rf_layout.h revision 1.6 1 /* $NetBSD: rf_layout.h,v 1.6 2001/10/04 15:58:54 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /* rf_layout.h -- header file defining layout data structures
30 */
31
32 #ifndef _RF__RF_LAYOUT_H_
33 #define _RF__RF_LAYOUT_H_
34
35 #include <dev/raidframe/raidframevar.h>
36 #include "rf_archs.h"
37 #include "rf_alloclist.h"
38
39 /* enables remapping to spare location under dist sparing */
40 #define RF_REMAP 1
41 #define RF_DONT_REMAP 0
42
43 /*
44 * Flags values for RF_AccessStripeMapFlags_t
45 */
46 #define RF_NO_STRIPE_LOCKS 0x0001 /* suppress stripe locks */
47 #define RF_DISTRIBUTE_SPARE 0x0002 /* distribute spare space in archs
48 * that support it */
49 #define RF_BD_DECLUSTERED 0x0004 /* declustering uses block designs */
50
51 /*************************************************************************
52 *
53 * this structure forms the layout component of the main Raid
54 * structure. It describes everything needed to define and perform
55 * the mapping of logical RAID addresses <-> physical disk addresses.
56 *
57 *************************************************************************/
58 struct RF_RaidLayout_s {
59 /* configuration parameters */
60 RF_SectorCount_t sectorsPerStripeUnit; /* number of sectors in one
61 * stripe unit */
62 RF_StripeCount_t SUsPerPU; /* stripe units per parity unit */
63 RF_StripeCount_t SUsPerRU; /* stripe units per reconstruction
64 * unit */
65
66 /* redundant-but-useful info computed from the above, used in all
67 * layouts */
68 RF_StripeCount_t numStripe; /* total number of stripes in the
69 * array */
70 RF_SectorCount_t dataSectorsPerStripe;
71 RF_StripeCount_t dataStripeUnitsPerDisk;
72 u_int bytesPerStripeUnit;
73 u_int dataBytesPerStripe;
74 RF_StripeCount_t numDataCol; /* number of SUs of data per stripe
75 * (name here is a la RAID4) */
76 RF_StripeCount_t numParityCol; /* number of SUs of parity per stripe.
77 * Always 1 for now */
78 RF_StripeCount_t numParityLogCol; /* number of SUs of parity log
79 * per stripe. Always 1 for
80 * now */
81 RF_StripeCount_t stripeUnitsPerDisk;
82
83 RF_LayoutSW_t *map; /* ptr to struct holding mapping fns and
84 * information */
85 void *layoutSpecificInfo; /* ptr to a structure holding
86 * layout-specific params */
87 };
88 /*****************************************************************************************
89 *
90 * The mapping code returns a pointer to a list of AccessStripeMap structures, which
91 * describes all the mapping information about an access. The list contains one
92 * AccessStripeMap structure per stripe touched by the access. Each element in the list
93 * contains a stripe identifier and a pointer to a list of PhysDiskAddr structuress. Each
94 * element in this latter list describes the physical location of a stripe unit accessed
95 * within the corresponding stripe.
96 *
97 ****************************************************************************************/
98
99 #define RF_PDA_TYPE_DATA 0
100 #define RF_PDA_TYPE_PARITY 1
101 #define RF_PDA_TYPE_Q 2
102
103 struct RF_PhysDiskAddr_s {
104 RF_RowCol_t row, col; /* disk identifier */
105 RF_SectorNum_t startSector; /* sector offset into the disk */
106 RF_SectorCount_t numSector; /* number of sectors accessed */
107 int type; /* used by higher levels: currently, data,
108 * parity, or q */
109 caddr_t bufPtr; /* pointer to buffer supplying/receiving data */
110 RF_RaidAddr_t raidAddress; /* raid address corresponding to this
111 * physical disk address */
112 RF_PhysDiskAddr_t *next;
113 };
114 #define RF_MAX_FAILED_PDA RF_MAXCOL
115
116 struct RF_AccessStripeMap_s {
117 RF_StripeNum_t stripeID;/* the stripe index */
118 RF_RaidAddr_t raidAddress; /* the starting raid address within
119 * this stripe */
120 RF_RaidAddr_t endRaidAddress; /* raid address one sector past the
121 * end of the access */
122 RF_SectorCount_t totalSectorsAccessed; /* total num sectors
123 * identified in physInfo list */
124 RF_StripeCount_t numStripeUnitsAccessed; /* total num elements in
125 * physInfo list */
126 int numDataFailed; /* number of failed data disks accessed */
127 int numParityFailed;/* number of failed parity disks accessed (0
128 * or 1) */
129 int numQFailed; /* number of failed Q units accessed (0 or 1) */
130 RF_AccessStripeMapFlags_t flags; /* various flags */
131 #if 0
132 RF_PhysDiskAddr_t *failedPDA; /* points to the PDA that has failed */
133 RF_PhysDiskAddr_t *failedPDAtwo; /* points to the second PDA
134 * that has failed, if any */
135 #else
136 int numFailedPDAs; /* number of failed phys addrs */
137 RF_PhysDiskAddr_t *failedPDAs[RF_MAX_FAILED_PDA]; /* array of failed phys
138 * addrs */
139 #endif
140 RF_PhysDiskAddr_t *physInfo; /* a list of PhysDiskAddr structs */
141 RF_PhysDiskAddr_t *parityInfo; /* list of physical addrs for the
142 * parity (P of P + Q ) */
143 RF_PhysDiskAddr_t *qInfo; /* list of physical addrs for the Q of
144 * P + Q */
145 RF_LockReqDesc_t lockReqDesc; /* used for stripe locking */
146 RF_RowCol_t origRow; /* the original row: we may redirect the acc
147 * to a different row */
148 RF_AccessStripeMap_t *next;
149 };
150 /* flag values */
