rf_map.c revision 1.14 1 1.14 oster /* $NetBSD: rf_map.c,v 1.14 2002/09/14 17:53:59 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /**************************************************************************
30 1.1 oster *
31 1.1 oster * map.c -- main code for mapping RAID addresses to physical disk addresses
32 1.1 oster *
33 1.1 oster **************************************************************************/
34 1.9 lukem
35 1.9 lukem #include <sys/cdefs.h>
36 1.14 oster __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.14 2002/09/14 17:53:59 oster Exp $");
37 1.1 oster
38 1.7 oster #include <dev/raidframe/raidframevar.h>
39 1.7 oster
40 1.1 oster #include "rf_threadstuff.h"
41 1.1 oster #include "rf_raid.h"
42 1.1 oster #include "rf_general.h"
43 1.1 oster #include "rf_map.h"
44 1.1 oster #include "rf_freelist.h"
45 1.1 oster #include "rf_shutdown.h"
46 1.1 oster
47 1.3 oster static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count);
48 1.3 oster static void
49 1.3 oster rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end,
50 1.3 oster int count);
51 1.1 oster
52 1.1 oster /*****************************************************************************************
53 1.1 oster *
54 1.1 oster * MapAccess -- main 1st order mapping routine.
55 1.1 oster *
56 1.1 oster * Maps an access in the RAID address space to the corresponding set of physical disk
57 1.1 oster * addresses. The result is returned as a list of AccessStripeMap structures, one per
58 1.1 oster * stripe accessed. Each ASM structure contains a pointer to a list of PhysDiskAddr
59 1.1 oster * structures, which describe the physical locations touched by the user access. Note
60 1.1 oster * that this routine returns only static mapping information, i.e. the list of physical
61 1.1 oster * addresses returned does not necessarily identify the set of physical locations that
62 1.1 oster * will actually be read or written.
63 1.1 oster *
64 1.1 oster * The routine also maps the parity. The physical disk location returned always
65 1.1 oster * indicates the entire parity unit, even when only a subset of it is being accessed.
66 1.1 oster * This is because an access that is not stripe unit aligned but that spans a stripe
67 1.1 oster * unit boundary may require access two distinct portions of the parity unit, and we
68 1.1 oster * can't yet tell which portion(s) we'll actually need. We leave it up to the algorithm
69 1.1 oster * selection code to decide what subset of the parity unit to access.
70 1.1 oster *
71 1.1 oster * Note that addresses in the RAID address space must always be maintained as
72 1.1 oster * longs, instead of ints.
73 1.1 oster *
74 1.1 oster * This routine returns NULL if numBlocks is 0
75 1.1 oster *
76 1.1 oster ****************************************************************************************/
77 1.1 oster
78 1.3 oster RF_AccessStripeMapHeader_t *
79 1.3 oster rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap)
80 1.3 oster RF_Raid_t *raidPtr;
81 1.3 oster RF_RaidAddr_t raidAddress; /* starting address in RAID address
82 1.3 oster * space */
83 1.3 oster RF_SectorCount_t numBlocks; /* number of blocks in RAID address
84 1.3 oster * space to access */
85 1.3 oster caddr_t buffer; /* buffer to supply/receive data */
86 1.3 oster int remap; /* 1 => remap addresses to spare space */
87 1.3 oster {
88 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
89 1.3 oster RF_AccessStripeMapHeader_t *asm_hdr = NULL;
90 1.3 oster RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
91 1.3 oster int faultsTolerated = layoutPtr->map->faultsTolerated;
92 1.3 oster RF_RaidAddr_t startAddress = raidAddress; /* we'll change
93 1.3 oster * raidAddress along the
94 1.3 oster * way */
95 1.3 oster RF_RaidAddr_t endAddress = raidAddress + numBlocks;
96 1.3 oster RF_RaidDisk_t **disks = raidPtr->Disks;
97 1.3 oster
98 1.3 oster RF_PhysDiskAddr_t *pda_p, *pda_q;
99 1.3 oster RF_StripeCount_t numStripes = 0;
100 1.3 oster RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress;
101 1.3 oster RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
102 1.3 oster RF_StripeCount_t totStripes;
103 1.3 oster RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
104 1.3 oster RF_AccessStripeMap_t *asmList, *t_asm;
105 1.3 oster RF_PhysDiskAddr_t *pdaList, *t_pda;
106 1.3 oster
107 1.3 oster /* allocate all the ASMs and PDAs up front */
108 1.3 oster lastRaidAddr = raidAddress + numBlocks - 1;
109 1.3 oster stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
110 1.3 oster lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
111 1.3 oster totStripes = lastSID - stripeID + 1;
112 1.3 oster SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
113 1.3 oster lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
114 1.3 oster
115 1.3 oster asmList = rf_AllocASMList(totStripes);
116 1.3 oster pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes); /* may also need pda(s)
117 1.3 oster * per stripe for parity */
118 1.3 oster
119 1.3 oster if (raidAddress + numBlocks > raidPtr->totalSectors) {
120 1.3 oster RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
121 1.3 oster (int) raidAddress);
122 1.3 oster return (NULL);
123 1.3 oster }
124 1.3 oster if (rf_mapDebug)
125 1.3 oster rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
126 1.3 oster for (; raidAddress < endAddress;) {
127 1.3 oster /* make the next stripe structure */
128 1.3 oster RF_ASSERT(asmList);
129 1.3 oster t_asm = asmList;
130 1.3 oster asmList = asmList->next;
131 1.6 thorpej memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
132 1.3 oster if (!asm_p)
133 1.3 oster asm_list = asm_p = t_asm;
134 1.3 oster else {
