Home | History | Annotate | Line # | Download | only in raidframe
rf_map.c revision 1.49
      1  1.49  christos /*	$NetBSD: rf_map.c,v 1.49 2019/02/10 17:13:33 christos Exp $	*/
      2   1.1     oster /*
      3   1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1     oster  * All rights reserved.
      5   1.1     oster  *
      6   1.1     oster  * Author: Mark Holland
      7   1.1     oster  *
      8   1.1     oster  * Permission to use, copy, modify and distribute this software and
      9   1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1     oster  * notice and this permission notice appear in all copies of the
     11   1.1     oster  * software, derivative works or modified versions, and any portions
     12   1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1     oster  *
     14   1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1     oster  *
     18   1.1     oster  * Carnegie Mellon requests users of this software to return to
     19   1.1     oster  *
     20   1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1     oster  *  School of Computer Science
     22   1.1     oster  *  Carnegie Mellon University
     23   1.1     oster  *  Pittsburgh PA 15213-3890
     24   1.1     oster  *
     25   1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1     oster  * rights to redistribute these changes.
     27   1.1     oster  */
     28   1.1     oster 
     29   1.1     oster /**************************************************************************
     30   1.1     oster  *
     31   1.1     oster  * map.c -- main code for mapping RAID addresses to physical disk addresses
     32   1.1     oster  *
     33   1.1     oster  **************************************************************************/
     34   1.9     lukem 
     35   1.9     lukem #include <sys/cdefs.h>
     36  1.49  christos __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.49 2019/02/10 17:13:33 christos Exp $");
     37   1.1     oster 
     38   1.7     oster #include <dev/raidframe/raidframevar.h>
     39   1.7     oster 
     40   1.1     oster #include "rf_threadstuff.h"
     41   1.1     oster #include "rf_raid.h"
     42   1.1     oster #include "rf_general.h"
     43   1.1     oster #include "rf_map.h"
     44   1.1     oster #include "rf_shutdown.h"
     45   1.1     oster 
     46  1.27     oster static void rf_FreePDAList(RF_PhysDiskAddr_t *pda_list);
     47  1.27     oster static void rf_FreeASMList(RF_AccessStripeMap_t *asm_list);
     48   1.1     oster 
     49  1.21     oster /***************************************************************************
     50   1.1     oster  *
     51  1.21     oster  * MapAccess -- main 1st order mapping routine.  Maps an access in the
     52  1.21     oster  * RAID address space to the corresponding set of physical disk
     53  1.21     oster  * addresses.  The result is returned as a list of AccessStripeMap
     54  1.21     oster  * structures, one per stripe accessed.  Each ASM structure contains a
     55  1.21     oster  * pointer to a list of PhysDiskAddr structures, which describe the
     56  1.25     oster  * physical locations touched by the user access.  Note that this
     57  1.25     oster  * routine returns only static mapping information, i.e. the list of
     58  1.25     oster  * physical addresses returned does not necessarily identify the set
     59  1.25     oster  * of physical locations that will actually be read or written.  The
     60  1.25     oster  * routine also maps the parity.  The physical disk location returned
     61  1.25     oster  * always indicates the entire parity unit, even when only a subset of
     62  1.25     oster  * it is being accessed.  This is because an access that is not stripe
     63  1.25     oster  * unit aligned but that spans a stripe unit boundary may require
     64  1.25     oster  * access two distinct portions of the parity unit, and we can't yet
     65  1.25     oster  * tell which portion(s) we'll actually need.  We leave it up to the
     66  1.25     oster  * algorithm selection code to decide what subset of the parity unit
     67  1.25     oster  * to access.  Note that addresses in the RAID address space must
     68  1.25     oster  * always be maintained as longs, instead of ints.
