Home | History | Annotate | Line # | Download | only in raidframe
rf_evenodd_dagfuncs.c revision 1.20.26.1
      1 /*	$NetBSD: rf_evenodd_dagfuncs.c,v 1.20.26.1 2014/05/18 17:45:46 rmind Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: ChangMing Wu
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * Code for RAID-EVENODD  architecture.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: rf_evenodd_dagfuncs.c,v 1.20.26.1 2014/05/18 17:45:46 rmind Exp $");
     35 
     36 #include "rf_archs.h"
     37 
     38 #ifdef _KERNEL_OPT
     39 #include "opt_raid_diagnostic.h"
     40 #endif
     41 
     42 #if RF_INCLUDE_EVENODD > 0
     43 
     44 #include <dev/raidframe/raidframevar.h>
     45 
     46 #include "rf_raid.h"
     47 #include "rf_dag.h"
     48 #include "rf_dagffrd.h"
     49 #include "rf_dagffwr.h"
     50 #include "rf_dagdegrd.h"
     51 #include "rf_dagdegwr.h"
     52 #include "rf_dagutils.h"
     53 #include "rf_dagfuncs.h"
     54 #include "rf_etimer.h"
     55 #include "rf_general.h"
     56 #include "rf_parityscan.h"
     57 #include "rf_evenodd.h"
     58 #include "rf_evenodd_dagfuncs.h"
     59 
     60 /* These redundant functions are for small write */
     61 RF_RedFuncs_t rf_EOSmallWritePFuncs = {rf_RegularXorFunc, "Regular Old-New P", rf_SimpleXorFunc, "Simple Old-New P"};
     62 RF_RedFuncs_t rf_EOSmallWriteEFuncs = {rf_RegularONEFunc, "Regular Old-New E", rf_SimpleONEFunc, "Regular Old-New E"};
     63 /* These redundant functions are for degraded read */
     64 RF_RedFuncs_t rf_eoPRecoveryFuncs = {rf_RecoveryXorFunc, "Recovery Xr", rf_RecoveryXorFunc, "Recovery Xr"};
     65 RF_RedFuncs_t rf_eoERecoveryFuncs = {rf_RecoveryEFunc, "Recovery E Func", rf_RecoveryEFunc, "Recovery E Func"};
     66 /**********************************************************************************************
     67  *   the following encoding node functions is used in  EO_000_CreateLargeWriteDAG
     68  **********************************************************************************************/
     69 int
     70 rf_RegularPEFunc(RF_DagNode_t *node)
     71 {
     72 	rf_RegularESubroutine(node, node->results[1]);
     73 	rf_RegularXorFunc(node);/* does the wakeup here! */
     74 #if 1
     75 	return (0);		/* XXX This was missing... GO */
     76 #endif
     77 }
     78 
     79 
     80 /************************************************************************************************
     81  *  For EO_001_CreateSmallWriteDAG, there are (i)RegularONEFunc() and (ii)SimpleONEFunc() to
     82  *  be used. The previous case is when write access at least sectors of full stripe unit.
     83  *  The later function is used when the write access two stripe units but with total sectors
     84  *  less than sectors per SU. In this case, the access of parity and 'E' are shown as disconnected
     85  *  areas in their stripe unit and  parity write and 'E' write are both devided into two distinct
     86  *  writes( totally four). This simple old-new write and regular old-new write happen as in RAID-5
     87  ************************************************************************************************/
     88 
     89 /* Algorithm:
     90      1. Store the difference of old data and new data in the Rod buffer.
     91      2. then encode this buffer into the buffer which already have old 'E' information inside it,
     92 	the result can be shown to be the new 'E' information.
     93      3. xor the Wnd buffer into the difference buffer to recover the  original old data.
     94    Here we have another alternative: to allocate a temporary buffer for storing the difference of
     95    old data and new data, then encode temp buf into old 'E' buf to form new 'E', but this approach
     96    take the same speed as the previous, and need more memory.
     97 */
     98 int
     99 rf_RegularONEFunc(RF_DagNode_t *node)
    100 {
    101 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    102 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    103 	int     EpdaIndex = (node->numParams - 1) / 2 - 1;	/* the parameter of node
    104 								 * where you can find
    105 								 * e-pda */
    106 	int     i, k;
    107 	int     suoffset, length;
    108 	RF_RowCol_t scol;
    109 	char   *srcbuf, *destbuf;
    110 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    111 	RF_Etimer_t timer;
    112 	RF_PhysDiskAddr_t *pda;
    113 #ifdef RAID_DIAGNOSTIC
    114 	RF_PhysDiskAddr_t *EPDA =
    115 	    (RF_PhysDiskAddr_t *) node->params[EpdaIndex].p;
    116 	int     ESUOffset = rf_StripeUnitOffset(layoutPtr, EPDA->startSector);
    117 
    118 	RF_ASSERT(EPDA->type == RF_PDA_TYPE_Q);
    119 	RF_ASSERT(ESUOffset == 0);
    120 #endif /* RAID_DIAGNOSTIC */
    121 
    122 	RF_ETIMER_START(timer);
    123 
    124 	/* Xor the Wnd buffer into Rod buffer, the difference of old data and
    125 	 * new data is stored in Rod buffer */
    126 	for (k = 0; k < EpdaIndex; k += 2) {
    127 		length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[k].p)->numSector);
    128 		rf_bxor(node->params[k + EpdaIndex + 3].p, node->params[k + 1].p, length);
    129 	}
    130 	/* Start to encoding the buffer storing the difference of old data and
    131 	 * new data into 'E' buffer  */
    132 	for (i = 0; i < EpdaIndex; i += 2)
    133 		if (node->params[i + 1].p != node->results[0]) {	/* results[0] is buf ptr
    134 									 * of E */
    135 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    136 			srcbuf = (char *) node->params[i + 1].p;
    137 			scol = rf_EUCol(layoutPtr, pda->raidAddress);
    138 			suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    139 			destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset);
    140 			rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
    141 		}
    142 	/* Recover the original old data to be used by parity encoding
    143 	 * function in XorNode */
    144 	for (k = 0; k < EpdaIndex; k += 2) {
    145 		length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[k].p)->numSector);
    146 		rf_bxor(node->params[k + EpdaIndex + 3].p, node->params[k + 1].p, length);
    147 	}
    148 	RF_ETIMER_STOP(timer);