135 1.3 oster asm_p->next = t_asm;
136 1.3 oster asm_p = asm_p->next;
137 1.3 oster }
138 1.3 oster numStripes++;
139 1.3 oster
140 1.3 oster /* map SUs from current location to the end of the stripe */
141 1.3 oster asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
142 1.3 oster raidAddress) */ stripeID++;
143 1.3 oster stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
144 1.3 oster stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
145 1.3 oster asm_p->raidAddress = raidAddress;
146 1.3 oster asm_p->endRaidAddress = stripeEndAddress;
147 1.3 oster
148 1.3 oster /* map each stripe unit in the stripe */
149 1.3 oster pda_p = NULL;
150 1.3 oster startAddrWithinStripe = raidAddress; /* Raid addr of start of
151 1.3 oster * portion of access
152 1.3 oster * that is within this
153 1.3 oster * stripe */
154 1.3 oster for (; raidAddress < stripeEndAddress;) {
155 1.3 oster RF_ASSERT(pdaList);
156 1.3 oster t_pda = pdaList;
157 1.3 oster pdaList = pdaList->next;
158 1.6 thorpej memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
159 1.3 oster if (!pda_p)
160 1.3 oster asm_p->physInfo = pda_p = t_pda;
161 1.3 oster else {
162 1.3 oster pda_p->next = t_pda;
163 1.3 oster pda_p = pda_p->next;
164 1.3 oster }
165 1.3 oster
166 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
167 1.3 oster (layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
168 1.3 oster
169 1.3 oster /* mark any failures we find. failedPDA is don't-care
170 1.3 oster * if there is more than one failure */
171 1.3 oster pda_p->raidAddress = raidAddress; /* the RAID address
172 1.3 oster * corresponding to this
173 1.3 oster * physical disk address */
174 1.3 oster nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
175 1.3 oster pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
176 1.3 oster RF_ASSERT(pda_p->numSector != 0);
177 1.3 oster rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
178 1.3 oster pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
179 1.3 oster asm_p->totalSectorsAccessed += pda_p->numSector;
180 1.3 oster asm_p->numStripeUnitsAccessed++;
181 1.3 oster asm_p->origRow = pda_p->row; /* redundant but
182 1.3 oster * harmless to do this
183 1.3 oster * in every loop
184 1.3 oster * iteration */
185 1.3 oster
186 1.3 oster raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
187 1.3 oster }
188 1.3 oster
189 1.3 oster /* Map the parity. At this stage, the startSector and
190 1.3 oster * numSector fields for the parity unit are always set to
191 1.3 oster * indicate the entire parity unit. We may modify this after
192 1.3 oster * mapping the data portion. */
193 1.3 oster switch (faultsTolerated) {
194 1.3 oster case 0:
195 1.3 oster break;
196 1.3 oster case 1: /* single fault tolerant */
197 1.3 oster RF_ASSERT(pdaList);
198 1.3 oster t_pda = pdaList;
199 1.3 oster pdaList = pdaList->next;
200 1.6 thorpej memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
201 1.3 oster pda_p = asm_p->parityInfo = t_pda;
202 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
203 1.3 oster (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
204 1.3 oster &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
205 1.3 oster pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
206 1.3 oster /* raidAddr may be needed to find unit to redirect to */
207 1.3 oster pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
208 1.3 oster rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
209 1.3 oster rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
210 1.3 oster
211 1.3 oster break;
212 1.3 oster case 2: /* two fault tolerant */
213 1.3 oster RF_ASSERT(pdaList && pdaList->next);
214 1.3 oster t_pda = pdaList;
215 1.3 oster pdaList = pdaList->next;
216 1.6 thorpej memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
217 1.3 oster pda_p = asm_p->parityInfo = t_pda;
218 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
219 1.3 oster t_pda = pdaList;
220 1.3 oster pdaList = pdaList->next;
221 1.6 thorpej memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
222 1.3 oster pda_q = asm_p->qInfo = t_pda;
223 1.3 oster pda_q->type = RF_PDA_TYPE_Q;
224 1.3 oster (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
225 1.3 oster &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
226 1.3 oster (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
227 1.3 oster &(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap);
228 1.3 oster pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
229 1.3 oster /* raidAddr may be needed to find unit to redirect to */
230 1.3 oster pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
231 1.3 oster pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
232 1.3 oster /* failure mode stuff */
233 1.3 oster rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
234 1.3 oster rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
235 1.3 oster rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
236 1.3 oster rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
237 1.3 oster break;
238 1.3 oster }
239 1.3 oster }
240 1.3 oster RF_ASSERT(asmList == NULL && pdaList == NULL);
241 1.3 oster /* make the header structure */
242 1.3 oster asm_hdr = rf_AllocAccessStripeMapHeader();
243 1.3 oster RF_ASSERT(numStripes == totStripes);
244 1.3 oster asm_hdr->numStripes = numStripes;
245 1.3 oster asm_hdr->stripeMap = asm_list;
246 1.3 oster
247 1.3 oster if (rf_mapDebug)
248 1.3 oster rf_PrintAccessStripeMap(asm_hdr);
249 1.3 oster return (asm_hdr);
250 1.1 oster }
251 1.1 oster /*****************************************************************************************
252 1.1 oster * This routine walks through an ASM list and marks the PDAs that have failed.
