Home | History | Annotate | Line # | Download | only in raidframe
rf_layout.h revision 1.3.8.1
      1 /*	$NetBSD: rf_layout.h,v 1.3.8.1 2000/11/20 11:42:55 bouyer Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /* rf_layout.h -- header file defining layout data structures
     30  */
     31 
     32 #ifndef _RF__RF_LAYOUT_H_
     33 #define _RF__RF_LAYOUT_H_
     34 
     35 #include "rf_types.h"
     36 #include "rf_archs.h"
     37 #include "rf_alloclist.h"
     38 
     39 #ifndef _KERNEL
     40 #include <stdio.h>
     41 #endif
     42 
     43 /*****************************************************************************************
     44  *
     45  * This structure identifies all layout-specific operations and parameters.
     46  *
     47  ****************************************************************************************/
     48 
     49 typedef struct RF_LayoutSW_s {
     50 	RF_ParityConfig_t parityConfig;
     51 	const char *configName;
     52 
     53 #ifndef _KERNEL
     54 	/* layout-specific parsing */
     55 	int     (*MakeLayoutSpecific) (FILE * fp, RF_Config_t * cfgPtr, void *arg);
     56 	void   *makeLayoutSpecificArg;
     57 #endif				/* !KERNEL */
     58 
     59 #if RF_UTILITY == 0
     60 	/* initialization routine */
     61 	int     (*Configure) (RF_ShutdownList_t ** shutdownListp, RF_Raid_t * raidPtr, RF_Config_t * cfgPtr);
     62 
     63 	/* routine to map RAID sector address -> physical (row, col, offset) */
     64 	void    (*MapSector) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
     65 	            RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
     66 
     67 	/* routine to map RAID sector address -> physical (r,c,o) of parity
     68 	 * unit */
     69 	void    (*MapParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
     70 	            RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
     71 
     72 	/* routine to map RAID sector address -> physical (r,c,o) of Q unit */
     73 	void    (*MapQ) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t * row,
     74 	            RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
     75 
     76 	/* routine to identify the disks comprising a stripe */
     77 	void    (*IdentifyStripe) (RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
     78 	            RF_RowCol_t ** diskids, RF_RowCol_t * outRow);
     79 
     80 	/* routine to select a dag */
     81 	void    (*SelectionFunc) (RF_Raid_t * raidPtr, RF_IoType_t type,
     82 	            RF_AccessStripeMap_t * asmap,
     83 	            RF_VoidFuncPtr *);
     84 #if 0
     85 	void    (**createFunc) (RF_Raid_t *,
     86 	            RF_AccessStripeMap_t *,
     87 	            RF_DagHeader_t *, void *,
     88 	            RF_RaidAccessFlags_t,
     89 /**INDENT** Warning@88: Extra ) */
     90 	            RF_AllocListElem_t *));
     91 
     92 #endif
     93 
     94 	/* map a stripe ID to a parity stripe ID.  This is typically the
     95 	 * identity mapping */
     96 	void    (*MapSIDToPSID) (RF_RaidLayout_t * layoutPtr, RF_StripeNum_t stripeID,
     97 	            RF_StripeNum_t * psID, RF_ReconUnitNum_t * which_ru);
     98 
     99 	/* get default head separation limit (may be NULL) */
    100 	        RF_HeadSepLimit_t(*GetDefaultHeadSepLimit) (RF_Raid_t * raidPtr);
    101 
    102 	/* get default num recon buffers (may be NULL) */
    103 	int     (*GetDefaultNumFloatingReconBuffers) (RF_Raid_t * raidPtr);
    104 
    105 	/* get number of spare recon units (may be NULL) */
    106 	        RF_ReconUnitCount_t(*GetNumSpareRUs) (RF_Raid_t * raidPtr);
    107 
    108 	/* spare table installation (may be NULL) */
    109 	int     (*InstallSpareTable) (RF_Raid_t * raidPtr, RF_RowCol_t frow, RF_RowCol_t fcol);
    110 
    111 	/* recon buffer submission function */
    112 	int     (*SubmitReconBuffer) (RF_ReconBuffer_t * rbuf, int keep_it,
    113 	            int use_committed);
    114 
    115 	/*
    116          * verify that parity information for a stripe is correct
    117          * see rf_parityscan.h for return vals
    118          */
    119 	int     (*VerifyParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr,
    120 	            RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags);
    121 
    122 	/* number of faults tolerated by this mapping */
    123 	int     faultsTolerated;
    124 
    125 	/* states to step through in an access. Must end with "LastState". The
    126 	 * default is DefaultStates in rf_layout.c */
    127 	RF_AccessState_t *states;
    128 
    129 	RF_AccessStripeMapFlags_t flags;
    130 #endif				/* RF_UTILITY == 0 */
    131 }       RF_LayoutSW_t;
    132 /* enables remapping to spare location under dist sparing */
    133 #define RF_REMAP       1
    134 #define RF_DONT_REMAP  0
    135 
    136 /*
    137  * Flags values for RF_AccessStripeMapFlags_t
    138  */
    139 #define RF_NO_STRIPE_LOCKS   0x0001	/* suppress stripe locks */
    140 #define RF_DISTRIBUTE_SPARE  0x0002	/* distribute spare space in archs
    141 					 * that support it */
    142 #define RF_BD_DECLUSTERED    0x0004	/* declustering uses block designs */
    143 
    144 /*************************************************************************
    145  *
    146  * this structure forms the layout component of the main Raid
    147  * structure.  It describes everything needed to define and perform
    148  * the mapping of logical RAID addresses <-> physical disk addresses.
