Home | History | Annotate | Line # | Download | only in raidframe
rf_layout.h revision 1.12
      1 /*	$NetBSD: rf_layout.h,v 1.12 2004/03/19 02:27:44 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /* rf_layout.h -- header file defining layout data structures
     30  */
     31 
     32 #ifndef _RF__RF_LAYOUT_H_
     33 #define _RF__RF_LAYOUT_H_
     34 
     35 #include <dev/raidframe/raidframevar.h>
     36 #include "rf_archs.h"
     37 #include "rf_alloclist.h"
     38 
     39 /* enables remapping to spare location under dist sparing */
     40 #define RF_REMAP       1
     41 #define RF_DONT_REMAP  0
     42 
     43 /*
     44  * Flags values for RF_AccessStripeMapFlags_t
     45  */
     46 #define RF_NO_STRIPE_LOCKS   0x0001	/* suppress stripe locks */
     47 #define RF_DISTRIBUTE_SPARE  0x0002	/* distribute spare space in archs
     48 					 * that support it */
     49 #define RF_BD_DECLUSTERED    0x0004	/* declustering uses block designs */
     50 
     51 /*************************************************************************
     52  *
     53  * this structure forms the layout component of the main Raid
     54  * structure.  It describes everything needed to define and perform
     55  * the mapping of logical RAID addresses <-> physical disk addresses.
     56  *
     57  *************************************************************************/
     58 struct RF_RaidLayout_s {
     59 	/* configuration parameters */
     60 	RF_SectorCount_t sectorsPerStripeUnit;	/* number of sectors in one
     61 						 * stripe unit */
     62 	RF_StripeCount_t SUsPerPU;	/* stripe units per parity unit */
     63 	RF_StripeCount_t SUsPerRU;	/* stripe units per reconstruction
     64 					 * unit */
     65 
     66 	/* redundant-but-useful info computed from the above, used in all
     67 	 * layouts */
     68 	RF_StripeCount_t numStripe;	/* total number of stripes in the
     69 					 * array */
     70 	RF_SectorCount_t dataSectorsPerStripe;
     71 	RF_StripeCount_t dataStripeUnitsPerDisk;
     72 	RF_StripeCount_t numDataCol;	/* number of SUs of data per stripe
     73 					 * (name here is a la RAID4) */
     74 	RF_StripeCount_t numParityCol;	/* number of SUs of parity per stripe.
     75 					 * Always 1 for now */
     76 	RF_StripeCount_t numParityLogCol;	/* number of SUs of parity log
     77 						 * per stripe.  Always 1 for
     78 						 * now */
     79 	RF_StripeCount_t stripeUnitsPerDisk;
     80 
     81 	const RF_LayoutSW_t *map;	/* ptr to struct holding mapping fns and
     82 					 * information */
     83 	void   *layoutSpecificInfo;	/* ptr to a structure holding
     84 					 * layout-specific params */
     85 };
     86 /*****************************************************************************************
     87  *
     88  * The mapping code returns a pointer to a list of AccessStripeMap structures, which
     89  * describes all the mapping information about an access.  The list contains one
     90  * AccessStripeMap structure per stripe touched by the access.  Each element in the list
     91  * contains a stripe identifier and a pointer to a list of PhysDiskAddr structuress.  Each
     92  * element in this latter list describes the physical location of a stripe unit accessed
     93  * within the corresponding stripe.
     94  *
     95  ****************************************************************************************/
     96 
     97 #define RF_PDA_TYPE_DATA   0
     98 #define RF_PDA_TYPE_PARITY 1
     99 #define RF_PDA_TYPE_Q      2
    100 
    101 struct RF_PhysDiskAddr_s {
    102 	RF_RowCol_t col;	/* disk identifier */
    103 	RF_SectorNum_t startSector;	/* sector offset into the disk */
    104 	RF_SectorCount_t numSector;	/* number of sectors accessed */
    105 	int     type;		/* used by higher levels: currently, data,
    106 				 * parity, or q */
    107 	caddr_t bufPtr;		/* pointer to buffer supplying/receiving data */
    108 	RF_RaidAddr_t raidAddress;	/* raid address corresponding to this
    109 					 * physical disk address */
    110 	RF_PhysDiskAddr_t *next;
    111 };
    112 #define RF_MAX_FAILED_PDA RF_MAXCOL
    113 
    114 struct RF_AccessStripeMap_s {
    115 	RF_StripeNum_t stripeID;/* the stripe index */
    116 	RF_RaidAddr_t raidAddress;	/* the starting raid address within
    117 					 * this stripe */
    118 	RF_RaidAddr_t endRaidAddress;	/* raid address one sector past the
    119 					 * end of the access */
    120 	RF_SectorCount_t totalSectorsAccessed;	/* total num sectors
    121 						 * identified in physInfo list */
    122 	RF_StripeCount_t numStripeUnitsAccessed;	/* total num elements in
    123 							 * physInfo list */
    124 	int     numDataFailed;	/* number of failed data disks accessed */
    125 	int     numParityFailed;/* number of failed parity disks accessed (0
    126 				 * or 1) */
    127 	int     numQFailed;	/* number of failed Q units accessed (0 or 1) */
    128 	RF_AccessStripeMapFlags_t flags;	/* various flags */
    129 	int     numFailedPDAs;	/* number of failed phys addrs */
    130 	RF_PhysDiskAddr_t *failedPDAs[RF_MAX_FAILED_PDA];	/* array of failed phys
    131 								 * addrs */
    132 	RF_PhysDiskAddr_t *physInfo;	/* a list of PhysDiskAddr structs */
    133 	RF_PhysDiskAddr_t *parityInfo;	/* list of physical addrs for the
    134 					 * parity (P of P + Q ) */
    135 	RF_PhysDiskAddr_t *qInfo;	/* list of physical addrs for the Q of
    136 					 * P + Q */
    137 	RF_LockReqDesc_t lockReqDesc;	/* used for stripe locking */
    138 	RF_AccessStripeMap_t *next;
    139 };
    140 /* flag values */
    141 #define RF_ASM_REDIR_LARGE_WRITE   0x00000001	/* allows large-write creation
    142 						 * code to redirect failed
    143 						 * accs */
    144 #define RF_ASM_BAILOUT_DAG_USED    0x00000002	/* allows us to detect
    145 						 * recursive calls to the
    146 						 * bailout write dag */
    147 #define RF_ASM_FLAGS_LOCK_TRIED    0x00000004	/* we've acquired the lock on
    148 						 * the first parity range in
    149 						 * this parity stripe */
    150 #define RF_ASM_FLAGS_LOCK_TRIED2   0x00000008	/* we've acquired the lock on
    151 						 * the 2nd   parity range in
    152 						 * this parity stripe */
    153 #define RF_ASM_FLAGS_FORCE_TRIED   0x00000010	/* we've done the force-recon
    154 						 * call on this parity stripe */
    155 #define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020	/* we blocked recon => we must