253 1.1 oster * It's called only when a disk failure causes an in-flight DAG to fail.
254 1.1 oster * The parity may consist of two components, but we want to use only one failedPDA
255 1.1 oster * pointer. Thus we set failedPDA to point to the first parity component, and rely
256 1.1 oster * on the rest of the code to do the right thing with this.
257 1.1 oster ****************************************************************************************/
258 1.1 oster
259 1.3 oster void
260 1.3 oster rf_MarkFailuresInASMList(raidPtr, asm_h)
261 1.3 oster RF_Raid_t *raidPtr;
262 1.3 oster RF_AccessStripeMapHeader_t *asm_h;
263 1.3 oster {
264 1.3 oster RF_RaidDisk_t **disks = raidPtr->Disks;
265 1.3 oster RF_AccessStripeMap_t *asmap;
266 1.3 oster RF_PhysDiskAddr_t *pda;
267 1.3 oster
268 1.3 oster for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
269 1.3 oster asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0;
270 1.3 oster asmap->numFailedPDAs = 0;
271 1.6 thorpej memset((char *) asmap->failedPDAs, 0,
272 1.3 oster RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
273 1.3 oster for (pda = asmap->physInfo; pda; pda = pda->next) {
274 1.3 oster if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
275 1.3 oster asmap->numDataFailed++;
276 1.3 oster asmap->failedPDAs[asmap->numFailedPDAs] = pda;
277 1.3 oster asmap->numFailedPDAs++;
278 1.3 oster }
279 1.3 oster }
280 1.3 oster pda = asmap->parityInfo;
281 1.3 oster if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
282 1.3 oster asmap->numParityFailed++;
283 1.3 oster asmap->failedPDAs[asmap->numFailedPDAs] = pda;
284 1.3 oster asmap->numFailedPDAs++;
285 1.3 oster }
286 1.3 oster pda = asmap->qInfo;
287 1.3 oster if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
288 1.3 oster asmap->numQFailed++;
289 1.3 oster asmap->failedPDAs[asmap->numFailedPDAs] = pda;
290 1.3 oster asmap->numFailedPDAs++;
291 1.3 oster }
292 1.3 oster }
293 1.1 oster }
294 1.3 oster
295 1.1 oster /*****************************************************************************************
296 1.1 oster *
297 1.1 oster * routines to allocate and free list elements. All allocation routines zero the
298 1.1 oster * structure before returning it.
299 1.1 oster *
300 1.1 oster * FreePhysDiskAddr is static. It should never be called directly, because
301 1.1 oster * FreeAccessStripeMap takes care of freeing the PhysDiskAddr list.