    149  *
    150  *************************************************************************/
    151 struct RF_RaidLayout_s {
    152 	/* configuration parameters */
    153 	RF_SectorCount_t sectorsPerStripeUnit;	/* number of sectors in one
    154 						 * stripe unit */
    155 	RF_StripeCount_t SUsPerPU;	/* stripe units per parity unit */
    156 	RF_StripeCount_t SUsPerRU;	/* stripe units per reconstruction
    157 					 * unit */
    158 
    159 	/* redundant-but-useful info computed from the above, used in all
    160 	 * layouts */
    161 	RF_StripeCount_t numStripe;	/* total number of stripes in the
    162 					 * array */
    163 	RF_SectorCount_t dataSectorsPerStripe;
    164 	RF_StripeCount_t dataStripeUnitsPerDisk;
    165 	u_int   bytesPerStripeUnit;
    166 	u_int   dataBytesPerStripe;
    167 	RF_StripeCount_t numDataCol;	/* number of SUs of data per stripe
    168 					 * (name here is a la RAID4) */
    169 	RF_StripeCount_t numParityCol;	/* number of SUs of parity per stripe.
    170 					 * Always 1 for now */
    171 	RF_StripeCount_t numParityLogCol;	/* number of SUs of parity log
    172 						 * per stripe.  Always 1 for
    173 						 * now */
    174 	RF_StripeCount_t stripeUnitsPerDisk;
    175 
    176 	RF_LayoutSW_t *map;	/* ptr to struct holding mapping fns and
    177 				 * information */
    178 	void   *layoutSpecificInfo;	/* ptr to a structure holding
    179 					 * layout-specific params */
    180 };
    181 /*****************************************************************************************
    182  *
    183  * The mapping code returns a pointer to a list of AccessStripeMap structures, which
    184  * describes all the mapping information about an access.  The list contains one
    185  * AccessStripeMap structure per stripe touched by the access.  Each element in the list
    186  * contains a stripe identifier and a pointer to a list of PhysDiskAddr structuress.  Each
    187  * element in this latter list describes the physical location of a stripe unit accessed
    188  * within the corresponding stripe.
    189  *
    190  ****************************************************************************************/
    191 
    192 #define RF_PDA_TYPE_DATA   0
    193 #define RF_PDA_TYPE_PARITY 1
    194 #define RF_PDA_TYPE_Q      2
    195 
    196 struct RF_PhysDiskAddr_s {
    197 	RF_RowCol_t row, col;	/* disk identifier */
    198 	RF_SectorNum_t startSector;	/* sector offset into the disk */
    199 	RF_SectorCount_t numSector;	/* number of sectors accessed */
    200 	int     type;		/* used by higher levels: currently, data,
    201 				 * parity, or q */
    202 	caddr_t bufPtr;		/* pointer to buffer supplying/receiving data */
    203 	RF_RaidAddr_t raidAddress;	/* raid address corresponding to this
    204 					 * physical disk address */
    205 	RF_PhysDiskAddr_t *next;
    206 };
    207 #define RF_MAX_FAILED_PDA RF_MAXCOL
    208 
    209 struct RF_AccessStripeMap_s {
    210 	RF_StripeNum_t stripeID;/* the stripe index */
    211 	RF_RaidAddr_t raidAddress;	/* the starting raid address within
    212 					 * this stripe */
    213 	RF_RaidAddr_t endRaidAddress;	/* raid address one sector past the
    214 					 * end of the access */
    215 	RF_SectorCount_t totalSectorsAccessed;	/* total num sectors
    216 						 * identified in physInfo list */
    217 	RF_StripeCount_t numStripeUnitsAccessed;	/* total num elements in
    218 							 * physInfo list */
    219 	int     numDataFailed;	/* number of failed data disks accessed */
    220 	int     numParityFailed;/* number of failed parity disks accessed (0
    221 				 * or 1) */
    222 	int     numQFailed;	/* number of failed Q units accessed (0 or 1) */
    223 	RF_AccessStripeMapFlags_t flags;	/* various flags */
    224 #if 0
    225 	RF_PhysDiskAddr_t *failedPDA;	/* points to the PDA that has failed */
    226 	RF_PhysDiskAddr_t *failedPDAtwo;	/* points to the second PDA
    227 						 * that has failed, if any */
    228 #else
    229 	int     numFailedPDAs;	/* number of failed phys addrs */
    230 	RF_PhysDiskAddr_t *failedPDAs[RF_MAX_FAILED_PDA];	/* array of failed phys
    231 								 * addrs */
    232 #endif
    233 	RF_PhysDiskAddr_t *physInfo;	/* a list of PhysDiskAddr structs */
    234 	RF_PhysDiskAddr_t *parityInfo;	/* list of physical addrs for the
    235 					 * parity (P of P + Q ) */
    236 	RF_PhysDiskAddr_t *qInfo;	/* list of physical addrs for the Q of
    237 					 * P + Q */
    238 	RF_LockReqDesc_t lockReqDesc;	/* used for stripe locking */
    239 	RF_RowCol_t origRow;	/* the original row:  we may redirect the acc
    240 				 * to a different row */
    241 	RF_AccessStripeMap_t *next;
    242 };
    243 /* flag values */
    244 #define RF_ASM_REDIR_LARGE_WRITE   0x00000001	/* allows large-write creation
    245 						 * code to redirect failed
    246 						 * accs */
    247 #define RF_ASM_BAILOUT_DAG_USED    0x00000002	/* allows us to detect
    248 						 * recursive calls to the
    249 						 * bailout write dag */
    250 #define RF_ASM_FLAGS_LOCK_TRIED    0x00000004	/* we've acquired the lock on
    251 						 * the first parity range in
    252 						 * this parity stripe */
