
363 1.2 oster else
364 1.2 oster destLongBuf[j] = temp1;
365 1.2 oster }
366 1.1 oster #endif
367 1.2 oster }
368 1.1 oster }
369 1.1 oster
370 1.2 oster void
371 1.2 oster rf_e_encToBuf(
372 1.2 oster RF_Raid_t * raidPtr,
373 1.2 oster RF_RowCol_t srcLogicCol,
374 1.2 oster char *srcbuf,
375 1.2 oster RF_RowCol_t destLogicCol,
376 1.2 oster char *destbuf,
377 1.2 oster int numSector)
378 1.1 oster {
379 1.2 oster int i, bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
380 1.1 oster
381 1.2 oster for (i = 0; i < numSector; i++) {
382 1.2 oster rf_e_EncOneSect(srcLogicCol, srcbuf, destLogicCol, destbuf, bytesPerSector);
383 1.2 oster srcbuf += bytesPerSector;
384 1.2 oster destbuf += bytesPerSector;
385 1.2 oster }
386 1.1 oster }
387 1.2 oster /**************************************************************************************
388 1.2 oster * when parity die and one data die, We use second redundant information, 'E',
389 1.2 oster * to recover the data in dead disk. This function is used in the recovery node of
390 1.2 oster * for EO_110_CreateReadDAG
391 1.1 oster **************************************************************************************/
392 1.2 oster int
393 1.2 oster rf_RecoveryEFunc(node)
394 1.2 oster RF_DagNode_t *node;
395 1.2 oster {
396 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
397 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
398 1.2 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
399 1.2 oster RF_RowCol_t scol, /* source logical column */
400 1.2 oster fcol = rf_EUCol(layoutPtr, failedPDA->raidAddress); /* logical column of
401 1.2 oster * failed SU */
402 1.2 oster int i;
403 1.2 oster RF_PhysDiskAddr_t *pda;
404 1.2 oster int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
405 1.2 oster char *srcbuf, *destbuf;
406 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
407 1.2 oster RF_Etimer_t timer;
408 1.2 oster
409 1.2 oster bzero((char *) node->results[0], rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
410 1.2 oster if (node->dagHdr->status == rf_enable) {
411 1.2 oster RF_ETIMER_START(timer);
412 1.2 oster for (i = 0; i < node->numParams - 2; i += 2)
413 1.2 oster if (node->params[i + 1].p != node->results[0]) {
414 1.2 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
415 1.2 oster if (i == node->numParams - 4)
416 1.2 oster scol = RF_EO_MATRIX_DIM - 2; /* the colume of
417 1.2 oster * redundant E */
418 1.2 oster else
419 1.2 oster scol = rf_EUCol(layoutPtr, pda->raidAddress);
420 1.2 oster srcbuf = (char *) node->params[i + 1].p;
421 1.2 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
422 1.2 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
423 1.2 oster rf_e_encToBuf(raidPtr, scol, srcbuf, fcol, destbuf, pda->numSector);
424 1.2 oster }
425 1.2 oster RF_ETIMER_STOP(timer);
426 1.2 oster RF_ETIMER_EVAL(timer);
427 1.2 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer);
428 1.2 oster }
429 1.2 oster return (rf_GenericWakeupFunc(node, 0)); /* node execute successfully */
430 1.1 oster }
431 1.1 oster /**************************************************************************************
432 1.1 oster * This function is used in the case where one data and the parity have filed.