    149 	RF_ETIMER_EVAL(timer);
    150 	tracerec->q_us += RF_ETIMER_VAL_US(timer);
    151 	rf_GenericWakeupFunc(node, 0);
    152 #if 1
    153 	return (0);		/* XXX this was missing.. GO */
    154 #endif
    155 }
    156 
    157 int
    158 rf_SimpleONEFunc(RF_DagNode_t *node)
    159 {
    160 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    161 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    162 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    163 	int     retcode = 0;
    164 	char   *srcbuf, *destbuf;
    165 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    166 	int     length;
    167 	RF_RowCol_t scol;
    168 	RF_Etimer_t timer;
    169 
    170 	RF_ASSERT(((RF_PhysDiskAddr_t *) node->params[2].p)->type == RF_PDA_TYPE_Q);
    171 	if (node->dagHdr->status == rf_enable) {
    172 		RF_ETIMER_START(timer);
    173 		length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[4].p)->numSector);	/* this is a pda of
    174 														 * writeDataNodes */
    175 		/* bxor to buffer of readDataNodes */
    176 		retcode = rf_bxor(node->params[5].p, node->params[1].p, length);
    177 		/* find out the corresponding colume in encoding matrix for
    178 		 * write colume to be encoded into redundant disk 'E' */
    179 		scol = rf_EUCol(layoutPtr, pda->raidAddress);
    180 		srcbuf = node->params[1].p;
    181 		destbuf = node->params[3].p;
    182 		/* Start encoding process */
    183 		rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
    184 		rf_bxor(node->params[5].p, node->params[1].p, length);
    185 		RF_ETIMER_STOP(timer);
    186 		RF_ETIMER_EVAL(timer);
    187 		tracerec->q_us += RF_ETIMER_VAL_US(timer);
    188 
    189 	}
    190 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    191 							 * explicitly since no
    192 							 * I/O in this node */
    193 }
    194 
    195 
    196 /****** called by rf_RegularPEFunc(node) and rf_RegularEFunc(node) in f.f. large write  ********/
    197 void
    198 rf_RegularESubroutine(RF_DagNode_t *node, char *ebuf)
    199 {
    200 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    201 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    202 	RF_PhysDiskAddr_t *pda;
    203 	int     i, suoffset;
    204 	RF_RowCol_t scol;
    205 	char   *srcbuf, *destbuf;
    206 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    207 	RF_Etimer_t timer;
    208 
    209 	RF_ETIMER_START(timer);
    210 	for (i = 0; i < node->numParams - 2; i += 2) {
    211 		RF_ASSERT(node->params[i + 1].p != ebuf);
    212 		pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    213 		suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    214 		scol = rf_EUCol(layoutPtr, pda->raidAddress);
    215 		srcbuf = (char *) node->params[i + 1].p;
    216 		destbuf = ebuf + rf_RaidAddressToByte(raidPtr, suoffset);
    217 		rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
    218 	}
    219 	RF_ETIMER_STOP(timer);
    220 	RF_ETIMER_EVAL(timer);
    221 	tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    222 }
    223 
    224 
    225 /*******************************************************************************************
    226  *			 Used in  EO_001_CreateLargeWriteDAG
    227  ******************************************************************************************/
    228 int
    229 rf_RegularEFunc(RF_DagNode_t *node)
    230 {
    231 	rf_RegularESubroutine(node, node->results[0]);
    232 	rf_GenericWakeupFunc(node, 0);
    233 #if 1
    234 	return (0);		/* XXX this was missing?.. GO */
    235 #endif
    236 }
    237 /*******************************************************************************************
    238  * This degraded function allow only two case:
    239  *  1. when write access the full failed stripe unit, then the access can be more than
    240  *     one tripe units.
    241  *  2. when write access only part of the failed SU, we assume accesses of more than
    242  *     one stripe unit is not allowed so that the write can be dealt with like a
    243  *     large write.
    244  *  The following function is based on these assumptions. So except in the second case,
    245  *  it looks the same as a large write encodeing function. But this is not exactly the
    246  *  normal way for doing a degraded write, since raidframe have to break cases of access
    247  *  other than the above two into smaller accesses. We may have to change
    248  *  DegrESubroutin in the future.
    249  *******************************************************************************************/
    250 void
    251 rf_DegrESubroutine(RF_DagNode_t *node, char *ebuf)
    252 {
    253 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    254 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    255 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    256 	RF_PhysDiskAddr_t *pda;
    257 	int     i, suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    258 	RF_RowCol_t scol;
    259 	char   *srcbuf, *destbuf;
    260 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    261 	RF_Etimer_t timer;
    262 
    263 	RF_ETIMER_START(timer);
    264 	for (i = 0; i < node->numParams - 2; i += 2) {
    265 		RF_ASSERT(node->params[i + 1].p != ebuf);
    266 		pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    267 		suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    268 		scol = rf_EUCol(layoutPtr, pda->raidAddress);
    269 		srcbuf = (char *) node->params[i + 1].p;
    270 		destbuf = ebuf + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    271 		rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
    272 	}
    273 
    274 	RF_ETIMER_STOP(timer);
    275 	RF_ETIMER_EVAL(timer);
    276 	tracerec->q_us += RF_ETIMER_VAL_US(timer);
    277 }
    278 
    279 
    280 /**************************************************************************************
    281  * This function is used in case where one data disk failed and both redundant disks
    282  * alive. It is used in the EO_100_CreateWriteDAG. Note: if there is another disk
    283  * failed in the stripe but not accessed at this time, then we should, instead, use
    284  * the rf_EOWriteDoubleRecoveryFunc().
