rf_layout.h revision 1.4 1 /* $NetBSD: rf_layout.h,v 1.4 2000/05/23 00:44:38 thorpej Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /* rf_layout.h -- header file defining layout data structures
30 */
31
32 #ifndef _RF__RF_LAYOUT_H_
33 #define _RF__RF_LAYOUT_H_
34
35 #include "rf_types.h"
36 #include "rf_archs.h"
37 #include "rf_alloclist.h"
38
39 #ifndef _KERNEL
40 #include <stdio.h>
41 #endif
42
43 /*****************************************************************************************
44 *
45 * This structure identifies all layout-specific operations and parameters.
46 *
47 ****************************************************************************************/
48
49 typedef struct RF_LayoutSW_s {
50 RF_ParityConfig_t parityConfig;
51 const char *configName;
52
53 #ifndef _KERNEL
54 /* layout-specific parsing */
55 int (*MakeLayoutSpecific) (FILE * fp, RF_Config_t * cfgPtr, void *arg);
56 void *makeLayoutSpecificArg;
57 #endif /* !KERNEL */
58
59 #if RF_UTILITY == 0
60 /* initialization routine */
61 int (*Configure) (RF_ShutdownList_t ** shutdownListp, RF_Raid_t * raidPtr, RF_Config_t * cfgPtr);
62
63 /* routine to map RAID sector address -> physical (row, col, offset) */
64 void (*MapSector) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
65 RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
66
67 /* routine to map RAID sector address -> physical (r,c,o) of parity
68 * unit */
69 void (*MapParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
70 RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
71
72 /* routine to map RAID sector address -> physical (r,c,o) of Q unit */
73 void (*MapQ) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t * row,
74 RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
75
76 /* routine to identify the disks comprising a stripe */
77 void (*IdentifyStripe) (RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
78 RF_RowCol_t ** diskids, RF_RowCol_t * outRow);
79
80 /* routine to select a dag */
81 void (*SelectionFunc) (RF_Raid_t * raidPtr, RF_IoType_t type,
82 RF_AccessStripeMap_t * asmap,
83 RF_VoidFuncPtr *);
84 #if 0
85 void (**createFunc) (RF_Raid_t *,
86 RF_AccessStripeMap_t *,
87 RF_DagHeader_t *, void *,
88 RF_RaidAccessFlags_t,
89 /**INDENT** Warning@88: Extra ) */
90 RF_AllocListElem_t *));
91
92 #endif
93
94 /* map a stripe ID to a parity stripe ID. This is typically the
95 * identity mapping */
96 void (*MapSIDToPSID) (RF_RaidLayout_t * layoutPtr, RF_StripeNum_t stripeID,
97 RF_StripeNum_t * psID, RF_ReconUnitNum_t * which_ru);
98
99 /* get default head separation limit (may be NULL) */
100 RF_HeadSepLimit_t(*GetDefaultHeadSepLimit) (RF_Raid_t * raidPtr);
101
102 /* get default num recon buffers (may be NULL) */
103 int (*GetDefaultNumFloatingReconBuffers) (RF_Raid_t * raidPtr);
104
105 /* get number of spare recon units (may be NULL) */
106 RF_ReconUnitCount_t(*GetNumSpareRUs) (RF_Raid_t * raidPtr);
107
108 /* spare table installation (may be NULL) */
109 int (*InstallSpareTable) (RF_Raid_t * raidPtr, RF_RowCol_t frow, RF_RowCol_t fcol);
110
111 /* recon buffer submission function */
112 int (*SubmitReconBuffer) (RF_ReconBuffer_t * rbuf, int keep_it,
113 int use_committed);
114
115 /*
116 * verify that parity information for a stripe is correct
117 * see rf_parityscan.h for return vals
118 */
119 int (*VerifyParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr,
120 RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags);
121
122 /* number of faults tolerated by this mapping */
123 int faultsTolerated;
124
125 /* states to step through in an access. Must end with "LastState". The
126 * default is DefaultStates in rf_layout.c */
127 RF_AccessState_t *states;
128
129 RF_AccessStripeMapFlags_t flags;
130 #endif /* RF_UTILITY == 0 */
131 } RF_LayoutSW_t;
132 /* enables remapping to spare location under dist sparing */
133 #define RF_REMAP 1
134 #define RF_DONT_REMAP 0
135
136 /*
137 * Flags values for RF_AccessStripeMapFlags_t
138 */
139 #define RF_NO_STRIPE_LOCKS 0x0001 /* suppress stripe locks */
140 #define RF_DISTRIBUTE_SPARE 0x0002 /* distribute spare space in archs
141 * that support it */
142 #define RF_BD_DECLUSTERED 0x0004 /* declustering uses block designs */
143
144 /*************************************************************************
145 *
146 * this structure forms the layout component of the main Raid
147 * structure. It describes everything needed to define and perform
148 * the mapping of logical RAID addresses <-> physical disk addresses.