433 1.1 oster * (in EO_110_CreateWriteDAG )
434 1.1 oster **************************************************************************************/
435 1.2 oster int
436 1.2 oster rf_EO_DegradedWriteEFunc(RF_DagNode_t * node)
437 1.1 oster {
438 1.2 oster rf_DegrESubroutine(node, node->results[0]);
439 1.2 oster rf_GenericWakeupFunc(node, 0);
440 1.1 oster #if 1
441 1.2 oster return (0); /* XXX Yet another one!! GO */
442 1.1 oster #endif
443 1.1 oster }
444 1.1 oster
445 1.1 oster
446 1.2 oster
447 1.1 oster /**************************************************************************************
448 1.1 oster * THE FUNCTION IS FOR DOUBLE DEGRADED READ AND WRITE CASES
449 1.1 oster **************************************************************************************/
450 1.1 oster
451 1.2 oster void
452 1.2 oster rf_doubleEOdecode(
453 1.2 oster RF_Raid_t * raidPtr,
454 1.2 oster char **rrdbuf,
455 1.2 oster char **dest,
456 1.2 oster RF_RowCol_t * fcol,
457 1.2 oster char *pbuf,
458 1.2 oster char *ebuf)
459 1.2 oster {
460 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
461 1.2 oster int i, j, k, f1, f2, row;
462 1.2 oster int rrdrow, erow, count = 0;
463 1.2 oster int bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
464 1.2 oster int numRowInEncMatix = (RF_EO_MATRIX_DIM) - 1;
465 1.1 oster #if 0
466 1.2 oster int pcol = (RF_EO_MATRIX_DIM) - 1;
467 1.1 oster #endif
468 1.2 oster int ecol = (RF_EO_MATRIX_DIM) - 2;
469 1.2 oster int bytesPerEU = bytesPerSector / numRowInEncMatix;
470 1.2 oster int numDataCol = layoutPtr->numDataCol;
471 1.2 oster #if RF_EO_MATRIX_DIM > 17
472 1.2 oster int shortsPerEU = bytesPerEU / sizeof(short);
473 1.2 oster short *rrdbuf_current, *pbuf_current, *ebuf_current;
474 1.2 oster short *dest_smaller, *dest_smaller_current, *dest_larger, *dest_larger_current;
475 1.2 oster register short *temp;
476 1.2 oster short *P;
477 1.2 oster
478 1.2 oster RF_ASSERT(bytesPerEU % sizeof(short) == 0);
479 1.2 oster RF_Malloc(P, bytesPerEU, (short *));
480 1.2 oster RF_Malloc(temp, bytesPerEU, (short *));
481 1.2 oster #elif RF_EO_MATRIX_DIM == 17
482 1.2 oster int longsPerEU = bytesPerEU / sizeof(long);
483 1.2 oster long *rrdbuf_current, *pbuf_current, *ebuf_current;
484 1.2 oster long *dest_smaller, *dest_smaller_current, *dest_larger, *dest_larger_current;
485 1.2 oster register long *temp;
486 1.2 oster long *P;
487 1.2 oster
488 1.2 oster RF_ASSERT(bytesPerEU % sizeof(long) == 0);
489 1.2 oster RF_Malloc(P, bytesPerEU, (long *));
490 1.2 oster RF_Malloc(temp, bytesPerEU, (long *));
491 1.2 oster #endif
492 1.2 oster RF_ASSERT(*((long *) dest[0]) == 0);
493 1.2 oster RF_ASSERT(*((long *) dest[1]) == 0);
494 1.2 oster bzero((char *) P, bytesPerEU);
495 1.2 oster bzero((char *) temp, bytesPerEU);
496 1.2 oster RF_ASSERT(*P == 0);
497 1.2 oster /* calculate the 'P' parameter, which, not parity, is the Xor of all
498 1.2 oster * elements in the last two column, ie. 'E' and 'parity' colume, see
499 1.2 oster * the Ref. paper by Blaum, et al 1993 */
500 1.2 oster for (i = 0; i < numRowInEncMatix; i++)
501 1.2 oster for (k = 0; k < longsPerEU; k++) {
502 1.2 oster #if RF_EO_MATRIX_DIM > 17
503 1.2 oster ebuf_current = ((short *) ebuf) + i * shortsPerEU + k;
504 1.2 oster pbuf_current = ((short *) pbuf) + i * shortsPerEU + k;
505 1.2 oster #elif RF_EO_MATRIX_DIM == 17
506 1.2 oster ebuf_current = ((long *) ebuf) + i * longsPerEU + k;
507 1.2 oster pbuf_current = ((long *) pbuf) + i * longsPerEU + k;
508 1.2 oster #endif
509 1.2 oster P[k] ^= *ebuf_current;
510 1.2 oster P[k] ^= *pbuf_current;
511 1.2 oster }
512 1.2 oster RF_ASSERT(fcol[0] != fcol[1]);
513 1.2 oster if (fcol[0] < fcol[1]) {
514 1.2 oster #if RF_EO_MATRIX_DIM > 17