    285  **************************************************************************************/
    286 int
    287 rf_Degraded_100_EOFunc(RF_DagNode_t *node)
    288 {
    289 	rf_DegrESubroutine(node, node->results[1]);
    290 	rf_RecoveryXorFunc(node);	/* does the wakeup here! */
    291 #if 1
    292 	return (0);		/* XXX this was missing... SHould these be
    293 				 * void functions??? GO */
    294 #endif
    295 }
    296 /**************************************************************************************
    297  * This function is to encode one sector in one of the data disks to the E disk.
    298  * However, in evenodd this function can also be used as decoding function to recover
    299  * data from dead disk in the case of parity failure and a single data failure.
    300  **************************************************************************************/
    301 void
    302 rf_e_EncOneSect(
    303     RF_RowCol_t srcLogicCol,
    304     char *srcSecbuf,
    305     RF_RowCol_t destLogicCol,
    306     char *destSecbuf,
    307     int bytesPerSector)
    308 {
    309 	int     S_index;	/* index of the EU in the src col which need
    310 				 * be Xored into all EUs in a dest sector */
    311 	int     numRowInEncMatix = (RF_EO_MATRIX_DIM) - 1;
    312 	RF_RowCol_t j, indexInDest,	/* row index of an encoding unit in
    313 					 * the destination colume of encoding
    314 					 * matrix */
    315 	        indexInSrc;	/* row index of an encoding unit in the source
    316 				 * colume used for recovery */
    317 	int     bytesPerEU = bytesPerSector / numRowInEncMatix;
    318 
    319 #if RF_EO_MATRIX_DIM > 17
    320 	int     shortsPerEU = bytesPerEU / sizeof(short);
    321 	short  *destShortBuf, *srcShortBuf1, *srcShortBuf2;
    322 	short temp1;
    323 #elif RF_EO_MATRIX_DIM == 17
    324 	int     longsPerEU = bytesPerEU / sizeof(long);
    325 	long   *destLongBuf, *srcLongBuf1, *srcLongBuf2;
    326 	long temp1;
    327 #endif
    328 
    329 #if RF_EO_MATRIX_DIM > 17
    330 	RF_ASSERT(sizeof(short) == 2 || sizeof(short) == 1);
    331 	RF_ASSERT(bytesPerEU % sizeof(short) == 0);
    332 #elif RF_EO_MATRIX_DIM == 17
    333 	RF_ASSERT(sizeof(long) == 8 || sizeof(long) == 4);
    334 	RF_ASSERT(bytesPerEU % sizeof(long) == 0);
    335 #endif
    336 
    337 	S_index = rf_EO_Mod((RF_EO_MATRIX_DIM - 1 + destLogicCol - srcLogicCol), RF_EO_MATRIX_DIM);
    338 #if RF_EO_MATRIX_DIM > 17
    339 	srcShortBuf1 = (short *) (srcSecbuf + S_index * bytesPerEU);
    340 #elif RF_EO_MATRIX_DIM == 17
    341 	srcLongBuf1 = (long *) (srcSecbuf + S_index * bytesPerEU);
    342 #endif
    343 
    344 	for (indexInDest = 0; indexInDest < numRowInEncMatix; indexInDest++) {
    345 		indexInSrc = rf_EO_Mod((indexInDest + destLogicCol - srcLogicCol), RF_EO_MATRIX_DIM);
    346 
    347 #if RF_EO_MATRIX_DIM > 17
    348 		destShortBuf = (short *) (destSecbuf + indexInDest * bytesPerEU);
    349 		srcShortBuf2 = (short *) (srcSecbuf + indexInSrc * bytesPerEU);
    350 		for (j = 0; j < shortsPerEU; j++) {
    351 			temp1 = destShortBuf[j] ^ srcShortBuf1[j];
    352 			/* note: S_index won't be at the end row for any src
    353 			 * col! */
    354 			if (indexInSrc != RF_EO_MATRIX_DIM - 1)
    355 				destShortBuf[j] = (srcShortBuf2[j]) ^ temp1;
    356 			/* if indexInSrc is at the end row, ie.
    357 			 * RF_EO_MATRIX_DIM -1, then all elements are zero! */
    358 			else
    359 				destShortBuf[j] = temp1;
    360 		}
    361 
    362 #elif RF_EO_MATRIX_DIM == 17
    363 		destLongBuf = (long *) (destSecbuf + indexInDest * bytesPerEU);
    364 		srcLongBuf2 = (long *) (srcSecbuf + indexInSrc * bytesPerEU);
    365 		for (j = 0; j < longsPerEU; j++) {
    366 			temp1 = destLongBuf[j] ^ srcLongBuf1[j];
    367 			if (indexInSrc != RF_EO_MATRIX_DIM - 1)
    368 				destLongBuf[j] = (srcLongBuf2[j]) ^ temp1;
    369 			else
    370 				destLongBuf[j] = temp1;
    371 		}
    372 #endif
    373 	}
    374 }
    375 
    376 void
    377 rf_e_encToBuf(
    378     RF_Raid_t * raidPtr,
    379     RF_RowCol_t srcLogicCol,
    380     char *srcbuf,
    381     RF_RowCol_t destLogicCol,
    382     char *destbuf,
    383     int numSector)
    384 {
    385 	int     i, bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
    386 
    387 	for (i = 0; i < numSector; i++) {
    388 		rf_e_EncOneSect(srcLogicCol, srcbuf, destLogicCol, destbuf, bytesPerSector);
    389 		srcbuf += bytesPerSector;
    390 		destbuf += bytesPerSector;
    391 	}
    392 }
    393 /**************************************************************************************
    394  * when parity die and one data die, We use second redundant information, 'E',
    395  * to recover the data in dead disk. This function is used in the recovery node of
    396  * for EO_110_CreateReadDAG
    397  **************************************************************************************/
    398 int
    399 rf_RecoveryEFunc(RF_DagNode_t *node)
    400 {
    401 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    402 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    403 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    404 	RF_RowCol_t scol,	/* source logical column */
    405 	        fcol = rf_EUCol(layoutPtr, failedPDA->raidAddress);	/* logical column of
    406 									 * failed SU */
    407 	int     i;
    408 	RF_PhysDiskAddr_t *pda;
    409 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    410 	char   *srcbuf, *destbuf;
    411 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    412 	RF_Etimer_t timer;
    413 
    414 	memset((char *) node->results[0], 0,
    415 	    rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
    416 	if (node->dagHdr->status == rf_enable) {
    417 		RF_ETIMER_START(timer);
    418 		for (i = 0; i < node->numParams - 2; i += 2)
    419 			if (node->params[i + 1].p != node->results[0]) {
    420 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    421 				if (i == node->numParams - 4)
    422 					scol = RF_EO_MATRIX_DIM - 2;	/* the colume of
    423 									 * redundant E */
    424 				else
    425 					scol = rf_EUCol(layoutPtr, pda->raidAddress);
    426 				srcbuf = (char *) node->params[i + 1].p;
    427 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    428 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    429 				rf_e_encToBuf(raidPtr, scol, srcbuf, fcol, destbuf, pda->numSector);
    430 			}
    431 		RF_ETIMER_STOP(timer);
    432 		RF_ETIMER_EVAL(timer);
    433 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    434 	}
    435 	return (rf_GenericWakeupFunc(node, 0));	/* node execute successfully */
    436 }
    437 /**************************************************************************************
    438  * This function is used in the case where one data and the parity have filed.