302 1.1 oster *
303 1.1 oster ****************************************************************************************/
304 1.1 oster
305 1.1 oster static RF_FreeList_t *rf_asmhdr_freelist;
306 1.1 oster #define RF_MAX_FREE_ASMHDR 128
307 1.1 oster #define RF_ASMHDR_INC 16
308 1.1 oster #define RF_ASMHDR_INITIAL 32
309 1.1 oster
310 1.1 oster static RF_FreeList_t *rf_asm_freelist;
311 1.1 oster #define RF_MAX_FREE_ASM 192
312 1.1 oster #define RF_ASM_INC 24
313 1.1 oster #define RF_ASM_INITIAL 64
314 1.1 oster
315 1.1 oster static RF_FreeList_t *rf_pda_freelist;
316 1.1 oster #define RF_MAX_FREE_PDA 192
317 1.1 oster #define RF_PDA_INC 24
318 1.1 oster #define RF_PDA_INITIAL 64
319 1.1 oster
320 1.1 oster /* called at shutdown time. So far, all that is necessary is to release all the free lists */
321 1.1 oster static void rf_ShutdownMapModule(void *);
322 1.3 oster static void
323 1.3 oster rf_ShutdownMapModule(ignored)
324 1.3 oster void *ignored;
325 1.1 oster {
326 1.3 oster RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
327 1.3 oster RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
328 1.3 oster RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *));
329 1.1 oster }
330 1.1 oster
331 1.3 oster int
332 1.3 oster rf_ConfigureMapModule(listp)
333 1.3 oster RF_ShutdownList_t **listp;
334 1.1 oster {
335 1.3 oster int rc;
336 1.1 oster
337 1.1 oster RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR,
338 1.3 oster RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t));
339 1.1 oster if (rf_asmhdr_freelist == NULL) {
340 1.3 oster return (ENOMEM);
341 1.1 oster }
342 1.1 oster RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM,
343 1.3 oster RF_ASM_INC, sizeof(RF_AccessStripeMap_t));
344 1.1 oster if (rf_asm_freelist == NULL) {
345 1.3 oster RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
346 1.3 oster return (ENOMEM);
347 1.1 oster }
348 1.1 oster RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA,
349 1.3 oster RF_PDA_INC, sizeof(RF_PhysDiskAddr_t));
350 1.1 oster if (rf_pda_freelist == NULL) {
351 1.3 oster RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
352 1.3 oster RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
353 1.3 oster return (ENOMEM);
354 1.1 oster }
355 1.1 oster rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
356 1.1 oster if (rc) {
357 1.14 oster rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
358 1.1 oster rf_ShutdownMapModule(NULL);
359 1.3 oster return (rc);
360 1.1 oster }
361 1.3 oster RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next,
362 1.3 oster (RF_AccessStripeMapHeader_t *));
363 1.3 oster RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next,
364 1.3 oster (RF_AccessStripeMap_t *));
365 1.3 oster RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next,
366 1.3 oster (RF_PhysDiskAddr_t *));
367 1.1 oster
368 1.3 oster return (0);
369 1.1 oster }
370 1.1 oster
371 1.3 oster RF_AccessStripeMapHeader_t *
372 1.3 oster rf_AllocAccessStripeMapHeader()
373 1.1 oster {
374 1.1 oster RF_AccessStripeMapHeader_t *p;
375 1.1 oster
376 1.3 oster RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *));
377 1.6 thorpej memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
378 1.1 oster
379 1.3 oster return (p);
380 1.1 oster }
381 1.1 oster
382 1.1 oster
383 1.3 oster void
384 1.3 oster rf_FreeAccessStripeMapHeader(p)
385 1.3 oster RF_AccessStripeMapHeader_t *p;
386 1.1 oster {
387 1.3 oster RF_FREELIST_FREE(rf_asmhdr_freelist, p, next);
388 1.1 oster }
389 1.1 oster
390 1.3 oster RF_PhysDiskAddr_t *
391 1.3 oster rf_AllocPhysDiskAddr()
392 1.1 oster {
393 1.1 oster RF_PhysDiskAddr_t *p;
394 1.1 oster
395 1.3 oster RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *));
396 1.6 thorpej memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
397 1.1 oster
398 1.3 oster return (p);
399 1.1 oster }
400 1.1 oster /* allocates a list of PDAs, locking the free list only once
401 1.1 oster * when we have to call calloc, we do it one component at a time to simplify
402 1.1 oster * the process of freeing the list at program shutdown. This should not be
403 1.1 oster * much of a performance hit, because it should be very infrequently executed.
404 1.1 oster */
405 1.3 oster RF_PhysDiskAddr_t *
406 1.3 oster rf_AllocPDAList(count)
407 1.3 oster int count;
408 1.1 oster {
409 1.1 oster RF_PhysDiskAddr_t *p = NULL;
410 1.1 oster
411 1.3 oster RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count);
412 1.3 oster return (p);
413 1.1 oster }
414 1.1 oster
415 1.3 oster void
416 1.3 oster rf_FreePhysDiskAddr(p)
417 1.3 oster RF_PhysDiskAddr_t *p;
418 1.1 oster {
419 1.3 oster RF_FREELIST_FREE(rf_pda_freelist, p, next);
420 1.1 oster }
421 1.1 oster
422 1.3 oster static void
423 1.3 oster rf_FreePDAList(l_start, l_end, count)
424 1.3 oster RF_PhysDiskAddr_t *l_start, *l_end; /* pointers to start and end
425 1.3 oster * of list */
426 1.3 oster int count; /* number of elements in list */
427 1.1 oster {
428 1.3 oster RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count);
429 1.1 oster }
430 1.1 oster
431 1.3 oster RF_AccessStripeMap_t *
432 1.3 oster rf_AllocAccessStripeMapComponent()
433 1.1 oster {
434 1.1 oster RF_AccessStripeMap_t *p;
435 1.1 oster
436 1.3 oster RF_FREELIST_GET(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *));
437 1.6 thorpej memset((char *) p, 0, sizeof(RF_AccessStripeMap_t));
438 1.1 oster
439 1.3 oster return (p);
440 1.1 oster }
441 1.1 oster /* this is essentially identical to AllocPDAList. I should combine the two.