515 1.2 oster dest_smaller = (short *) (dest[0]);
516 1.2 oster dest_larger = (short *) (dest[1]);
517 1.2 oster #elif RF_EO_MATRIX_DIM == 17
518 1.2 oster dest_smaller = (long *) (dest[0]);
519 1.2 oster dest_larger = (long *) (dest[1]);
520 1.2 oster #endif
521 1.2 oster f1 = fcol[0];
522 1.2 oster f2 = fcol[1];
523 1.2 oster } else {
524 1.2 oster #if RF_EO_MATRIX_DIM > 17
525 1.2 oster dest_smaller = (short *) (dest[1]);
526 1.2 oster dest_larger = (short *) (dest[0]);
527 1.2 oster #elif RF_EO_MATRIX_DIM == 17
528 1.2 oster dest_smaller = (long *) (dest[1]);
529 1.2 oster dest_larger = (long *) (dest[0]);
530 1.2 oster #endif
531 1.2 oster f1 = fcol[1];
532 1.2 oster f2 = fcol[0];
533 1.2 oster }
534 1.2 oster row = (RF_EO_MATRIX_DIM) - 1;
535 1.2 oster while ((row = rf_EO_Mod((row + f1 - f2), RF_EO_MATRIX_DIM)) != ((RF_EO_MATRIX_DIM) - 1)) {
536 1.2 oster #if RF_EO_MATRIX_DIM > 17
537 1.2 oster dest_larger_current = dest_larger + row * shortsPerEU;
538 1.2 oster dest_smaller_current = dest_smaller + row * shortsPerEU;
539 1.2 oster #elif RF_EO_MATRIX_DIM == 17
540 1.2 oster dest_larger_current = dest_larger + row * longsPerEU;
541 1.2 oster dest_smaller_current = dest_smaller + row * longsPerEU;
542 1.2 oster #endif
543 1.2 oster /** Do the diagonal recovery. Initially, temp[k] = (failed 1),
544 1.2 oster which is the failed data in the colume which has smaller col index. **/
545 1.2 oster /* step 1: ^(SUM of nonfailed in-diagonal A(rrdrow,0..m-3)) */
546 1.2 oster for (j = 0; j < numDataCol; j++) {
547 1.2 oster if (j == f1 || j == f2)
548 1.2 oster continue;
549 1.2 oster rrdrow = rf_EO_Mod((row + f2 - j), RF_EO_MATRIX_DIM);
550 1.2 oster if (rrdrow != (RF_EO_MATRIX_DIM) - 1) {
551 1.2 oster #if RF_EO_MATRIX_DIM > 17
552 1.2 oster rrdbuf_current = (short *) (rrdbuf[j]) + rrdrow * shortsPerEU;
553 1.2 oster for (k = 0; k < shortsPerEU; k++)
554 1.2 oster temp[k] ^= *(rrdbuf_current + k);
555 1.2 oster #elif RF_EO_MATRIX_DIM == 17
556 1.2 oster rrdbuf_current = (long *) (rrdbuf[j]) + rrdrow * longsPerEU;
557 1.2 oster for (k = 0; k < longsPerEU; k++)
558 1.2 oster temp[k] ^= *(rrdbuf_current + k);
559 1.2 oster #endif
560 1.2 oster }
561 1.2 oster }
562 1.2 oster /* step 2: ^E(erow,m-2), If erow is at the buttom row, don't
563 1.2 oster * Xor into it E(erow,m-2) = (principle diagonal) ^ (failed
564 1.2 oster * 1) ^ (failed 2) ^ ( SUM of nonfailed in-diagonal
565 1.2 oster * A(rrdrow,0..m-3) ) After this step, temp[k] = (principle
566 1.2 oster * diagonal) ^ (failed 2) */
567 1.2 oster
568 1.2 oster erow = rf_EO_Mod((row + f2 - ecol), (RF_EO_MATRIX_DIM));
569 1.2 oster if (erow != (RF_EO_MATRIX_DIM) - 1) {
570 1.2 oster #if RF_EO_MATRIX_DIM > 17
571 1.2 oster ebuf_current = (short *) ebuf + shortsPerEU * erow;
572 1.2 oster for (k = 0; k < shortsPerEU; k++)
573 1.2 oster temp[k] ^= *(ebuf_current + k);
574 1.2 oster #elif RF_EO_MATRIX_DIM == 17
575 1.2 oster ebuf_current = (long *) ebuf + longsPerEU * erow;
576 1.2 oster for (k = 0; k < longsPerEU; k++)
577 1.2 oster temp[k] ^= *(ebuf_current + k);
578 1.2 oster #endif
579 1.2 oster }
580 1.2 oster /* step 3: ^P to obtain the failed data (failed 2). P can be
581 1.2 oster * proved to be actually (principle diagonal) After this
582 1.2 oster * step, temp[k] = (failed 2), the failed data to be recovered */
583 1.2 oster #if RF_EO_MATRIX_DIM > 17
584 1.2 oster for (k = 0; k < shortsPerEU; k++)
585 1.2 oster temp[k] ^= P[k];
586 1.2 oster /* Put the data to the destination buffer */
587 1.2 oster for (k = 0; k < shortsPerEU; k++)
588 1.2 oster dest_larger_current[k] = temp[k];
589 1.2 oster #elif RF_EO_MATRIX_DIM == 17
590 1.2 oster for (k = 0; k < longsPerEU; k++)
591 1.2 oster temp[k] ^= P[k];