    439  * (in EO_110_CreateWriteDAG )
    440  **************************************************************************************/
    441 int
    442 rf_EO_DegradedWriteEFunc(RF_DagNode_t * node)
    443 {
    444 	rf_DegrESubroutine(node, node->results[0]);
    445 	rf_GenericWakeupFunc(node, 0);
    446 #if 1
    447 	return (0);		/* XXX Yet another one!! GO */
    448 #endif
    449 }
    450 
    451 
    452 
    453 /**************************************************************************************
    454  *  		THE FUNCTION IS FOR DOUBLE DEGRADED READ AND WRITE CASES
    455  **************************************************************************************/
    456 
    457 void
    458 rf_doubleEOdecode(
    459     RF_Raid_t * raidPtr,
    460     char **rrdbuf,
    461     char **dest,
    462     RF_RowCol_t * fcol,
    463     char *pbuf,
    464     char *ebuf)
    465 {
    466 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
    467 	int     i, j, k, f1, f2, row;
    468 	int     rrdrow, erow, count = 0;
    469 	int     bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
    470 	int     numRowInEncMatix = (RF_EO_MATRIX_DIM) - 1;
    471 #if 0
    472 	int     pcol = (RF_EO_MATRIX_DIM) - 1;
    473 #endif
    474 	int     ecol = (RF_EO_MATRIX_DIM) - 2;
    475 	int     bytesPerEU = bytesPerSector / numRowInEncMatix;
    476 	int     numDataCol = layoutPtr->numDataCol;
    477 #if RF_EO_MATRIX_DIM > 17
    478 	int     shortsPerEU = bytesPerEU / sizeof(short);
    479 	short  *rrdbuf_current, *pbuf_current, *ebuf_current;
    480 	short  *dest_smaller, *dest_smaller_current, *dest_larger, *dest_larger_current;
    481 	short *temp;
    482 	short  *P;
    483 
    484 	RF_ASSERT(bytesPerEU % sizeof(short) == 0);
    485 	RF_Malloc(P, bytesPerEU, (short *));
    486 	RF_Malloc(temp, bytesPerEU, (short *));
    487 #elif RF_EO_MATRIX_DIM == 17
    488 	int     longsPerEU = bytesPerEU / sizeof(long);
    489 	long   *rrdbuf_current, *pbuf_current, *ebuf_current;
    490 	long   *dest_smaller, *dest_smaller_current, *dest_larger, *dest_larger_current;
    491 	long *temp;
    492 	long   *P;
    493 
    494 	RF_ASSERT(bytesPerEU % sizeof(long) == 0);
    495 	RF_Malloc(P, bytesPerEU, (long *));
    496 	RF_Malloc(temp, bytesPerEU, (long *));
    497 #endif
    498 	RF_ASSERT(*((long *) dest[0]) == 0);
    499 	RF_ASSERT(*((long *) dest[1]) == 0);
    500 	memset((char *) P, 0, bytesPerEU);
    501 	memset((char *) temp, 0, bytesPerEU);
    502 	RF_ASSERT(*P == 0);
    503 	/* calculate the 'P' parameter, which, not parity, is the Xor of all
    504 	 * elements in the last two column, ie. 'E' and 'parity' colume, see
    505 	 * the Ref. paper by Blaum, et al 1993  */
    506 	for (i = 0; i < numRowInEncMatix; i++)
    507 		for (k = 0; k < longsPerEU; k++) {
    508 #if RF_EO_MATRIX_DIM > 17
    509 			ebuf_current = ((short *) ebuf) + i * shortsPerEU + k;
    510 			pbuf_current = ((short *) pbuf) + i * shortsPerEU + k;
    511 #elif RF_EO_MATRIX_DIM == 17
    512 			ebuf_current = ((long *) ebuf) + i * longsPerEU + k;
    513 			pbuf_current = ((long *) pbuf) + i * longsPerEU + k;
    514 #endif
    515 			P[k] ^= *ebuf_current;
    516 			P[k] ^= *pbuf_current;
    517 		}
    518 	RF_ASSERT(fcol[0] != fcol[1]);
    519 	if (fcol[0] < fcol[1]) {
    520 #if RF_EO_MATRIX_DIM > 17
    521 		dest_smaller = (short *) (dest[0]);
    522 		dest_larger = (short *) (dest[1]);
    523 #elif RF_EO_MATRIX_DIM == 17
    524 		dest_smaller = (long *) (dest[0]);
    525 		dest_larger = (long *) (dest[1]);
    526 #endif
    527 		f1 = fcol[0];
    528 		f2 = fcol[1];
    529 	} else {
    530 #if RF_EO_MATRIX_DIM > 17
    531 		dest_smaller = (short *) (dest[1]);
    532 		dest_larger = (short *) (dest[0]);
    533 #elif RF_EO_MATRIX_DIM == 17
    534 		dest_smaller = (long *) (dest[1]);
    535 		dest_larger = (long *) (dest[0]);
    536 #endif
    537 		f1 = fcol[1];
    538 		f2 = fcol[0];
    539 	}
    540 	row = (RF_EO_MATRIX_DIM) - 1;
    541 	while ((row = rf_EO_Mod((row + f1 - f2), RF_EO_MATRIX_DIM)) != ((RF_EO_MATRIX_DIM) - 1)) {
    542 #if RF_EO_MATRIX_DIM > 17
    543 		dest_larger_current = dest_larger + row * shortsPerEU;
    544 		dest_smaller_current = dest_smaller + row * shortsPerEU;
    545 #elif RF_EO_MATRIX_DIM == 17
    546 		dest_larger_current = dest_larger + row * longsPerEU;
    547 		dest_smaller_current = dest_smaller + row * longsPerEU;
    548 #endif
    549 		/**    Do the diagonal recovery. Initially, temp[k] = (failed 1),
    550 		       which is the failed data in the colume which has smaller col index. **/