     69  1.38     perry  *
     70   1.1     oster  * This routine returns NULL if numBlocks is 0
     71   1.1     oster  *
     72  1.26     oster  * raidAddress - starting address in RAID address space
     73  1.26     oster  * numBlocks   - number of blocks in RAID address space to access
     74  1.26     oster  * buffer      - buffer to supply/recieve data
     75  1.26     oster  * remap       - 1 => remap address to spare space
     76  1.21     oster  ***************************************************************************/
     77   1.1     oster 
     78   1.3     oster RF_AccessStripeMapHeader_t *
     79  1.26     oster rf_MapAccess(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddress,
     80  1.43  christos 	     RF_SectorCount_t numBlocks, void *buffer, int remap)
     81   1.3     oster {
     82   1.3     oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
     83   1.3     oster 	RF_AccessStripeMapHeader_t *asm_hdr = NULL;
     84   1.3     oster 	RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
     85   1.3     oster 	int     faultsTolerated = layoutPtr->map->faultsTolerated;
     86  1.25     oster 	/* we'll change raidAddress along the way */
     87  1.25     oster 	RF_RaidAddr_t startAddress = raidAddress;
     88   1.3     oster 	RF_RaidAddr_t endAddress = raidAddress + numBlocks;
     89  1.23     oster 	RF_RaidDisk_t *disks = raidPtr->Disks;
     90  1.31     oster 	RF_PhysDiskAddr_t *pda_p;
     91  1.31     oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
     92  1.31     oster 	RF_PhysDiskAddr_t *pda_q;
     93  1.31     oster #endif
     94   1.3     oster 	RF_StripeCount_t numStripes = 0;
     95  1.38     perry 	RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress,
     96  1.25     oster 		nextStripeUnitAddress;
     97   1.3     oster 	RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
     98   1.3     oster 	RF_StripeCount_t totStripes;
     99   1.3     oster 	RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
    100   1.3     oster 	RF_AccessStripeMap_t *asmList, *t_asm;
    101   1.3     oster 	RF_PhysDiskAddr_t *pdaList, *t_pda;
    102   1.3     oster 
    103   1.3     oster 	/* allocate all the ASMs and PDAs up front */
    104   1.3     oster 	lastRaidAddr = raidAddress + numBlocks - 1;
    105   1.3     oster 	stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
    106   1.3     oster 	lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
    107   1.3     oster 	totStripes = lastSID - stripeID + 1;
    108   1.3     oster 	SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
    109   1.3     oster 	lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
    110   1.3     oster 
    111   1.3     oster 	asmList = rf_AllocASMList(totStripes);
    112  1.25     oster 
    113  1.25     oster 	/* may also need pda(s) per stripe for parity */
    114  1.38     perry 	pdaList = rf_AllocPDAList(lastSUID - SUID + 1 +
    115  1.38     perry 				  faultsTolerated * totStripes);
    116  1.25     oster 
    117   1.3     oster 
    118   1.3     oster 	if (raidAddress + numBlocks > raidPtr->totalSectors) {
    119   1.3     oster 		RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
    120   1.3     oster 		    (int) raidAddress);
    121   1.3     oster 		return (NULL);
    122   1.3     oster 	}
    123  1.15     oster #if RF_DEBUG_MAP
    124   1.3     oster 	if (rf_mapDebug)
    125   1.3     oster 		rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
    126  1.15     oster #endif
    127   1.3     oster 	for (; raidAddress < endAddress;) {
    128   1.3     oster 		/* make the next stripe structure */
    129   1.3     oster 		RF_ASSERT(asmList);
    130   1.3     oster 		t_asm = asmList;
    131   1.3     oster 		asmList = asmList->next;
    132  1.48  christos 		memset(t_asm, 0, sizeof(*t_asm));
    133   1.3     oster 		if (!asm_p)
    134   1.3     oster 			asm_list = asm_p = t_asm;
    135   1.3     oster 		else {
    136   1.3     oster 			asm_p->next = t_asm;
    137   1.3     oster 			asm_p = asm_p->next;
    138   1.3     oster 		}
    139   1.3     oster 		numStripes++;
    140   1.3     oster 
    141   1.3     oster 		/* map SUs from current location to the end of the stripe */
    142   1.3     oster 		asm_p->stripeID =	/* rf_RaidAddressToStripeID(layoutPtr,
    143   1.3     oster 		        raidAddress) */ stripeID++;
    144   1.3     oster 		stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
    145   1.3     oster 		stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
    146   1.3     oster 		asm_p->raidAddress = raidAddress;
    147   1.3     oster 		asm_p->endRaidAddress = stripeEndAddress;