592 1.2 oster /* Put the data to the destination buffer */
593 1.2 oster for (k = 0; k < longsPerEU; k++)
594 1.2 oster dest_larger_current[k] = temp[k];
595 1.2 oster #endif
596 1.2 oster
597 1.2 oster /** THE FOLLOWING DO THE HORIZONTAL XOR **/
598 1.2 oster /* step 1: ^(SUM of A(row,0..m-3)), ie. all nonfailed data
599 1.2 oster * columes */
600 1.2 oster for (j = 0; j < numDataCol; j++) {
601 1.2 oster if (j == f1 || j == f2)
602 1.2 oster continue;
603 1.2 oster #if RF_EO_MATRIX_DIM > 17
604 1.2 oster rrdbuf_current = (short *) (rrdbuf[j]) + row * shortsPerEU;
605 1.2 oster for (k = 0; k < shortsPerEU; k++)
606 1.2 oster temp[k] ^= *(rrdbuf_current + k);
607 1.2 oster #elif RF_EO_MATRIX_DIM == 17
608 1.2 oster rrdbuf_current = (long *) (rrdbuf[j]) + row * longsPerEU;
609 1.2 oster for (k = 0; k < longsPerEU; k++)
610 1.2 oster temp[k] ^= *(rrdbuf_current + k);
611 1.2 oster #endif
612 1.2 oster }
613 1.2 oster /* step 2: ^A(row,m-1) */
614 1.2 oster /* step 3: Put the data to the destination buffer */
615 1.2 oster #if RF_EO_MATRIX_DIM > 17
616 1.2 oster pbuf_current = (short *) pbuf + shortsPerEU * row;
617 1.2 oster for (k = 0; k < shortsPerEU; k++)
618 1.2 oster temp[k] ^= *(pbuf_current + k);
619 1.2 oster for (k = 0; k < shortsPerEU; k++)
620 1.2 oster dest_smaller_current[k] = temp[k];
621 1.2 oster #elif RF_EO_MATRIX_DIM == 17
622 1.2 oster pbuf_current = (long *) pbuf + longsPerEU * row;
623 1.2 oster for (k = 0; k < longsPerEU; k++)
624 1.2 oster temp[k] ^= *(pbuf_current + k);
625 1.2 oster for (k = 0; k < longsPerEU; k++)
626 1.2 oster dest_smaller_current[k] = temp[k];
627 1.2 oster #endif
628 1.2 oster count++;
629 1.2 oster }
630 1.2 oster /* Check if all Encoding Unit in the data buffer have been decoded,
631 1.2 oster * according EvenOdd theory, if "RF_EO_MATRIX_DIM" is a prime number,
632 1.2 oster * this algorithm will covered all buffer */
633 1.2 oster RF_ASSERT(count == numRowInEncMatix);
634 1.2 oster RF_Free((char *) P, bytesPerEU);
635 1.2 oster RF_Free((char *) temp, bytesPerEU);
636 1.1 oster }
637 1.2 oster
638 1.1 oster
639 1.1 oster /***************************************************************************************
640 1.1 oster * This function is called by double degragded read
641 1.2 oster * EO_200_CreateReadDAG
642 1.1 oster *
643 1.1 oster ***************************************************************************************/
644 1.2 oster int
645 1.2 oster rf_EvenOddDoubleRecoveryFunc(node)
646 1.2 oster RF_DagNode_t *node;
647 1.2 oster {
648 1.2 oster int ndataParam = 0;
649 1.2 oster int np = node->numParams;
650 1.2 oster RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
651 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
652 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
653 1.2 oster int i, prm, sector, nresults = node->numResults;
654 1.2 oster RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
655 1.2 oster unsigned sosAddr;
656 1.2 oster int two = 0, mallc_one = 0, mallc_two = 0; /* flags to indicate if
657 1.2 oster * memory is allocated */
658 1.2 oster int bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
659 1.2 oster RF_PhysDiskAddr_t *ppda, *ppda2, *epda, *epda2, *pda, *pda0, *pda1,
660 1.2 oster npda;
661 1.2 oster RF_RowCol_t fcol[2], fsuoff[2], fsuend[2], numDataCol = layoutPtr->numDataCol;
662 1.2 oster char **buf, *ebuf, *pbuf, *dest[2];
663 1.2 oster long *suoff = NULL, *suend = NULL, *prmToCol = NULL, psuoff, esuoff;
664 1.2 oster RF_SectorNum_t startSector, endSector;
665 1.2 oster RF_Etimer_t timer;
666 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
667 1.2 oster
668 1.2 oster RF_ETIMER_START(timer);
669 1.2 oster