149 *
150 *************************************************************************/
151 struct RF_RaidLayout_s {
152 /* configuration parameters */
153 RF_SectorCount_t sectorsPerStripeUnit; /* number of sectors in one
154 * stripe unit */
155 RF_StripeCount_t SUsPerPU; /* stripe units per parity unit */
156 RF_StripeCount_t SUsPerRU; /* stripe units per reconstruction
157 * unit */
158
159 /* redundant-but-useful info computed from the above, used in all
160 * layouts */
161 RF_StripeCount_t numStripe; /* total number of stripes in the
162 * array */
163 RF_SectorCount_t dataSectorsPerStripe;
164 RF_StripeCount_t dataStripeUnitsPerDisk;
165 u_int bytesPerStripeUnit;
166 u_int dataBytesPerStripe;
167 RF_StripeCount_t numDataCol; /* number of SUs of data per stripe
168 * (name here is a la RAID4) */
169 RF_StripeCount_t numParityCol; /* number of SUs of parity per stripe.
170 * Always 1 for now */
171 RF_StripeCount_t numParityLogCol; /* number of SUs of parity log
172 * per stripe. Always 1 for
173 * now */
174 RF_StripeCount_t stripeUnitsPerDisk;
175
176 RF_LayoutSW_t *map; /* ptr to struct holding mapping fns and
177 * information */
178 void *layoutSpecificInfo; /* ptr to a structure holding
179 * layout-specific params */
180 };
181 /*****************************************************************************************
182 *
183 * The mapping code returns a pointer to a list of AccessStripeMap structures, which
184 * describes all the mapping information about an access. The list contains one
185 * AccessStripeMap structure per stripe touched by the access. Each element in the list
186 * contains a stripe identifier and a pointer to a list of PhysDiskAddr structuress. Each
187 * element in this latter list describes the physical location of a stripe unit accessed
188 * within the corresponding stripe.
189 *
190 ****************************************************************************************/
191
192 #define RF_PDA_TYPE_DATA 0
193 #define RF_PDA_TYPE_PARITY 1
194 #define RF_PDA_TYPE_Q 2
195
196 struct RF_PhysDiskAddr_s {
197 RF_RowCol_t row, col; /* disk identifier */
198 RF_SectorNum_t startSector; /* sector offset into the disk */
199 RF_SectorCount_t numSector; /* number of sectors accessed */
200 int type; /* used by higher levels: currently, data,
201 * parity, or q */
202 caddr_t bufPtr; /* pointer to buffer supplying/receiving data */
203 RF_RaidAddr_t raidAddress; /* raid address corresponding to this
204 * physical disk address */
205 RF_PhysDiskAddr_t *next;
206 };
207 #define RF_MAX_FAILED_PDA RF_MAXCOL
208
209 struct RF_AccessStripeMap_s {
210 RF_StripeNum_t stripeID;/* the stripe index */
211 RF_RaidAddr_t raidAddress; /* the starting raid address within
212 * this stripe */
213 RF_RaidAddr_t endRaidAddress; /* raid address one sector past the
214 * end of the access */
215 RF_SectorCount_t totalSectorsAccessed; /* total num sectors
216 * identified in physInfo list */
217 RF_StripeCount_t numStripeUnitsAccessed; /* total num elements in
218 * physInfo list */
219 int numDataFailed; /* number of failed data disks accessed */
220 int numParityFailed;/* number of failed parity disks accessed (0
221 * or 1) */
222 int numQFailed; /* number of failed Q units accessed (0 or 1) */
223 RF_AccessStripeMapFlags_t flags; /* various flags */
224 #if 0
225 RF_PhysDiskAddr_t *failedPDA; /* points to the PDA that has failed */
226 RF_PhysDiskAddr_t *failedPDAtwo; /* points to the second PDA
227 * that has failed, if any */
228 #else
229 int numFailedPDAs; /* number of failed phys addrs */
230 RF_PhysDiskAddr_t *failedPDAs[RF_MAX_FAILED_PDA]; /* array of failed phys
231 * addrs */
232 #endif
233 RF_PhysDiskAddr_t *physInfo; /* a list of PhysDiskAddr structs */
234 RF_PhysDiskAddr_t *parityInfo; /* list of physical addrs for the
235 * parity (P of P + Q ) */
236 RF_PhysDiskAddr_t *qInfo; /* list of physical addrs for the Q of
237 * P + Q */
238 RF_LockReqDesc_t lockReqDesc; /* used for stripe locking */
239 RF_RowCol_t origRow; /* the original row: we may redirect the acc
240 * to a different row */
241 RF_AccessStripeMap_t *next;
242 };
243 /* flag values */
244 #define RF_ASM_REDIR_LARGE_WRITE 0x00000001 /* allows large-write creation
245 * code to redirect failed
246 * accs */
247 #define RF_ASM_BAILOUT_DAG_USED 0x00000002 /* allows us to detect
248 * recursive calls to the
249 * bailout write dag */
250 #define RF_ASM_FLAGS_LOCK_TRIED 0x00000004 /* we've acquired the lock on
251 * the first parity range in
252 * this parity stripe */
253 #define RF_ASM_FLAGS_LOCK_TRIED2 0x00000008 /* we've acquired the lock on
254 * the 2nd parity range in
255 * this parity stripe */