442 1.1 oster * when we have to call calloc, we do it one component at a time to simplify
443 1.1 oster * the process of freeing the list at program shutdown. This should not be
444 1.1 oster * much of a performance hit, because it should be very infrequently executed.
445 1.1 oster */
446 1.3 oster RF_AccessStripeMap_t *
447 1.3 oster rf_AllocASMList(count)
448 1.3 oster int count;
449 1.1 oster {
450 1.1 oster RF_AccessStripeMap_t *p = NULL;
451 1.1 oster
452 1.3 oster RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count);
453 1.3 oster return (p);
454 1.1 oster }
455 1.1 oster
456 1.3 oster void
457 1.3 oster rf_FreeAccessStripeMapComponent(p)
458 1.3 oster RF_AccessStripeMap_t *p;
459 1.1 oster {
460 1.3 oster RF_FREELIST_FREE(rf_asm_freelist, p, next);
461 1.1 oster }
462 1.1 oster
463 1.3 oster static void
464 1.3 oster rf_FreeASMList(l_start, l_end, count)
465 1.3 oster RF_AccessStripeMap_t *l_start, *l_end;
466 1.3 oster int count;
467 1.3 oster {
468 1.3 oster RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count);
469 1.3 oster }
470 1.3 oster
471 1.3 oster void
472 1.3 oster rf_FreeAccessStripeMap(hdr)
473 1.3 oster RF_AccessStripeMapHeader_t *hdr;
474 1.3 oster {
475 1.3 oster RF_AccessStripeMap_t *p, *pt = NULL;
476 1.3 oster RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
477 1.3 oster int count = 0, t, asm_count = 0;
478 1.3 oster
479 1.3 oster for (p = hdr->stripeMap; p; p = p->next) {
480 1.3 oster
481 1.3 oster /* link the 3 pda lists into the accumulating pda list */
482 1.3 oster
483 1.3 oster if (!pdaList)
484 1.3 oster pdaList = p->qInfo;
485 1.3 oster else
486 1.3 oster pdaEnd->next = p->qInfo;
487 1.3 oster for (trailer = NULL, pdp = p->qInfo; pdp;) {
488 1.3 oster trailer = pdp;
489 1.3 oster pdp = pdp->next;
490 1.3 oster count++;
491 1.3 oster }
492 1.3 oster if (trailer)
493 1.3 oster pdaEnd = trailer;
494 1.3 oster
495 1.3 oster if (!pdaList)
496 1.3 oster pdaList = p->parityInfo;
497 1.3 oster else
498 1.3 oster pdaEnd->next = p->parityInfo;
499 1.3 oster for (trailer = NULL, pdp = p->parityInfo; pdp;) {
500 1.3 oster trailer = pdp;
501 1.3 oster pdp = pdp->next;
502 1.3 oster count++;
503 1.3 oster }
504 1.3 oster if (trailer)
505 1.3 oster pdaEnd = trailer;
506 1.3 oster
507 1.3 oster if (!pdaList)
508 1.3 oster pdaList = p->physInfo;
509 1.3 oster else
510 1.3 oster pdaEnd->next = p->physInfo;
511 1.3 oster for (trailer = NULL, pdp = p->physInfo; pdp;) {
512 1.3 oster trailer = pdp;
513 1.3 oster pdp = pdp->next;
514 1.3 oster count++;
515 1.3 oster }
516 1.3 oster if (trailer)
517 1.3 oster pdaEnd = trailer;
518 1.3 oster
519 1.3 oster pt = p;
520 1.3 oster asm_count++;
521 1.3 oster }
522 1.3 oster
523 1.3 oster /* debug only */
524 1.3 oster for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
525 1.3 oster t++;
526 1.3 oster RF_ASSERT(t == count);
527 1.3 oster
528 1.3 oster if (pdaList)
529 1.3 oster rf_FreePDAList(pdaList, pdaEnd, count);
530 1.3 oster rf_FreeASMList(hdr->stripeMap, pt, asm_count);
531 1.3 oster rf_FreeAccessStripeMapHeader(hdr);
532 1.1 oster }
533 1.1 oster /* We can't use the large write optimization if there are any failures in the stripe.
534 1.1 oster * In the declustered layout, there is no way to immediately determine what disks
535 1.1 oster * constitute a stripe, so we actually have to hunt through the stripe looking for failures.
536 1.1 oster * The reason we map the parity instead of just using asm->parityInfo->col is because
537 1.1 oster * the latter may have been already redirected to a spare drive, which would
538 1.1 oster * mess up the computation of the stripe offset.