670 1.2 oster /* Find out the number of parameters which are pdas for data
671 1.2 oster * information */
672 1.2 oster for (i = 0; i <= np; i++)
673 1.2 oster if (((RF_PhysDiskAddr_t *) node->params[i].p)->type != RF_PDA_TYPE_DATA) {
674 1.2 oster ndataParam = i;
675 1.2 oster break;
676 1.2 oster }
677 1.2 oster RF_Malloc(buf, numDataCol * sizeof(char *), (char **));
678 1.2 oster if (ndataParam != 0) {
679 1.2 oster RF_Malloc(suoff, ndataParam * sizeof(long), (long *));
680 1.2 oster RF_Malloc(suend, ndataParam * sizeof(long), (long *));
681 1.2 oster RF_Malloc(prmToCol, ndataParam * sizeof(long), (long *));
682 1.2 oster }
683 1.2 oster if (asmap->failedPDAs[1] &&
684 1.2 oster (asmap->failedPDAs[1]->numSector + asmap->failedPDAs[0]->numSector < secPerSU)) {
685 1.2 oster RF_ASSERT(0); /* currently, no support for this situation */
686 1.2 oster ppda = node->params[np - 6].p;
687 1.2 oster ppda2 = node->params[np - 5].p;
688 1.2 oster RF_ASSERT(ppda2->type == RF_PDA_TYPE_PARITY);
689 1.2 oster epda = node->params[np - 4].p;
690 1.2 oster epda2 = node->params[np - 3].p;
691 1.2 oster RF_ASSERT(epda2->type == RF_PDA_TYPE_Q);
692 1.2 oster two = 1;
693 1.2 oster } else {
694 1.2 oster ppda = node->params[np - 4].p;
695 1.2 oster epda = node->params[np - 3].p;
696 1.2 oster psuoff = rf_StripeUnitOffset(layoutPtr, ppda->startSector);
697 1.2 oster esuoff = rf_StripeUnitOffset(layoutPtr, epda->startSector);
698 1.2 oster RF_ASSERT(psuoff == esuoff);
699 1.2 oster }
700 1.2 oster /*
701 1.2 oster the followings have three goals:
702 1.2 oster 1. determine the startSector to begin decoding and endSector to end decoding.
703 1.2 oster 2. determine the colume numbers of the two failed disks.
704 1.2 oster 3. determine the offset and end offset of the access within each failed stripe unit.
705 1.2 oster */
706 1.2 oster if (nresults == 1) {
707 1.2 oster /* find the startSector to begin decoding */
708 1.2 oster pda = node->results[0];
709 1.2 oster bzero(pda->bufPtr, bytesPerSector * pda->numSector);
710 1.2 oster fsuoff[0] = rf_StripeUnitOffset(layoutPtr, pda->startSector);
711 1.2 oster fsuend[0] = fsuoff[0] + pda->numSector;
712 1.2 oster startSector = fsuoff[0];
713 1.2 oster endSector = fsuend[0];
714 1.2 oster
715 1.5 soren /* find out the column of failed disk being accessed */
716 1.2 oster fcol[0] = rf_EUCol(layoutPtr, pda->raidAddress);
717 1.2 oster
718 1.2 oster /* find out the other failed colume not accessed */
719 1.2 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
720 1.2 oster for (i = 0; i < numDataCol; i++) {
721 1.2 oster npda.raidAddress = sosAddr + (i * secPerSU);
722 1.2 oster (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0);
723 1.2 oster /* skip over dead disks */
724 1.2 oster if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
725 1.2 oster if (i != fcol[0])
726 1.2 oster break;
727 1.2 oster }
728 1.2 oster RF_ASSERT(i < numDataCol);
729 1.2 oster fcol[1] = i;
730 1.2 oster } else {
731 1.2 oster RF_ASSERT(nresults == 2);
732 1.2 oster pda0 = node->results[0];
733 1.2 oster bzero(pda0->bufPtr, bytesPerSector * pda0->numSector);
734 1.2 oster pda1 = node->results[1];
735 1.2 oster bzero(pda1->bufPtr, bytesPerSector * pda1->numSector);
736 1.2 oster /* determine the failed colume numbers of the two failed
737 1.2 oster * disks. */
738 1.2 oster fcol[0] = rf_EUCol(layoutPtr, pda0->raidAddress);
739 1.2 oster fcol[1] = rf_EUCol(layoutPtr, pda1->raidAddress);
740 1.2 oster /* determine the offset and end offset of the access within
741 1.2 oster * each failed stripe unit. */
742 1.2 oster fsuoff[0] = rf_StripeUnitOffset(layoutPtr, pda0->startSector);
743 1.2 oster fsuend[0] = fsuoff[0] + pda0->numSector;