    551 		/* step 1:  ^(SUM of nonfailed in-diagonal A(rrdrow,0..m-3))         */
    552 		for (j = 0; j < numDataCol; j++) {
    553 			if (j == f1 || j == f2)
    554 				continue;
    555 			rrdrow = rf_EO_Mod((row + f2 - j), RF_EO_MATRIX_DIM);
    556 			if (rrdrow != (RF_EO_MATRIX_DIM) - 1) {
    557 #if RF_EO_MATRIX_DIM > 17
    558 				rrdbuf_current = (short *) (rrdbuf[j]) + rrdrow * shortsPerEU;
    559 				for (k = 0; k < shortsPerEU; k++)
    560 					temp[k] ^= *(rrdbuf_current + k);
    561 #elif RF_EO_MATRIX_DIM == 17
    562 				rrdbuf_current = (long *) (rrdbuf[j]) + rrdrow * longsPerEU;
    563 				for (k = 0; k < longsPerEU; k++)
    564 					temp[k] ^= *(rrdbuf_current + k);
    565 #endif
    566 			}
    567 		}
    568 		/* step 2:  ^E(erow,m-2), If erow is at the buttom row, don't
    569 		 * Xor into it  E(erow,m-2) = (principle diagonal) ^ (failed
    570 		 * 1) ^ (failed 2) ^ ( SUM of nonfailed in-diagonal
    571 		 * A(rrdrow,0..m-3) ) After this step, temp[k] = (principle
    572 		 * diagonal) ^ (failed 2)       */
    573 
    574 		erow = rf_EO_Mod((row + f2 - ecol), (RF_EO_MATRIX_DIM));
    575 		if (erow != (RF_EO_MATRIX_DIM) - 1) {
    576 #if RF_EO_MATRIX_DIM > 17
    577 			ebuf_current = (short *) ebuf + shortsPerEU * erow;
    578 			for (k = 0; k < shortsPerEU; k++)
    579 				temp[k] ^= *(ebuf_current + k);
    580 #elif RF_EO_MATRIX_DIM == 17
    581 			ebuf_current = (long *) ebuf + longsPerEU * erow;
    582 			for (k = 0; k < longsPerEU; k++)
    583 				temp[k] ^= *(ebuf_current + k);
    584 #endif
    585 		}
    586 		/* step 3: ^P to obtain the failed data (failed 2).  P can be
    587 		 * proved to be actually  (principle diagonal)  After this
    588 		 * step, temp[k] = (failed 2), the failed data to be recovered */
    589 #if RF_EO_MATRIX_DIM > 17
    590 		for (k = 0; k < shortsPerEU; k++)
    591 			temp[k] ^= P[k];
    592 		/* Put the data to the destination buffer                              */
    593 		for (k = 0; k < shortsPerEU; k++)
    594 			dest_larger_current[k] = temp[k];
    595 #elif RF_EO_MATRIX_DIM == 17
    596 		for (k = 0; k < longsPerEU; k++)
    597 			temp[k] ^= P[k];
    598 		/* Put the data to the destination buffer                              */
    599 		for (k = 0; k < longsPerEU; k++)
    600 			dest_larger_current[k] = temp[k];
    601 #endif
    602 
    603 		/**          THE FOLLOWING DO THE HORIZONTAL XOR                **/
    604 		/* step 1:  ^(SUM of A(row,0..m-3)), ie. all nonfailed data
    605 		 * columes    */
    606 		for (j = 0; j < numDataCol; j++) {
    607 			if (j == f1 || j == f2)
    608 				continue;
    609 #if RF_EO_MATRIX_DIM > 17
    610 			rrdbuf_current = (short *) (rrdbuf[j]) + row * shortsPerEU;
    611 			for (k = 0; k < shortsPerEU; k++)
    612 				temp[k] ^= *(rrdbuf_current + k);
    613 #elif RF_EO_MATRIX_DIM == 17
    614 			rrdbuf_current = (long *) (rrdbuf[j]) + row * longsPerEU;
    615 			for (k = 0; k < longsPerEU; k++)
    616 				temp[k] ^= *(rrdbuf_current + k);
    617 #endif
    618 		}
    619 		/* step 2: ^A(row,m-1) */
    620 		/* step 3: Put the data to the destination buffer                             	 */
    621 #if RF_EO_MATRIX_DIM > 17
    622 		pbuf_current = (short *) pbuf + shortsPerEU * row;
    623 		for (k = 0; k < shortsPerEU; k++)
    624 			temp[k] ^= *(pbuf_current + k);
    625 		for (k = 0; k < shortsPerEU; k++)
    626 			dest_smaller_current[k] = temp[k];
    627 #elif RF_EO_MATRIX_DIM == 17
    628 		pbuf_current = (long *) pbuf + longsPerEU * row;
    629 		for (k = 0; k < longsPerEU; k++)
    630 			temp[k] ^= *(pbuf_current + k);
    631 		for (k = 0; k < longsPerEU; k++)
    632 			dest_smaller_current[k] = temp[k];
    633 #endif
    634 		count++;
    635 	}
    636 	/* Check if all Encoding Unit in the data buffer have been decoded,
    637 	 * according EvenOdd theory, if "RF_EO_MATRIX_DIM" is a prime number,
    638 	 * this algorithm will covered all buffer 				 */
    639 	RF_ASSERT(count == numRowInEncMatix);
    640 	RF_Free((char *) P, bytesPerEU);
    641 	RF_Free((char *) temp, bytesPerEU);
    642 }
    643 
    644 
    645 /***************************************************************************************
    646 * 	This function is called by double degragded read
    647 * 	EO_200_CreateReadDAG
    648 *
    649 ***************************************************************************************/
    650 int
    651 rf_EvenOddDoubleRecoveryFunc(RF_DagNode_t *node)
    652 {
    653 	int     ndataParam = 0;
    654 	int     np = node->numParams;
    655 	RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