256 #define RF_ASM_FLAGS_FORCE_TRIED 0x00000010 /* we've done the force-recon
257 * call on this parity stripe */
258 #define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020 /* we blocked recon => we must
259 * unblock it later */
260
261 struct RF_AccessStripeMapHeader_s {
262 RF_StripeCount_t numStripes; /* total number of stripes touched by
263 * this acc */
264 RF_AccessStripeMap_t *stripeMap; /* pointer to the actual map.
265 * Also used for making lists */
266 RF_AccessStripeMapHeader_t *next;
267 };
268 /*****************************************************************************************
269 *
270 * various routines mapping addresses in the RAID address space. These work across
271 * all layouts. DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE.
272 *
273 ****************************************************************************************/
274
275 /* return the identifier of the stripe containing the given address */
276 #define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \
277 ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol )
278
279 /* return the raid address of the start of the indicates stripe ID */
280 #define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \
281 ( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol )
282
283 /* return the identifier of the stripe containing the given stripe unit id */
284 #define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \
285 ( (_addr_) / (_layoutPtr_)->numDataCol )
286
287 /* return the identifier of the stripe unit containing the given address */
288 #define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \
289 ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) )
290
291 /* return the RAID address of next stripe boundary beyond the given address */
292 #define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \
293 ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe )
294
295 /* return the RAID address of the start of the stripe containing the given address */
296 #define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \
297 ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe )
298
299 /* return the RAID address of next stripe unit boundary beyond the given address */
300 #define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \
301 ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit )
302
303 /* return the RAID address of the start of the stripe unit containing RAID address _addr_ */
304 #define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \
305 ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit )
306
307 /* returns the offset into the stripe. used by RaidAddressStripeAligned */
308 #define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \
309 ( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) )
310
311 /* returns the offset into the stripe unit. */
312 #define rf_StripeUnitOffset(_layoutPtr_, _addr_) \
313 ( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) )
314
315 /* returns nonzero if the given RAID address is stripe-aligned */
316 #define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \
317 ( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 )
318
319 /* returns nonzero if the given address is stripe-unit aligned */
320 #define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \
321 ( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 )
322
323 /* convert an address expressed in RAID blocks to/from an addr expressed in bytes */
324 #define rf_RaidAddressToByte(_raidPtr_, _addr_) \
325 ( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) )
326
327 #define rf_ByteToRaidAddress(_raidPtr_, _addr_) \
328 ( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) )
329
330 /* convert a raid address to/from a parity stripe ID. Conversion to raid address is easy,
331 * since we're asking for the address of the first sector in the parity stripe. Conversion to a
332 * parity stripe ID is more complex, since stripes are not contiguously allocated in
333 * parity stripes.
334 */
335 #define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \
336 rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) )
337
338 #define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \
339 ( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit )
340
341 RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig);
342 int
343 rf_ConfigureLayout(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
344 RF_Config_t * cfgPtr);
345 RF_StripeNum_t
346 rf_MapStripeIDToParityStripeID(RF_RaidLayout_t * layoutPtr,
347 RF_StripeNum_t stripeID, RF_ReconUnitNum_t * which_ru);
348
349 #endif /* !_RF__RF_LAYOUT_H_ */
350