744 1.2 oster fsuoff[1] = rf_StripeUnitOffset(layoutPtr, pda1->startSector);
745 1.2 oster fsuend[1] = fsuoff[1] + pda1->numSector;
746 1.2 oster /* determine the startSector to begin decoding */
747 1.2 oster startSector = RF_MIN(pda0->startSector, pda1->startSector);
748 1.2 oster /* determine the endSector to end decoding */
749 1.2 oster endSector = RF_MAX(fsuend[0], fsuend[1]);
750 1.2 oster }
751 1.2 oster /*
752 1.2 oster assign the beginning sector and the end sector for each parameter
753 1.2 oster find out the corresponding colume # for each parameter
754 1.2 oster */
755 1.2 oster for (prm = 0; prm < ndataParam; prm++) {
756 1.2 oster pda = node->params[prm].p;
757 1.2 oster suoff[prm] = rf_StripeUnitOffset(layoutPtr, pda->startSector);
758 1.2 oster suend[prm] = suoff[prm] + pda->numSector;
759 1.2 oster prmToCol[prm] = rf_EUCol(layoutPtr, pda->raidAddress);
760 1.2 oster }
761 1.2 oster /* 'sector' is the sector for the current decoding algorithm. For each
762 1.2 oster * sector in the failed SU, find out the corresponding parameters that
763 1.2 oster * cover the current sector and that are needed for decoding of this
764 1.2 oster * sector in failed SU. 2. Find out if sector is in the shadow of any
765 1.2 oster * accessed failed SU. If not, malloc a temporary space of a sector in
766 1.2 oster * size. */
767 1.2 oster for (sector = startSector; sector < endSector; sector++) {
768 1.2 oster if (nresults == 2)
769 1.2 oster if (!(fsuoff[0] <= sector && sector < fsuend[0]) && !(fsuoff[1] <= sector && sector < fsuend[1]))
770 1.2 oster continue;
771 1.2 oster for (prm = 0; prm < ndataParam; prm++)
772 1.2 oster if (suoff[prm] <= sector && sector < suend[prm])
773 1.2 oster buf[(prmToCol[prm])] = ((RF_PhysDiskAddr_t *) node->params[prm].p)->bufPtr +
774 1.2 oster rf_RaidAddressToByte(raidPtr, sector - suoff[prm]);
775 1.2 oster /* find out if sector is in the shadow of any accessed failed
776 1.2 oster * SU. If yes, assign dest[0], dest[1] to point at suitable
777 1.2 oster * position of the buffer corresponding to failed SUs. if no,
778 1.2 oster * malloc a temporary space of a sector in size for
779 1.2 oster * destination of decoding. */
780 1.2 oster RF_ASSERT(nresults == 1 || nresults == 2);
781 1.2 oster if (nresults == 1) {
782 1.2 oster dest[0] = ((RF_PhysDiskAddr_t *) node->results[0])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[0]);
783 1.2 oster /* Always malloc temp buffer to dest[1] */
784 1.2 oster RF_Malloc(dest[1], bytesPerSector, (char *));
785 1.2 oster bzero(dest[1], bytesPerSector);
786 1.2 oster mallc_two = 1;
787 1.2 oster } else {
788 1.2 oster if (fsuoff[0] <= sector && sector < fsuend[0])
789 1.2 oster dest[0] = ((RF_PhysDiskAddr_t *) node->results[0])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[0]);
790 1.2 oster else {
791 1.2 oster RF_Malloc(dest[0], bytesPerSector, (char *));
792 1.2 oster bzero(dest[0], bytesPerSector);
793 1.2 oster mallc_one = 1;
794 1.2 oster }
795 1.2 oster if (fsuoff[1] <= sector && sector < fsuend[1])
796 1.2 oster dest[1] = ((RF_PhysDiskAddr_t *) node->results[1])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[1]);
797 1.2 oster else {
798 1.2 oster RF_Malloc(dest[1], bytesPerSector, (char *));
799 1.2 oster bzero(dest[1], bytesPerSector);
800 1.2 oster mallc_two = 1;
801 1.2 oster }
802 1.2 oster RF_ASSERT(mallc_one == 0 || mallc_two == 0);
803 1.2 oster }
804 1.2 oster pbuf = ppda->bufPtr + rf_RaidAddressToByte(raidPtr, sector - psuoff);
805 1.2 oster ebuf = epda->bufPtr + rf_RaidAddressToByte(raidPtr, sector - esuoff);
806 1.2 oster /*
807 1.2 oster * After finish finding all needed sectors, call doubleEOdecode function for decoding
808 1.2 oster * one sector to destination.