    656 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
    657 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
    658 	int     i, prm, sector, nresults = node->numResults;
    659 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    660 	unsigned sosAddr;
    661 	int     mallc_one = 0, mallc_two = 0;	/* flags to indicate if
    662 						 * memory is allocated */
    663 	int     bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
    664 	RF_PhysDiskAddr_t *ppda, *ppda2, *epda, *epda2, *pda, *pda0, *pda1,
    665 	        npda;
    666 	RF_RowCol_t fcol[2], fsuoff[2], fsuend[2], numDataCol = layoutPtr->numDataCol;
    667 	char  **buf, *ebuf, *pbuf, *dest[2];
    668 	long   *suoff = NULL, *suend = NULL, *prmToCol = NULL,
    669 	    psuoff = 0, esuoff = 0;
    670 	RF_SectorNum_t startSector, endSector;
    671 	RF_Etimer_t timer;
    672 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    673 
    674 	RF_ETIMER_START(timer);
    675 
    676 	/* Find out the number of parameters which are pdas for data
    677 	 * information */
    678 	for (i = 0; i <= np; i++)
    679 		if (((RF_PhysDiskAddr_t *) node->params[i].p)->type != RF_PDA_TYPE_DATA) {
    680 			ndataParam = i;
    681 			break;
    682 		}
    683 	RF_Malloc(buf, numDataCol * sizeof(char *), (char **));
    684 	if (ndataParam != 0) {
    685 		RF_Malloc(suoff, ndataParam * sizeof(long), (long *));
    686 		RF_Malloc(suend, ndataParam * sizeof(long), (long *));
    687 		RF_Malloc(prmToCol, ndataParam * sizeof(long), (long *));
    688 	}
    689 	if (asmap->failedPDAs[1] &&
    690 	    (asmap->failedPDAs[1]->numSector + asmap->failedPDAs[0]->numSector < secPerSU)) {
    691 		RF_ASSERT(0);	/* currently, no support for this situation */
    692 		ppda = node->params[np - 6].p;
    693 		ppda2 = node->params[np - 5].p;
    694 		RF_ASSERT(ppda2->type == RF_PDA_TYPE_PARITY);
    695 		epda = node->params[np - 4].p;
    696 		epda2 = node->params[np - 3].p;
    697 		RF_ASSERT(epda2->type == RF_PDA_TYPE_Q);
    698 	} else {
    699 		ppda = node->params[np - 4].p;
    700 		epda = node->params[np - 3].p;
    701 		psuoff = rf_StripeUnitOffset(layoutPtr, ppda->startSector);
    702 		esuoff = rf_StripeUnitOffset(layoutPtr, epda->startSector);
    703 		RF_ASSERT(psuoff == esuoff);
    704 	}
    705 	/*
    706             the followings have three goals:
    707             1. determine the startSector to begin decoding and endSector to end decoding.
    708             2. determine the colume numbers of the two failed disks.
    709             3. determine the offset and end offset of the access within each failed stripe unit.
    710          */
    711 	if (nresults == 1) {
    712 		/* find the startSector to begin decoding */
    713 		pda = node->results[0];
    714 		memset(pda->bufPtr, 0, bytesPerSector * pda->numSector);
    715 		fsuoff[0] = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    716 		fsuend[0] = fsuoff[0] + pda->numSector;
    717 		fsuoff[1] = 0;
    718 		fsuend[1] = 0;
    719 		startSector = fsuoff[0];
    720 		endSector = fsuend[0];
    721 
    722 		/* find out the column of failed disk being accessed */
    723 		fcol[0] = rf_EUCol(layoutPtr, pda->raidAddress);
    724 
    725 		/* find out the other failed colume not accessed */
    726 		sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    727 		for (i = 0; i < numDataCol; i++) {
    728 			npda.raidAddress = sosAddr + (i * secPerSU);
    729 			(raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.col), &(npda.startSector), 0);
    730 			/* skip over dead disks */
    731 			if (RF_DEAD_DISK(raidPtr->Disks[npda.col].status))
    732 				if (i != fcol[0])
    733 					break;
    734 		}
    735 		RF_ASSERT(i < numDataCol);
    736 		fcol[1] = i;
    737 	} else {
    738 		RF_ASSERT(nresults == 2);
    739 		pda0 = node->results[0];
    740 		memset(pda0->bufPtr, 0, bytesPerSector * pda0->numSector);
    741 		pda1 = node->results[1];
    742 		memset(pda1->bufPtr, 0, bytesPerSector * pda1->numSector);
    743 		/* determine the failed colume numbers of the two failed
    744 		 * disks. */
    745 		fcol[0] = rf_EUCol(layoutPtr, pda0->raidAddress);
    746 		fcol[1] = rf_EUCol(layoutPtr, pda1->raidAddress);
    747 		/* determine the offset and end offset of the access within
    748 		 * each failed stripe unit. */
    749 		fsuoff[0] = rf_StripeUnitOffset(layoutPtr, pda0->startSector);
    750 		fsuend[0] = fsuoff[0] + pda0->numSector;
    751 		fsuoff[1] = rf_StripeUnitOffset(layoutPtr, pda1->startSector);
    752 		fsuend[1] = fsuoff[1] + pda1->numSector;