    253 #define RF_ASM_FLAGS_LOCK_TRIED2   0x00000008	/* we've acquired the lock on
    254 						 * the 2nd   parity range in
    255 						 * this parity stripe */
    256 #define RF_ASM_FLAGS_FORCE_TRIED   0x00000010	/* we've done the force-recon
    257 						 * call on this parity stripe */
    258 #define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020	/* we blocked recon => we must
    259 						 * unblock it later */
    260 
    261 struct RF_AccessStripeMapHeader_s {
    262 	RF_StripeCount_t numStripes;	/* total number of stripes touched by
    263 					 * this acc */
    264 	RF_AccessStripeMap_t *stripeMap;	/* pointer to the actual map.
    265 						 * Also used for making lists */
    266 	RF_AccessStripeMapHeader_t *next;
    267 };
    268 /*****************************************************************************************
    269  *
    270  * various routines mapping addresses in the RAID address space.  These work across
    271  * all layouts.  DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE.
    272  *
    273  ****************************************************************************************/
    274 
    275 /* return the identifier of the stripe containing the given address */
    276 #define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \
    277   ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol )
    278 
    279 /* return the raid address of the start of the indicates stripe ID */
    280 #define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \
    281   ( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol )
    282 
    283 /* return the identifier of the stripe containing the given stripe unit id */
    284 #define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \
    285   ( (_addr_) / (_layoutPtr_)->numDataCol )
    286 
    287 /* return the identifier of the stripe unit containing the given address */
    288 #define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \
    289   ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) )
    290 
    291 /* return the RAID address of next stripe boundary beyond the given address */
    292 #define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \
    293   ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe )
    294 
    295 /* return the RAID address of the start of the stripe containing the given address */
    296 #define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \
    297   ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe )
    298 
    299 /* return the RAID address of next stripe unit boundary beyond the given address */
    300 #define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \
    301   ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit )
    302 
    303 /* return the RAID address of the start of the stripe unit containing RAID address _addr_ */
    304 #define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \
    305   ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit )
    306 
    307 /* returns the offset into the stripe.  used by RaidAddressStripeAligned */
    308 #define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \
    309   ( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) )
    310 
    311 /* returns the offset into the stripe unit.  */
    312 #define rf_StripeUnitOffset(_layoutPtr_, _addr_) \
    313   ( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) )
    314 
    315 /* returns nonzero if the given RAID address is stripe-aligned */
    316 #define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \
    317   ( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 )
    318 
    319 /* returns nonzero if the given address is stripe-unit aligned */
    320 #define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \
    321   ( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 )
    322 
    323 /* convert an address expressed in RAID blocks to/from an addr expressed in bytes */
    324 #define rf_RaidAddressToByte(_raidPtr_, _addr_) \
    325   ( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) )
    326 
    327 #define rf_ByteToRaidAddress(_raidPtr_, _addr_) \
    328   ( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) )
    329 
    330 /* convert a raid address to/from a parity stripe ID.  Conversion to raid address is easy,
    331  * since we're asking for the address of the first sector in the parity stripe.  Conversion to a
    332  * parity stripe ID is more complex, since stripes are not contiguously allocated in
    333  * parity stripes.
    334  */
    335 #define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \
    336   rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) )
    337 
    338 #define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \
    339   ( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit )
    340 
    341 RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig);
    342 int
    343 rf_ConfigureLayout(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
    344     RF_Config_t * cfgPtr);
    345 RF_StripeNum_t
    346 rf_MapStripeIDToParityStripeID(RF_RaidLayout_t * layoutPtr,
    347     RF_StripeNum_t stripeID, RF_ReconUnitNum_t * which_ru);
    348 
    349 #endif				/* !_RF__RF_LAYOUT_H_ */
    350