539 1.1 oster *
540 1.1 oster * ASSUMES AT MOST ONE FAILURE IN THE STRIPE.
541 1.1 oster */
542 1.3 oster int
543 1.3 oster rf_CheckStripeForFailures(raidPtr, asmap)
544 1.3 oster RF_Raid_t *raidPtr;
545 1.3 oster RF_AccessStripeMap_t *asmap;
546 1.3 oster {
547 1.3 oster RF_RowCol_t trow, tcol, prow, pcol, *diskids, row, i;
548 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
549 1.3 oster RF_StripeCount_t stripeOffset;
550 1.3 oster int numFailures;
551 1.3 oster RF_RaidAddr_t sosAddr;
552 1.3 oster RF_SectorNum_t diskOffset, poffset;
553 1.3 oster RF_RowCol_t testrow;
554 1.3 oster
555 1.3 oster /* quick out in the fault-free case. */
556 1.3 oster RF_LOCK_MUTEX(raidPtr->mutex);
557 1.3 oster numFailures = raidPtr->numFailures;
558 1.3 oster RF_UNLOCK_MUTEX(raidPtr->mutex);
559 1.3 oster if (numFailures == 0)
560 1.3 oster return (0);
561 1.3 oster
562 1.3 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
563 1.3 oster row = asmap->physInfo->row;
564 1.3 oster (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow);
565 1.3 oster (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0); /* get pcol */
566 1.3 oster
567 1.3 oster /* this need not be true if we've redirected the access to a spare in
568 1.3 oster * another row RF_ASSERT(row == testrow); */
569 1.3 oster stripeOffset = 0;
570 1.3 oster for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
571 1.3 oster if (diskids[i] != pcol) {
572 1.3 oster if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) {
573 1.3 oster if (raidPtr->status[testrow] != rf_rs_reconstructing)
574 1.3 oster return (1);
575 1.3 oster RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]);
576 1.3 oster layoutPtr->map->MapSector(raidPtr,
577 1.3 oster sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
578 1.3 oster &trow, &tcol, &diskOffset, 0);
579 1.3 oster RF_ASSERT((trow == testrow) && (tcol == diskids[i]));
580 1.3 oster if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset))
581 1.3 oster return (1);
582 1.3 oster asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
583 1.3 oster return (0);
584 1.3 oster }
585 1.3 oster stripeOffset++;
586 1.3 oster }
587 1.3 oster }
588 1.3 oster return (0);
589 1.1 oster }
590 1.1 oster /*
591 1.1 oster return the number of failed data units in the stripe.
592 1.1 oster */
593 1.1 oster
594 1.3 oster int
595 1.3 oster rf_NumFailedDataUnitsInStripe(raidPtr, asmap)
596 1.3 oster RF_Raid_t *raidPtr;
597 1.3 oster RF_AccessStripeMap_t *asmap;
598 1.3 oster {
599 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
600 1.3 oster RF_RowCol_t trow, tcol, row, i;
601 1.3 oster RF_SectorNum_t diskOffset;
602 1.3 oster RF_RaidAddr_t sosAddr;
603 1.3 oster int numFailures;
604 1.3 oster
605 1.3 oster /* quick out in the fault-free case. */
606 1.3 oster RF_LOCK_MUTEX(raidPtr->mutex);
607 1.3 oster numFailures = raidPtr->numFailures;
608 1.3 oster RF_UNLOCK_MUTEX(raidPtr->mutex);
609 1.3 oster if (numFailures == 0)
610 1.3 oster return (0);
611 1.3 oster numFailures = 0;
612 1.3 oster
613 1.3 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
614 1.3 oster row = asmap->physInfo->row;
615 1.3 oster for (i = 0; i < layoutPtr->numDataCol; i++) {
616 1.3 oster (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
617 1.3 oster &trow, &tcol, &diskOffset, 0);
618 1.3 oster if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status))
619 1.3 oster numFailures++;
620 1.3 oster }
621 1.1 oster
622 1.3 oster return numFailures;
623 1.1 oster }
624 1.1 oster
625 1.1 oster
626 1.1 oster /*****************************************************************************************
627 1.1 oster *
628 1.1 oster * debug routines
629 1.1 oster *
630 1.1 oster ****************************************************************************************/
631 1.1 oster
632 1.3 oster void
633 1.3 oster rf_PrintAccessStripeMap(asm_h)
634 1.3 oster RF_AccessStripeMapHeader_t *asm_h;
635 1.1 oster {
636 1.3 oster rf_PrintFullAccessStripeMap(asm_h, 0);
637 1.1 oster }
638 1.1 oster
639 1.3 oster void
640 1.3 oster rf_PrintFullAccessStripeMap(asm_h, prbuf)
641 1.3 oster RF_AccessStripeMapHeader_t *asm_h;
642 1.3 oster int prbuf; /* flag to print buffer pointers */
643 1.3 oster {
644 1.3 oster int i;