    148   1.3     oster 
    149   1.3     oster 		/* map each stripe unit in the stripe */
    150   1.3     oster 		pda_p = NULL;
    151  1.25     oster 
    152  1.25     oster 		/* Raid addr of start of portion of access that is
    153  1.25     oster                    within this stripe */
    154  1.38     perry 		startAddrWithinStripe = raidAddress;
    155  1.25     oster 
    156   1.3     oster 		for (; raidAddress < stripeEndAddress;) {
    157   1.3     oster 			RF_ASSERT(pdaList);
    158   1.3     oster 			t_pda = pdaList;
    159   1.3     oster 			pdaList = pdaList->next;
    160  1.48  christos 			memset(t_pda, 0, sizeof(*t_pda));
    161   1.3     oster 			if (!pda_p)
    162   1.3     oster 				asm_p->physInfo = pda_p = t_pda;
    163   1.3     oster 			else {
    164   1.3     oster 				pda_p->next = t_pda;
    165   1.3     oster 				pda_p = pda_p->next;
    166   1.3     oster 			}
    167   1.3     oster 
    168   1.3     oster 			pda_p->type = RF_PDA_TYPE_DATA;
    169  1.38     perry 			(layoutPtr->map->MapSector) (raidPtr, raidAddress,
    170  1.38     perry 						     &(pda_p->col),
    171  1.38     perry 						     &(pda_p->startSector),
    172  1.25     oster 						     remap);
    173  1.25     oster 
    174  1.25     oster 			/* mark any failures we find.  failedPDA is
    175  1.25     oster 			 * don't-care if there is more than one
    176  1.25     oster 			 * failure */
    177  1.25     oster 
    178  1.25     oster 			/* the RAID address corresponding to this
    179  1.25     oster                            physical diskaddress */
    180  1.38     perry 			pda_p->raidAddress = raidAddress;
    181   1.3     oster 			nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
    182   1.3     oster 			pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
    183   1.3     oster 			RF_ASSERT(pda_p->numSector != 0);
    184   1.3     oster 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
    185  1.43  christos 			pda_p->bufPtr = (char *)buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
    186   1.3     oster 			asm_p->totalSectorsAccessed += pda_p->numSector;
    187   1.3     oster 			asm_p->numStripeUnitsAccessed++;
    188   1.3     oster 
    189   1.3     oster 			raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
    190   1.3     oster 		}
    191   1.3     oster 
    192   1.3     oster 		/* Map the parity. At this stage, the startSector and
    193  1.25     oster 		 * numSector fields for the parity unit are always set
    194  1.25     oster 		 * to indicate the entire parity unit. We may modify
    195  1.25     oster 		 * this after mapping the data portion. */
    196   1.3     oster 		switch (faultsTolerated) {
    197   1.3     oster 		case 0:
    198   1.3     oster 			break;
    199   1.3     oster 		case 1:	/* single fault tolerant */
    200   1.3     oster 			RF_ASSERT(pdaList);
    201   1.3     oster 			t_pda = pdaList;
    202   1.3     oster 			pdaList = pdaList->next;
    203  1.48  christos 			memset(t_pda, 0, sizeof(*t_pda));
    204   1.3     oster 			pda_p = asm_p->parityInfo = t_pda;
    205   1.3     oster 			pda_p->type = RF_PDA_TYPE_PARITY;
    206   1.3     oster 			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    207  1.23     oster 			    &(pda_p->col), &(pda_p->startSector), remap);
    208   1.3     oster 			pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
    209   1.3     oster 			/* raidAddr may be needed to find unit to redirect to */
    210   1.3     oster 			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    211   1.3     oster 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
    212   1.3     oster 			rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    213   1.3     oster 
    214   1.3     oster 			break;
    215  1.31     oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    216   1.3     oster 		case 2:	/* two fault tolerant */
    217   1.3     oster 			RF_ASSERT(pdaList && pdaList->next);
    218   1.3     oster 			t_pda = pdaList;
    219   1.3     oster 			pdaList = pdaList->next;
    220  1.48  christos 			memset(t_pda, 0, sizeof(*t_pda));
    221   1.3     oster 			pda_p = asm_p->parityInfo = t_pda;
    222   1.3     oster 			pda_p->type = RF_PDA_TYPE_PARITY;
    223   1.3     oster 			t_pda = pdaList;
    224   1.3     oster 			pdaList = pdaList->next;
    225  1.48  christos 			memset(t_pda, 0, sizeof(*t_pda));
    226   1.3     oster 			pda_q = asm_p->qInfo = t_pda;
    227   1.3     oster 			pda_q->type = RF_PDA_TYPE_Q;
    228   1.3     oster 			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    229  1.23     oster 			    &(pda_p->col), &(pda_p->startSector), remap);