    753 		/* determine the startSector to begin decoding */
    754 		startSector = RF_MIN(pda0->startSector, pda1->startSector);
    755 		/* determine the endSector to end decoding */
    756 		endSector = RF_MAX(fsuend[0], fsuend[1]);
    757 	}
    758 	/*
    759 	      assign the beginning sector and the end sector for each parameter
    760 	      find out the corresponding colume # for each parameter
    761         */
    762 	for (prm = 0; prm < ndataParam; prm++) {
    763 		pda = node->params[prm].p;
    764 		suoff[prm] = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    765 		suend[prm] = suoff[prm] + pda->numSector;
    766 		prmToCol[prm] = rf_EUCol(layoutPtr, pda->raidAddress);
    767 	}
    768 	/* 'sector' is the sector for the current decoding algorithm. For each
    769 	 * sector in the failed SU, find out the corresponding parameters that
    770 	 * cover the current sector and that are needed for decoding of this
    771 	 * sector in failed SU. 2.  Find out if sector is in the shadow of any
    772 	 * accessed failed SU. If not, malloc a temporary space of a sector in
    773 	 * size. */
    774 	for (sector = startSector; sector < endSector; sector++) {
    775 		if (nresults == 2)
    776 			if (!(fsuoff[0] <= sector && sector < fsuend[0]) && !(fsuoff[1] <= sector && sector < fsuend[1]))
    777 				continue;
    778 		for (prm = 0; prm < ndataParam; prm++)
    779 			if (suoff[prm] <= sector && sector < suend[prm])
    780 				buf[(prmToCol[prm])] = (char *)((RF_PhysDiskAddr_t *) node->params[prm].p)->bufPtr +
    781 				    rf_RaidAddressToByte(raidPtr, sector - suoff[prm]);
    782 		/* find out if sector is in the shadow of any accessed failed
    783 		 * SU. If yes, assign dest[0], dest[1] to point at suitable
    784 		 * position of the buffer corresponding to failed SUs. if no,
    785 		 * malloc a temporary space of a sector in size for
    786 		 * destination of decoding. */
    787 		RF_ASSERT(nresults == 1 || nresults == 2);
    788 		if (nresults == 1) {
    789 			dest[0] = (char *)((RF_PhysDiskAddr_t *) node->results[0])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[0]);
    790 			/* Always malloc temp buffer to dest[1]  */
    791 			RF_Malloc(dest[1], bytesPerSector, (char *));
    792 			memset(dest[1], 0, bytesPerSector);
    793 			mallc_two = 1;
    794 		} else {
    795 			if (fsuoff[0] <= sector && sector < fsuend[0])
    796 				dest[0] = (char *)((RF_PhysDiskAddr_t *) node->results[0])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[0]);
    797 			else {
    798 				RF_Malloc(dest[0], bytesPerSector, (char *));
    799 				memset(dest[0], 0, bytesPerSector);
    800 				mallc_one = 1;
    801 			}
    802 			if (fsuoff[1] <= sector && sector < fsuend[1])
    803 				dest[1] = (char *)((RF_PhysDiskAddr_t *) node->results[1])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[1]);
    804 			else {
    805 				RF_Malloc(dest[1], bytesPerSector, (char *));
    806 				memset(dest[1], 0, bytesPerSector);
    807 				mallc_two = 1;
    808 			}
    809 			RF_ASSERT(mallc_one == 0 || mallc_two == 0);
    810 		}
    811 		pbuf = (char *)ppda->bufPtr + rf_RaidAddressToByte(raidPtr, sector - psuoff);
    812 		ebuf = (char *)epda->bufPtr + rf_RaidAddressToByte(raidPtr, sector - esuoff);
    813 		/*
    814 	         * After finish finding all needed sectors, call doubleEOdecode function for decoding
    815 	         * one sector to destination.
    816 	         */
    817 		rf_doubleEOdecode(raidPtr, buf, dest, fcol, pbuf, ebuf);
    818 		/* free all allocated memory, and mark flag to indicate no
    819 		 * memory is being allocated */
    820 		if (mallc_one == 1)
    821 			RF_Free(dest[0], bytesPerSector);
    822 		if (mallc_two == 1)
    823 			RF_Free(dest[1], bytesPerSector);
    824 		mallc_one = mallc_two = 0;
    825 	}
    826 	RF_Free(buf, numDataCol * sizeof(char *));
    827 	if (ndataParam != 0) {
    828 		RF_Free(suoff, ndataParam * sizeof(long));
    829 		RF_Free(suend, ndataParam * sizeof(long));
    830 		RF_Free(prmToCol, ndataParam * sizeof(long));
    831 	}
    832 	RF_ETIMER_STOP(timer);
    833 	RF_ETIMER_EVAL(timer);
    834 	if (tracerec) {
    835 		tracerec->q_us += RF_ETIMER_VAL_US(timer);
    836 	}
    837 	rf_GenericWakeupFunc(node, 0);
    838 #if 1
    839 	return (0);		/* XXX is this even close!!?!?!!? GO */
    840 #endif
    841 }
    842 
    843 
    844 /* currently, only access of one of the two failed SU is allowed in this function.
    845  * also, asmap->numStripeUnitsAccessed is limited to be one, the RaidFrame will break large access into
    846  * many accesses of single stripe unit.