645 1.3 oster RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
646 1.3 oster RF_PhysDiskAddr_t *p;
647 1.3 oster printf("%d stripes total\n", (int) asm_h->numStripes);
648 1.3 oster for (; asmap; asmap = asmap->next) {
649 1.3 oster /* printf("Num failures: %d\n",asmap->numDataFailed); */
650 1.3 oster /* printf("Num sectors:
651 1.3 oster * %d\n",(int)asmap->totalSectorsAccessed); */
652 1.3 oster printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
653 1.3 oster (int) asmap->stripeID,
654 1.3 oster (int) asmap->totalSectorsAccessed,
655 1.3 oster (int) asmap->numDataFailed,
656 1.3 oster (int) asmap->numParityFailed);
657 1.3 oster if (asmap->parityInfo) {
658 1.3 oster printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col,
659 1.3 oster (int) asmap->parityInfo->startSector,
660 1.3 oster (int) (asmap->parityInfo->startSector +
661 1.3 oster asmap->parityInfo->numSector - 1));
662 1.3 oster if (prbuf)
663 1.3 oster printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
664 1.3 oster if (asmap->parityInfo->next) {
665 1.3 oster printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row,
666 1.3 oster asmap->parityInfo->next->col,
667 1.3 oster (int) asmap->parityInfo->next->startSector,
668 1.3 oster (int) (asmap->parityInfo->next->startSector +
669 1.3 oster asmap->parityInfo->next->numSector - 1));
670 1.3 oster if (prbuf)
671 1.3 oster printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
672 1.3 oster RF_ASSERT(asmap->parityInfo->next->next == NULL);
673 1.3 oster }
674 1.3 oster printf("]\n\t");
675 1.3 oster }
676 1.3 oster for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
677 1.3 oster printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector,
678 1.3 oster (int) (p->startSector + p->numSector - 1));
679 1.3 oster if (prbuf)
680 1.3 oster printf("b0x%lx ", (unsigned long) p->bufPtr);
681 1.3 oster if (i && !(i & 1))
682 1.3 oster printf("\n\t");
683 1.3 oster }
684 1.3 oster printf("\n");
685 1.3 oster p = asm_h->stripeMap->failedPDAs[0];
686 1.3 oster if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
687 1.3 oster printf("[multiple failures]\n");
688 1.3 oster else
689 1.3 oster if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
690 1.3 oster printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col,
691 1.3 oster (int) p->startSector, (int) (p->startSector + p->numSector - 1));
692 1.3 oster }
693 1.1 oster }
694 1.1 oster
695 1.3 oster void
696 1.3 oster rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks)
697 1.3 oster RF_Raid_t *raidPtr;
698 1.3 oster RF_RaidAddr_t raidAddr;
699 1.3 oster RF_SectorCount_t numBlocks;
700 1.3 oster {
701 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
702 1.3 oster RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
703 1.3 oster
704 1.3 oster printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
705 1.3 oster for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
706 1.3 oster printf("%d (0x%x), ", (int) ra, (int) ra);
707 1.3 oster }
708 1.3 oster printf("\n");
709 1.3 oster printf("Offset into stripe unit: %d (0x%x)\n",
710 1.3 oster (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
711 1.3 oster (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
712 1.3 oster }
713 1.1 oster /*
714 1.1 oster given a parity descriptor and the starting address within a stripe,
715 1.1 oster range restrict the parity descriptor to touch only the correct stuff.
716 1.1 oster */
717 1.3 oster void
718 1.3 oster rf_ASMParityAdjust(
719 1.3 oster RF_PhysDiskAddr_t * toAdjust,
720 1.3 oster RF_StripeNum_t startAddrWithinStripe,
721 1.3 oster RF_SectorNum_t endAddress,
722 1.3 oster RF_RaidLayout_t * layoutPtr,
723 1.3 oster RF_AccessStripeMap_t * asm_p)
724 1.3 oster {
725 1.3 oster RF_PhysDiskAddr_t *new_pda;
726 1.3 oster
727 1.3 oster /* when we're accessing only a portion of one stripe unit, we want the
728 1.3 oster * parity descriptor to identify only the chunk of parity associated
729 1.3 oster * with the data. When the access spans exactly one stripe unit
730 1.3 oster * boundary and is less than a stripe unit in size, it uses two
731 1.3 oster * disjoint regions of the parity unit. When an access spans more
732 1.3 oster * than one stripe unit boundary, it uses all of the parity unit.