809 1.2 oster */
810 1.2 oster rf_doubleEOdecode(raidPtr, buf, dest, fcol, pbuf, ebuf);
811 1.2 oster /* free all allocated memory, and mark flag to indicate no
812 1.2 oster * memory is being allocated */
813 1.2 oster if (mallc_one == 1)
814 1.2 oster RF_Free(dest[0], bytesPerSector);
815 1.2 oster if (mallc_two == 1)
816 1.2 oster RF_Free(dest[1], bytesPerSector);
817 1.2 oster mallc_one = mallc_two = 0;
818 1.2 oster }
819 1.2 oster RF_Free(buf, numDataCol * sizeof(char *));
820 1.2 oster if (ndataParam != 0) {
821 1.2 oster RF_Free(suoff, ndataParam * sizeof(long));
822 1.2 oster RF_Free(suend, ndataParam * sizeof(long));
823 1.2 oster RF_Free(prmToCol, ndataParam * sizeof(long));
824 1.2 oster }
825 1.2 oster RF_ETIMER_STOP(timer);
826 1.2 oster RF_ETIMER_EVAL(timer);
827 1.2 oster if (tracerec) {
828 1.2 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
829 1.2 oster }
830 1.2 oster rf_GenericWakeupFunc(node, 0);
831 1.1 oster #if 1
832 1.2 oster return (0); /* XXX is this even close!!?!?!!? GO */
833 1.1 oster #endif
834 1.1 oster }
835 1.1 oster
836 1.1 oster
837 1.2 oster /* currently, only access of one of the two failed SU is allowed in this function.
838 1.2 oster * also, asmap->numStripeUnitsAccessed is limited to be one, the RaidFrame will break large access into
839 1.1 oster * many accesses of single stripe unit.
840 1.1 oster */
841 1.1 oster
842 1.2 oster int
843 1.2 oster rf_EOWriteDoubleRecoveryFunc(node)
844 1.2 oster RF_DagNode_t *node;
845 1.2 oster {
846 1.2 oster int np = node->numParams;
847 1.2 oster RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
848 1.2 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
849 1.2 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
850 1.2 oster RF_SectorNum_t sector;
851 1.2 oster RF_RowCol_t col, scol;
852 1.2 oster int prm, i, j;
853 1.2 oster RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
854 1.2 oster unsigned sosAddr;
855 1.2 oster unsigned bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
856 1.2 oster RF_int64 numbytes;
857 1.2 oster RF_SectorNum_t startSector, endSector;
858 1.2 oster RF_PhysDiskAddr_t *ppda, *epda, *pda, *fpda, npda;
859 1.2 oster RF_RowCol_t fcol[2], numDataCol = layoutPtr->numDataCol;
860 1.2 oster char **buf; /* buf[0], buf[1], buf[2], ...etc. point to
861 1.2 oster * buffer storing data read from col0, col1,
862 1.2 oster * col2 */
863 1.2 oster char *ebuf, *pbuf, *dest[2], *olddata[2];
864 1.2 oster RF_Etimer_t timer;
865 1.2 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
866 1.2 oster
867 1.2 oster RF_ASSERT(asmap->numDataFailed == 1); /* currently only support this
868 1.2 oster * case, the other failed SU
869 1.2 oster * is not being accessed */
870 1.2 oster RF_ETIMER_START(timer);
871 1.2 oster RF_Malloc(buf, numDataCol * sizeof(char *), (char **));
872 1.2 oster
873 1.2 oster ppda = node->results[0];/* Instead of being buffers, node->results[0]
874 1.2 oster * and [1] are Ppda and Epda */
875 1.2 oster epda = node->results[1];
876 1.2 oster fpda = asmap->failedPDAs[0];
877 1.2 oster
878 1.2 oster /* First, recovery the failed old SU using EvenOdd double decoding */
879 1.2 oster /* determine the startSector and endSector for decoding */
880 1.2 oster startSector = rf_StripeUnitOffset(layoutPtr, fpda->startSector);
881 1.2 oster endSector = startSector + fpda->numSector;
882 1.2 oster /* Assign buf[col] pointers to point to each non-failed colume and
883 1.2 oster * initialize the pbuf and ebuf to point at the beginning of each
884 1.2 oster * source buffers and destination buffers */
885 1.2 oster for (prm = 0; prm < numDataCol - 2; prm++) {
886 1.2 oster pda = (RF_PhysDiskAddr_t *) node->params[prm].p;
887 1.2 oster col = rf_EUCol(layoutPtr, pda->raidAddress);
888 1.2 oster buf[col] = pda->bufPtr;
889 1.2 oster }
890 1.2 oster /* pbuf and ebuf: they will change values as double recovery decoding
891 1.2 oster * goes on */
892 1.2 oster pbuf = ppda->bufPtr;
893 1.2 oster ebuf = epda->bufPtr;
894 1.2 oster /* find out the logical colume numbers in the encoding matrix of the