    847  */
    848 
    849 int
    850 rf_EOWriteDoubleRecoveryFunc(RF_DagNode_t *node)
    851 {
    852 	int     np = node->numParams;
    853 	RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
    854 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
    855 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
    856 	RF_SectorNum_t sector;
    857 	RF_RowCol_t col, scol;
    858 	int     prm, i, j;
    859 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    860 	unsigned sosAddr;
    861 	unsigned bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
    862 	RF_int64 numbytes;
    863 	RF_SectorNum_t startSector, endSector;
    864 	RF_PhysDiskAddr_t *ppda, *epda, *pda, *fpda, npda;
    865 	RF_RowCol_t fcol[2], numDataCol = layoutPtr->numDataCol;
    866 	char  **buf;		/* buf[0], buf[1], buf[2], ...etc. point to
    867 				 * buffer storing data read from col0, col1,
    868 				 * col2 */
    869 	char   *ebuf, *pbuf, *dest[2], *olddata[2];
    870 	RF_Etimer_t timer;
    871 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    872 
    873 	RF_ASSERT(asmap->numDataFailed == 1);	/* currently only support this
    874 						 * case, the other failed SU
    875 						 * is not being accessed */
    876 	RF_ETIMER_START(timer);
    877 	RF_Malloc(buf, numDataCol * sizeof(char *), (char **));
    878 
    879 	ppda = node->results[0];/* Instead of being buffers, node->results[0]
    880 				 * and [1] are Ppda and Epda  */
    881 	epda = node->results[1];
    882 	fpda = asmap->failedPDAs[0];
    883 
    884 	/* First, recovery the failed old SU using EvenOdd double decoding      */
    885 	/* determine the startSector and endSector for decoding */
    886 	startSector = rf_StripeUnitOffset(layoutPtr, fpda->startSector);
    887 	endSector = startSector + fpda->numSector;
    888 	/* Assign buf[col] pointers to point to each non-failed colume  and
    889 	 * initialize the pbuf and ebuf to point at the beginning of each
    890 	 * source buffers and destination buffers */
    891 	for (prm = 0; prm < numDataCol - 2; prm++) {
    892 		pda = (RF_PhysDiskAddr_t *) node->params[prm].p;
    893 		col = rf_EUCol(layoutPtr, pda->raidAddress);
    894 		buf[col] = pda->bufPtr;
    895 	}
    896 	/* pbuf and ebuf:  they will change values as double recovery decoding
    897 	 * goes on */
    898 	pbuf = ppda->bufPtr;
    899 	ebuf = epda->bufPtr;
    900 	/* find out the logical colume numbers in the encoding matrix of the
    901 	 * two failed columes */
    902 	fcol[0] = rf_EUCol(layoutPtr, fpda->raidAddress);
    903 
    904 	/* find out the other failed colume not accessed this time */
    905 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    906 	for (i = 0; i < numDataCol; i++) {
    907 		npda.raidAddress = sosAddr + (i * secPerSU);
    908 		(raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.col), &(npda.startSector), 0);
    909 		/* skip over dead disks */
    910 		if (RF_DEAD_DISK(raidPtr->Disks[npda.col].status))
    911 			if (i != fcol[0])
    912 				break;
    913 	}
    914 	RF_ASSERT(i < numDataCol);
    915 	fcol[1] = i;
    916 	/* assign temporary space to put recovered failed SU */
    917 	numbytes = fpda->numSector * bytesPerSector;
    918 	RF_Malloc(olddata[0], numbytes, (char *));
    919 	RF_Malloc(olddata[1], numbytes, (char *));
    920 	dest[0] = olddata[0];
    921 	dest[1] = olddata[1];
    922 	memset(olddata[0], 0, numbytes);
    923 	memset(olddata[1], 0, numbytes);
    924 	/* Begin the recovery decoding, initially buf[j],  ebuf, pbuf, dest[j]
    925 	 * have already pointed at the beginning of each source buffers and
    926 	 * destination buffers */
    927 	for (sector = startSector, i = 0; sector < endSector; sector++, i++) {
    928 		rf_doubleEOdecode(raidPtr, buf, dest, fcol, pbuf, ebuf);
    929 		for (j = 0; j < numDataCol; j++)
    930 			if ((j != fcol[0]) && (j != fcol[1]))
    931 				buf[j] += bytesPerSector;
    932 		dest[0] += bytesPerSector;
    933 		dest[1] += bytesPerSector;
    934 		ebuf += bytesPerSector;
    935 		pbuf += bytesPerSector;
    936 	}
    937 	/* after recovery, the buffer pointed by olddata[0] is the old failed
    938 	 * data. With new writing data and this old data, use small write to
    939 	 * calculate the new redundant informations */
    940 	/* node->params[ 0, ... PDAPerDisk * (numDataCol - 2)-1 ] are Pdas of
    941 	 * Rrd; params[ PDAPerDisk*(numDataCol - 2), ... PDAPerDisk*numDataCol
    942 	 * -1 ] are Pdas of Rp, ( Rp2 ), Re, ( Re2 ) ; params[
    943 	 * PDAPerDisk*numDataCol, ... PDAPerDisk*numDataCol
    944 	 * +asmap->numStripeUnitsAccessed -asmap->numDataFailed-1] are Pdas of
    945 	 * wudNodes; For current implementation, we assume the simplest case:
    946 	 * asmap->numStripeUnitsAccessed == 1 and asmap->numDataFailed == 1
    947 	 * ie. PDAPerDisk = 1 then node->params[numDataCol] must be the new
    948 	 * data to be writen to the failed disk. We first bxor the new data
    949 	 * into the old recovered data, then do the same things as small
    950 	 * write. */
    951 
    952 	rf_bxor(((RF_PhysDiskAddr_t *) node->params[numDataCol].p)->bufPtr, olddata[0], numbytes);
    953 	/* do new 'E' calculation  */
    954 	/* find out the corresponding colume in encoding matrix for write
    955 	 * colume to be encoded into redundant disk 'E' */
    956 	scol = rf_EUCol(layoutPtr, fpda->raidAddress);
    957 	/* olddata[0] now is source buffer pointer; epda->bufPtr is the dest
    958 	 * buffer pointer               */
    959 	rf_e_encToBuf(raidPtr, scol, olddata[0], RF_EO_MATRIX_DIM - 2, epda->bufPtr, fpda->numSector);
    960 
    961 	/* do new 'P' calculation  */
    962 	rf_bxor(olddata[0], ppda->bufPtr, numbytes);
    963 	/* Free the allocated buffer  */
    964 	RF_Free(olddata[0], numbytes);
    965 	RF_Free(olddata[1], numbytes);
    966 	RF_Free(buf, numDataCol * sizeof(char *));
    967 
    968 	RF_ETIMER_STOP(timer);
    969 	RF_ETIMER_EVAL(timer);
    970 	if (tracerec) {
    971 		tracerec->q_us += RF_ETIMER_VAL_US(timer);
    972 	}
    973 	rf_GenericWakeupFunc(node, 0);
    974 	return (0);
    975 }
    976 #endif				/* RF_INCLUDE_EVENODD > 0 */
    977