    230   1.3     oster 			(layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    231  1.23     oster 			    &(pda_q->col), &(pda_q->startSector), remap);
    232   1.3     oster 			pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
    233   1.3     oster 			/* raidAddr may be needed to find unit to redirect to */
    234   1.3     oster 			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    235   1.3     oster 			pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    236   1.3     oster 			/* failure mode stuff */
    237   1.3     oster 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
    238   1.3     oster 			rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
    239   1.3     oster 			rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    240   1.3     oster 			rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    241   1.3     oster 			break;
    242  1.31     oster #endif
    243   1.3     oster 		}
    244   1.3     oster 	}
    245   1.3     oster 	RF_ASSERT(asmList == NULL && pdaList == NULL);
    246   1.3     oster 	/* make the header structure */
    247   1.3     oster 	asm_hdr = rf_AllocAccessStripeMapHeader();
    248   1.3     oster 	RF_ASSERT(numStripes == totStripes);
    249   1.3     oster 	asm_hdr->numStripes = numStripes;
    250   1.3     oster 	asm_hdr->stripeMap = asm_list;
    251   1.3     oster 
    252  1.15     oster #if RF_DEBUG_MAP
    253   1.3     oster 	if (rf_mapDebug)
    254   1.3     oster 		rf_PrintAccessStripeMap(asm_hdr);
    255  1.15     oster #endif
    256   1.3     oster 	return (asm_hdr);
    257   1.1     oster }
    258  1.21     oster 
    259  1.21     oster /***************************************************************************
    260  1.21     oster  * This routine walks through an ASM list and marks the PDAs that have
    261  1.21     oster  * failed.  It's called only when a disk failure causes an in-flight
    262  1.21     oster  * DAG to fail.  The parity may consist of two components, but we want
    263  1.21     oster  * to use only one failedPDA pointer.  Thus we set failedPDA to point
    264  1.21     oster  * to the first parity component, and rely on the rest of the code to
    265  1.21     oster  * do the right thing with this.
    266  1.21     oster  ***************************************************************************/
    267   1.1     oster 
    268  1.38     perry void
    269  1.38     perry rf_MarkFailuresInASMList(RF_Raid_t *raidPtr,
    270  1.26     oster 			 RF_AccessStripeMapHeader_t *asm_h)
    271   1.3     oster {
    272  1.23     oster 	RF_RaidDisk_t *disks = raidPtr->Disks;
    273   1.3     oster 	RF_AccessStripeMap_t *asmap;
    274   1.3     oster 	RF_PhysDiskAddr_t *pda;
    275   1.3     oster 
    276   1.3     oster 	for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
    277  1.25     oster 		asmap->numDataFailed = 0;
    278  1.25     oster 		asmap->numParityFailed = 0;
    279  1.25     oster 		asmap->numQFailed = 0;
    280   1.3     oster 		asmap->numFailedPDAs = 0;
    281  1.48  christos 		memset(asmap->failedPDAs, 0,
    282  1.48  christos 		    RF_MAX_FAILED_PDA * sizeof(*asmap->failedPDAs));
    283   1.3     oster 		for (pda = asmap->physInfo; pda; pda = pda->next) {
    284  1.23     oster 			if (RF_DEAD_DISK(disks[pda->col].status)) {
    285   1.3     oster 				asmap->numDataFailed++;
    286   1.3     oster 				asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    287   1.3     oster 				asmap->numFailedPDAs++;
    288   1.3     oster 			}
    289   1.3     oster 		}
    290   1.3     oster 		pda = asmap->parityInfo;
    291  1.23     oster 		if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
    292   1.3     oster 			asmap->numParityFailed++;
    293   1.3     oster 			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    294   1.3     oster 			asmap->numFailedPDAs++;
    295   1.3     oster 		}
    296   1.3     oster 		pda = asmap->qInfo;
    297  1.23     oster 		if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
    298   1.3     oster 			asmap->numQFailed++;
    299   1.3     oster 			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    300   1.3     oster 			asmap->numFailedPDAs++;
    301   1.3     oster 		}
    302   1.3     oster 	}
    303   1.1     oster }
    304   1.3     oster 
    305  1.21     oster /***************************************************************************
    306   1.1     oster  *
    307  1.21     oster  * routines to allocate and free list elements.  All allocation
    308  1.21     oster  * routines zero the structure before returning it.