151 #define RF_ASM_REDIR_LARGE_WRITE 0x00000001 /* allows large-write creation
152 * code to redirect failed
153 * accs */
154 #define RF_ASM_BAILOUT_DAG_USED 0x00000002 /* allows us to detect
155 * recursive calls to the
156 * bailout write dag */
157 #define RF_ASM_FLAGS_LOCK_TRIED 0x00000004 /* we've acquired the lock on
158 * the first parity range in
159 * this parity stripe */
160 #define RF_ASM_FLAGS_LOCK_TRIED2 0x00000008 /* we've acquired the lock on
161 * the 2nd parity range in
162 * this parity stripe */
163 #define RF_ASM_FLAGS_FORCE_TRIED 0x00000010 /* we've done the force-recon
164 * call on this parity stripe */
165 #define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020 /* we blocked recon => we must
166 * unblock it later */
167
168 struct RF_AccessStripeMapHeader_s {
169 RF_StripeCount_t numStripes; /* total number of stripes touched by
170 * this acc */
171 RF_AccessStripeMap_t *stripeMap; /* pointer to the actual map.
172 * Also used for making lists */
173 RF_AccessStripeMapHeader_t *next;
174 };
175 /*****************************************************************************************
176 *
177 * various routines mapping addresses in the RAID address space. These work across
178 * all layouts. DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE.
179 *
180 ****************************************************************************************/
181
182 /* return the identifier of the stripe containing the given address */
183 #define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \
184 ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol )
185
186 /* return the raid address of the start of the indicates stripe ID */
187 #define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \
188 ( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol )
189
190 /* return the identifier of the stripe containing the given stripe unit id */
191 #define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \
192 ( (_addr_) / (_layoutPtr_)->numDataCol )
193
194 /* return the identifier of the stripe unit containing the given address */
195 #define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \
196 ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) )
197
198 /* return the RAID address of next stripe boundary beyond the given address */
199 #define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \
200 ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe )
201
202 /* return the RAID address of the start of the stripe containing the given address */
203 #define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \
204 ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe )
205
206 /* return the RAID address of next stripe unit boundary beyond the given address */
207 #define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \
208 ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit )
209
210 /* return the RAID address of the start of the stripe unit containing RAID address _addr_ */
211 #define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \
212 ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit )
213
214 /* returns the offset into the stripe. used by RaidAddressStripeAligned */
215 #define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \
216 ( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) )
217
218 /* returns the offset into the stripe unit. */
219 #define rf_StripeUnitOffset(_layoutPtr_, _addr_) \
220 ( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) )
221
222 /* returns nonzero if the given RAID address is stripe-aligned */
223 #define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \
224 ( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 )
225
226 /* returns nonzero if the given address is stripe-unit aligned */
227 #define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \
228 ( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 )
229
230 /* convert an address expressed in RAID blocks to/from an addr expressed in bytes */
231 #define rf_RaidAddressToByte(_raidPtr_, _addr_) \
232 ( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) )
233
234 #define rf_ByteToRaidAddress(_raidPtr_, _addr_) \
235 ( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) )
236
237 /* convert a raid address to/from a parity stripe ID. Conversion to raid address is easy,
238 * since we're asking for the address of the first sector in the parity stripe. Conversion to a
239 * parity stripe ID is more complex, since stripes are not contiguously allocated in
240 * parity stripes.
241 */
242 #define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \
243 rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) )
244
245 #define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \
246 ( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit )
247
248 RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig);
249 int
250 rf_ConfigureLayout(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
251 RF_Config_t * cfgPtr);
252 RF_StripeNum_t
253 rf_MapStripeIDToParityStripeID(RF_RaidLayout_t * layoutPtr,
254 RF_StripeNum_t stripeID, RF_ReconUnitNum_t * which_ru);
255
256 #endif /* !_RF__RF_LAYOUT_H_ */
257