895 1.2 oster * two failed columes */
896 1.2 oster fcol[0] = rf_EUCol(layoutPtr, fpda->raidAddress);
897 1.2 oster
898 1.2 oster /* find out the other failed colume not accessed this time */
899 1.2 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
900 1.2 oster for (i = 0; i < numDataCol; i++) {
901 1.2 oster npda.raidAddress = sosAddr + (i * secPerSU);
902 1.2 oster (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0);
903 1.2 oster /* skip over dead disks */
904 1.2 oster if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
905 1.2 oster if (i != fcol[0])
906 1.2 oster break;
907 1.2 oster }
908 1.2 oster RF_ASSERT(i < numDataCol);
909 1.2 oster fcol[1] = i;
910 1.2 oster /* assign temporary space to put recovered failed SU */
911 1.2 oster numbytes = fpda->numSector * bytesPerSector;
912 1.2 oster RF_Malloc(olddata[0], numbytes, (char *));
913 1.2 oster RF_Malloc(olddata[1], numbytes, (char *));
914 1.2 oster dest[0] = olddata[0];
915 1.2 oster dest[1] = olddata[1];
916 1.2 oster bzero(olddata[0], numbytes);
917 1.2 oster bzero(olddata[1], numbytes);
918 1.2 oster /* Begin the recovery decoding, initially buf[j], ebuf, pbuf, dest[j]
919 1.2 oster * have already pointed at the beginning of each source buffers and
920 1.2 oster * destination buffers */
921 1.2 oster for (sector = startSector, i = 0; sector < endSector; sector++, i++) {
922 1.2 oster rf_doubleEOdecode(raidPtr, buf, dest, fcol, pbuf, ebuf);
923 1.2 oster for (j = 0; j < numDataCol; j++)
924 1.2 oster if ((j != fcol[0]) && (j != fcol[1]))
925 1.2 oster buf[j] += bytesPerSector;
926 1.2 oster dest[0] += bytesPerSector;
927 1.2 oster dest[1] += bytesPerSector;
928 1.2 oster ebuf += bytesPerSector;
929 1.2 oster pbuf += bytesPerSector;
930 1.2 oster }
931 1.2 oster /* after recovery, the buffer pointed by olddata[0] is the old failed
932 1.2 oster * data. With new writing data and this old data, use small write to
933 1.2 oster * calculate the new redundant informations */
934 1.2 oster /* node->params[ 0, ... PDAPerDisk * (numDataCol - 2)-1 ] are Pdas of
935 1.2 oster * Rrd; params[ PDAPerDisk*(numDataCol - 2), ... PDAPerDisk*numDataCol
936 1.2 oster * -1 ] are Pdas of Rp, ( Rp2 ), Re, ( Re2 ) ; params[
937 1.2 oster * PDAPerDisk*numDataCol, ... PDAPerDisk*numDataCol
938 1.2 oster * +asmap->numStripeUnitsAccessed -asmap->numDataFailed-1] are Pdas of
939 1.2 oster * wudNodes; For current implementation, we assume the simplest case:
940 1.2 oster * asmap->numStripeUnitsAccessed == 1 and asmap->numDataFailed == 1
941 1.2 oster * ie. PDAPerDisk = 1 then node->params[numDataCol] must be the new
942 1.2 oster * data to be writen to the failed disk. We first bxor the new data
943 1.2 oster * into the old recovered data, then do the same things as small
944 1.2 oster * write. */
945 1.2 oster
946 1.2 oster rf_bxor(((RF_PhysDiskAddr_t *) node->params[numDataCol].p)->bufPtr, olddata[0], numbytes, node->dagHdr->bp);
947 1.2 oster /* do new 'E' calculation */
948 1.2 oster /* find out the corresponding colume in encoding matrix for write
949 1.2 oster * colume to be encoded into redundant disk 'E' */
950 1.2 oster scol = rf_EUCol(layoutPtr, fpda->raidAddress);
951 1.2 oster /* olddata[0] now is source buffer pointer; epda->bufPtr is the dest
952 1.2 oster * buffer pointer */
953 1.2 oster rf_e_encToBuf(raidPtr, scol, olddata[0], RF_EO_MATRIX_DIM - 2, epda->bufPtr, fpda->numSector);
954 1.2 oster
955 1.2 oster /* do new 'P' calculation */
956 1.2 oster rf_bxor(olddata[0], ppda->bufPtr, numbytes, node->dagHdr->bp);
957 1.2 oster /* Free the allocated buffer */
958 1.2 oster RF_Free(olddata[0], numbytes);
959 1.2 oster RF_Free(olddata[1], numbytes);
960 1.2 oster RF_Free(buf, numDataCol * sizeof(char *));
961 1.2 oster
962 1.2 oster RF_ETIMER_STOP(timer);
963 1.2 oster RF_ETIMER_EVAL(timer);
964 1.2 oster if (tracerec) {
965 1.2 oster tracerec->q_us += RF_ETIMER_VAL_US(timer);
966 1.2 oster }
967 1.2 oster rf_GenericWakeupFunc(node, 0);
968 1.2 oster return (0);
969 1.1 oster }
970