    309   1.1     oster  *
    310  1.21     oster  * FreePhysDiskAddr is static.  It should never be called directly,
    311  1.21     oster  * because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
    312  1.21     oster  * list.
    313   1.1     oster  *
    314  1.21     oster  ***************************************************************************/
    315   1.1     oster 
    316   1.1     oster #define RF_MAX_FREE_ASMHDR 128
    317  1.30     oster #define RF_MIN_FREE_ASMHDR  32
    318   1.1     oster 
    319   1.1     oster #define RF_MAX_FREE_ASM 192
    320  1.30     oster #define RF_MIN_FREE_ASM  64
    321   1.1     oster 
    322   1.1     oster #define RF_MAX_FREE_PDA 192
    323  1.30     oster #define RF_MIN_FREE_PDA  64
    324   1.1     oster 
    325  1.34     oster #define RF_MAX_FREE_ASMHLE 64
    326  1.34     oster #define RF_MIN_FREE_ASMHLE 16
    327  1.34     oster 
    328  1.34     oster #define RF_MAX_FREE_FSS 128
    329  1.34     oster #define RF_MIN_FREE_FSS  32
    330  1.34     oster 
    331  1.34     oster #define RF_MAX_FREE_VFPLE 128
    332  1.34     oster #define RF_MIN_FREE_VFPLE  32
    333  1.34     oster 
    334  1.37     oster #define RF_MAX_FREE_VPLE 128
    335  1.37     oster #define RF_MIN_FREE_VPLE  32
    336  1.37     oster 
    337  1.34     oster 
    338  1.25     oster /* called at shutdown time.  So far, all that is necessary is to
    339  1.25     oster    release all the free lists */
    340   1.1     oster static void rf_ShutdownMapModule(void *);
    341  1.38     perry static void
    342  1.42  christos rf_ShutdownMapModule(void *ignored)
    343   1.1     oster {
    344  1.32     oster 	pool_destroy(&rf_pools.asm_hdr);
    345  1.32     oster 	pool_destroy(&rf_pools.asmap);
    346  1.37     oster 	pool_destroy(&rf_pools.asmhle);
    347  1.32     oster 	pool_destroy(&rf_pools.pda);
    348  1.37     oster 	pool_destroy(&rf_pools.fss);
    349  1.37     oster 	pool_destroy(&rf_pools.vfple);
    350  1.37     oster 	pool_destroy(&rf_pools.vple);
    351   1.1     oster }
    352   1.1     oster 
    353  1.38     perry int
    354  1.26     oster rf_ConfigureMapModule(RF_ShutdownList_t **listp)
    355   1.1     oster {
    356   1.1     oster 
    357  1.32     oster 	rf_pool_init(&rf_pools.asm_hdr, sizeof(RF_AccessStripeMapHeader_t),
    358  1.32     oster 		     "rf_asmhdr_pl", RF_MIN_FREE_ASMHDR, RF_MAX_FREE_ASMHDR);
    359  1.32     oster 	rf_pool_init(&rf_pools.asmap, sizeof(RF_AccessStripeMap_t),
    360  1.32     oster 		     "rf_asm_pl", RF_MIN_FREE_ASM, RF_MAX_FREE_ASM);
    361  1.34     oster 	rf_pool_init(&rf_pools.asmhle, sizeof(RF_ASMHeaderListElem_t),
    362  1.34     oster 		     "rf_asmhle_pl", RF_MIN_FREE_ASMHLE, RF_MAX_FREE_ASMHLE);
    363  1.32     oster 	rf_pool_init(&rf_pools.pda, sizeof(RF_PhysDiskAddr_t),
    364  1.32     oster 		     "rf_pda_pl", RF_MIN_FREE_PDA, RF_MAX_FREE_PDA);
    365  1.34     oster 	rf_pool_init(&rf_pools.fss, sizeof(RF_FailedStripe_t),
    366  1.34     oster 		     "rf_fss_pl", RF_MIN_FREE_FSS, RF_MAX_FREE_FSS);
    367  1.34     oster 	rf_pool_init(&rf_pools.vfple, sizeof(RF_VoidFunctionPointerListElem_t),
    368  1.34     oster 		     "rf_vfple_pl", RF_MIN_FREE_VFPLE, RF_MAX_FREE_VFPLE);