    156 						 * unblock it later */
    157 
    158 struct RF_AccessStripeMapHeader_s {
    159 	RF_StripeCount_t numStripes;	/* total number of stripes touched by
    160 					 * this acc */
    161 	RF_AccessStripeMap_t *stripeMap;	/* pointer to the actual map.
    162 						 * Also used for making lists */
    163 	RF_AccessStripeMapHeader_t *next;
    164 };
    165 
    166 typedef struct RF_VoidFunctionPointerListElem_s RF_VoidFunctionPointerListElem_t;
    167 struct RF_VoidFunctionPointerListElem_s {
    168 	RF_VoidFuncPtr fn;
    169 	RF_VoidFunctionPointerListElem_t *next;
    170 };
    171 typedef struct RF_ASMHeaderListElem_s RF_ASMHeaderListElem_t;
    172 struct RF_ASMHeaderListElem_s {
    173 	RF_AccessStripeMapHeader_t *asmh;
    174 	RF_ASMHeaderListElem_t *next;
    175 };
    176 
    177 typedef struct RF_FailedStripe_s RF_FailedStripe_t;
    178 struct RF_FailedStripe_s {
    179 	RF_VoidFunctionPointerListElem_t *vfple;
    180 	RF_VoidFunctionPointerListElem_t *bvfple;
    181 	RF_ASMHeaderListElem_t *asmh_u;
    182 	RF_ASMHeaderListElem_t *asmh_b;
    183 	RF_FailedStripe_t *next;
    184 };
    185 
    186 
    187 
    188 /*****************************************************************************************
    189  *
    190  * various routines mapping addresses in the RAID address space.  These work across
    191  * all layouts.  DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE.
    192  *
    193  ****************************************************************************************/
    194 
    195 /* return the identifier of the stripe containing the given address */
    196 #define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \
    197   ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol )
    198 
    199 /* return the raid address of the start of the indicates stripe ID */
    200 #define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \
    201   ( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol )
    202 
    203 /* return the identifier of the stripe containing the given stripe unit id */
    204 #define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \
    205   ( (_addr_) / (_layoutPtr_)->numDataCol )
    206 
    207 /* return the identifier of the stripe unit containing the given address */
    208 #define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \
    209   ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) )
    210 
    211 /* return the RAID address of next stripe boundary beyond the given address */
    212 #define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \
    213   ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe )
    214 
    215 /* return the RAID address of the start of the stripe containing the given address */
    216 #define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \
    217   ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe )
    218 
    219 /* return the RAID address of next stripe unit boundary beyond the given address */
    220 #define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \
    221   ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit )
    222 
    223 /* return the RAID address of the start of the stripe unit containing RAID address _addr_ */
    224 #define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \
    225   ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit )
    226 
    227 /* returns the offset into the stripe.  used by RaidAddressStripeAligned */
    228 #define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \
    229   ( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) )
    230 
    231 /* returns the offset into the stripe unit.  */
    232 #define rf_StripeUnitOffset(_layoutPtr_, _addr_) \
    233   ( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) )
    234 
    235 /* returns nonzero if the given RAID address is stripe-aligned */
    236 #define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \
    237   ( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 )
    238 
    239 /* returns nonzero if the given address is stripe-unit aligned */
    240 #define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \
    241   ( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 )
    242 
    243 /* convert an address expressed in RAID blocks to/from an addr expressed in bytes */
    244 #define rf_RaidAddressToByte(_raidPtr_, _addr_) \
    245   ( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) )
    246 
    247 #define rf_ByteToRaidAddress(_raidPtr_, _addr_) \
    248   ( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) )
    249 
    250 /* convert a raid address to/from a parity stripe ID.  Conversion to raid address is easy,
    251  * since we're asking for the address of the first sector in the parity stripe.  Conversion to a
    252  * parity stripe ID is more complex, since stripes are not contiguously allocated in
    253  * parity stripes.
    254  */
    255 #define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \
    256   rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) )
    257 
    258 #define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \
    259   ( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit )
    260 
    261 const RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig);
    262 int
    263 rf_ConfigureLayout(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
    264     RF_Config_t * cfgPtr);
    265 RF_StripeNum_t
    266 rf_MapStripeIDToParityStripeID(RF_RaidLayout_t * layoutPtr,
    267     RF_StripeNum_t stripeID, RF_ReconUnitNum_t * which_ru);
    268 
    269 #endif				/* !_RF__RF_LAYOUT_H_ */
    270