733 1.3 oster *
734 1.3 oster * To better handle the case where stripe units are small, we may
735 1.3 oster * eventually want to change the 2nd case so that if the SU size is
736 1.3 oster * below some threshold, we just read/write the whole thing instead of
737 1.3 oster * breaking it up into two accesses. */
738 1.3 oster if (asm_p->numStripeUnitsAccessed == 1) {
739 1.3 oster int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
740 1.3 oster toAdjust->startSector += x;
741 1.3 oster toAdjust->raidAddress += x;
742 1.3 oster toAdjust->numSector = asm_p->physInfo->numSector;
743 1.3 oster RF_ASSERT(toAdjust->numSector != 0);
744 1.3 oster } else
745 1.3 oster if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
746 1.3 oster int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
747 1.3 oster
748 1.3 oster /* create a second pda and copy the parity map info
749 1.3 oster * into it */
750 1.3 oster RF_ASSERT(toAdjust->next == NULL);
751 1.3 oster new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
752 1.3 oster *new_pda = *toAdjust; /* structure assignment */
753 1.3 oster new_pda->next = NULL;
754 1.3 oster
755 1.3 oster /* adjust the start sector & number of blocks for the
756 1.3 oster * first parity pda */
757 1.3 oster toAdjust->startSector += x;
758 1.3 oster toAdjust->raidAddress += x;
759 1.3 oster toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
760 1.3 oster RF_ASSERT(toAdjust->numSector != 0);
761 1.3 oster
762 1.3 oster /* adjust the second pda */
763 1.3 oster new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
764 1.3 oster /* new_pda->raidAddress =
765 1.3 oster * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
766 1.3 oster * toAdjust->raidAddress); */
767 1.3 oster RF_ASSERT(new_pda->numSector != 0);
768 1.3 oster }
769 1.1 oster }
770 1.11 oster
771 1.1 oster /*
772 1.1 oster Check if a disk has been spared or failed. If spared,
773 1.3 oster redirect the I/O.
774 1.1 oster If it has been failed, record it in the asm pointer.
775 1.1 oster Fourth arg is whether data or parity.
776 1.1 oster */
777 1.3 oster void
778 1.3 oster rf_ASMCheckStatus(
779 1.3 oster RF_Raid_t * raidPtr,
780 1.3 oster RF_PhysDiskAddr_t * pda_p,
781 1.3 oster RF_AccessStripeMap_t * asm_p,
782 1.3 oster RF_RaidDisk_t ** disks,
783 1.3 oster int parity)
784 1.3 oster {
785 1.3 oster RF_DiskStatus_t dstatus;
786 1.3 oster RF_RowCol_t frow, fcol;
787 1.3 oster
788 1.3 oster dstatus = disks[pda_p->row][pda_p->col].status;
789 1.3 oster
790 1.3 oster if (dstatus == rf_ds_spared) {
791 1.3 oster /* if the disk has been spared, redirect access to the spare */
792 1.3 oster frow = pda_p->row;
793 1.3 oster fcol = pda_p->col;
794 1.3 oster pda_p->row = disks[frow][fcol].spareRow;
795 1.3 oster pda_p->col = disks[frow][fcol].spareCol;
796 1.3 oster } else
797 1.3 oster if (dstatus == rf_ds_dist_spared) {
798 1.3 oster /* ditto if disk has been spared to dist spare space */
799 1.3 oster RF_RowCol_t or = pda_p->row, oc = pda_p->col;
800 1.3 oster RF_SectorNum_t oo = pda_p->startSector;
801 1.3 oster
802 1.3 oster if (pda_p->type == RF_PDA_TYPE_DATA)
803 1.3 oster raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
804 1.3 oster else
805 1.3 oster raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
806 1.3 oster
807 1.3 oster if (rf_mapDebug) {
808 1.3 oster printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo,
809 1.3 oster pda_p->row, pda_p->col, (int) pda_p->startSector);
810 1.3 oster }
811 1.3 oster } else
812 1.3 oster if (RF_DEAD_DISK(dstatus)) {
813 1.3 oster /* if the disk is inaccessible, mark the
814 1.3 oster * failure */
815 1.3 oster if (parity)
816 1.3 oster asm_p->numParityFailed++;
817 1.3 oster else {
818 1.3 oster asm_p->numDataFailed++;
819 1.3 oster }
820 1.3 oster asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
821 1.3 oster asm_p->numFailedPDAs++;
822 1.1 oster #if 0
823 1.3 oster switch (asm_p->numParityFailed + asm_p->numDataFailed) {
824 1.3 oster case 1:
825 1.3 oster asm_p->failedPDAs[0] = pda_p;
826 1.3 oster break;
827 1.3 oster case 2:
828 1.3 oster asm_p->failedPDAs[1] = pda_p;
829 1.3 oster default:
830 1.3 oster break;
831 1.3 oster }
832 1.1 oster #endif
833 1.3 oster }
834 1.3 oster /* the redirected access should never span a stripe unit boundary */
835 1.3 oster RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
836 1.3 oster rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
837 1.3 oster RF_ASSERT(pda_p->col != -1);
838 1.1 oster }
839