    369  1.37     oster 	rf_pool_init(&rf_pools.vple, sizeof(RF_VoidPointerListElem_t),
    370  1.37     oster 		     "rf_vple_pl", RF_MIN_FREE_VPLE, RF_MAX_FREE_VPLE);
    371  1.29     oster 	rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
    372  1.29     oster 
    373   1.3     oster 	return (0);
    374   1.1     oster }
    375   1.1     oster 
    376   1.3     oster RF_AccessStripeMapHeader_t *
    377  1.44    cegger rf_AllocAccessStripeMapHeader(void)
    378   1.1     oster {
    379  1.49  christos 	return pool_get(&rf_pools.asm_hdr, PR_WAITOK | PR_ZERO);
    380   1.1     oster }
    381   1.1     oster 
    382  1.38     perry void
    383  1.26     oster rf_FreeAccessStripeMapHeader(RF_AccessStripeMapHeader_t *p)
    384   1.1     oster {
    385  1.32     oster 	pool_put(&rf_pools.asm_hdr, p);
    386   1.1     oster }
    387   1.1     oster 
    388  1.34     oster 
    389  1.34     oster RF_VoidFunctionPointerListElem_t *
    390  1.44    cegger rf_AllocVFPListElem(void)
    391  1.34     oster {
    392  1.49  christos 	return pool_get(&rf_pools.vfple, PR_WAITOK | PR_ZERO);
    393  1.34     oster }
    394  1.34     oster 
    395  1.34     oster void
    396  1.34     oster rf_FreeVFPListElem(RF_VoidFunctionPointerListElem_t *p)
    397  1.34     oster {
    398  1.34     oster 
    399  1.34     oster 	pool_put(&rf_pools.vfple, p);
    400  1.34     oster }
    401  1.34     oster 
    402  1.37     oster 
    403  1.37     oster RF_VoidPointerListElem_t *
    404  1.44    cegger rf_AllocVPListElem(void)
    405  1.37     oster {
    406  1.49  christos 	return pool_get(&rf_pools.vple, PR_WAITOK | PR_ZERO);
    407  1.37     oster }
    408  1.37     oster 
    409  1.37     oster void
    410  1.37     oster rf_FreeVPListElem(RF_VoidPointerListElem_t *p)
    411  1.37     oster {
    412  1.37     oster 
    413  1.37     oster 	pool_put(&rf_pools.vple, p);
    414  1.37     oster }
    415  1.37     oster 
    416  1.34     oster RF_ASMHeaderListElem_t *
    417  1.44    cegger rf_AllocASMHeaderListElem(void)
    418  1.34     oster {
    419  1.49  christos 	return pool_get(&rf_pools.asmhle, PR_WAITOK | PR_ZERO);
    420  1.34     oster }
    421  1.34     oster 
    422  1.34     oster void
    423  1.34     oster rf_FreeASMHeaderListElem(RF_ASMHeaderListElem_t *p)
    424  1.34     oster {
    425  1.34     oster 
    426  1.34     oster 	pool_put(&rf_pools.asmhle, p);
    427  1.34     oster }
    428  1.34     oster 
    429  1.34     oster RF_FailedStripe_t *
    430  1.44    cegger rf_AllocFailedStripeStruct(void)
    431  1.34     oster {
    432  1.49  christos 	return pool_get(&rf_pools.fss, PR_WAITOK | PR_ZERO);
    433  1.34     oster }
    434  1.34     oster 
    435  1.34     oster void
    436  1.34     oster rf_FreeFailedStripeStruct(RF_FailedStripe_t *p)
    437  1.34     oster {
    438  1.34     oster 	pool_put(&rf_pools.fss, p);
    439  1.34     oster }
    440  1.34     oster 
    441  1.34     oster 
    442  1.34     oster 
    443  1.34     oster 
    444  1.34     oster 
    445   1.3     oster RF_PhysDiskAddr_t *
    446  1.44    cegger rf_AllocPhysDiskAddr(void)
    447   1.1     oster {
    448  1.49  christos 	return pool_get(&rf_pools.pda, PR_WAITOK | PR_ZERO);
    449   1.1     oster }
    450  1.25     oster /* allocates a list of PDAs, locking the free list only once when we
    451  1.25     oster  * have to call calloc, we do it one component at a time to simplify
    452  1.25     oster  * the process of freeing the list at program shutdown.  This should
    453  1.25     oster  * not be much of a performance hit, because it should be very
    454  1.25     oster  * infrequently executed.  */
    455   1.3     oster RF_PhysDiskAddr_t *
    456  1.26     oster rf_AllocPDAList(int count)
    457   1.1     oster {
    458  1.24     oster 	RF_PhysDiskAddr_t *p, *prev;
    459  1.24     oster 	int i;
    460  1.24     oster 
    461  1.24     oster 	p = NULL;
    462  1.24     oster 	prev = NULL;
    463  1.24     oster 	for (i = 0; i < count; i++) {
    464  1.32     oster 		p = pool_get(&rf_pools.pda, PR_WAITOK);
    465  1.24     oster 		p->next = prev;
    466  1.24     oster 		prev = p;
    467  1.24     oster 	}
    468   1.1     oster 
    469   1.3     oster 	return (p);
    470   1.1     oster }
    471   1.1     oster 
    472  1.38     perry void
    473  1.26     oster rf_FreePhysDiskAddr(RF_PhysDiskAddr_t *p)
    474   1.1     oster {
    475  1.32     oster 	pool_put(&rf_pools.pda, p);
    476   1.1     oster }
    477   1.1     oster 
    478  1.38     perry static void
    479  1.27     oster rf_FreePDAList(RF_PhysDiskAddr_t *pda_list)
    480   1.1     oster {
    481  1.24     oster 	RF_PhysDiskAddr_t *p, *tmp;
    482  1.24     oster 
    483  1.27     oster 	p=pda_list;
    484  1.24     oster 	while (p) {
    485  1.24     oster 		tmp = p->next;
    486  1.32     oster 		pool_put(&rf_pools.pda, p);
    487  1.24     oster 		p = tmp;
    488  1.24     oster 	}
    489   1.1     oster }
    490   1.1     oster 
    491  1.25     oster /* this is essentially identical to AllocPDAList.  I should combine
    492  1.25     oster  * the two.  when we have to call calloc, we do it one component at a
    493  1.25     oster  * time to simplify the process of freeing the list at program
    494  1.25     oster  * shutdown.  This should not be much of a performance hit, because it
    495  1.25     oster  * should be very infrequently executed.  */
    496   1.3     oster RF_AccessStripeMap_t *
    497  1.26     oster rf_AllocASMList(int count)
    498   1.1     oster {
    499  1.24     oster 	RF_AccessStripeMap_t *p, *prev;
    500  1.24     oster 	int i;
    501   1.1     oster 
    502  1.24     oster 	p = NULL;
    503  1.24     oster 	prev = NULL;
    504  1.24     oster 	for (i = 0; i < count; i++) {
    505  1.32     oster 		p = pool_get(&rf_pools.asmap, PR_WAITOK);
    506  1.24     oster 		p->next = prev;
    507  1.24     oster 		prev = p;
    508  1.24     oster 	}
    509   1.3     oster 	return (p);
    510   1.1     oster }
    511   1.1     oster 
    512  1.38     perry static void
    513  1.27     oster rf_FreeASMList(RF_AccessStripeMap_t *asm_list)
    514   1.3     oster {
    515  1.24     oster 	RF_AccessStripeMap_t *p, *tmp;
    516  1.24     oster 
    517  1.27     oster 	p=asm_list;
    518  1.24     oster 	while (p) {
    519  1.24     oster 		tmp = p->next;
    520  1.32     oster 		pool_put(&rf_pools.asmap, p);
    521  1.24     oster 		p = tmp;
    522  1.24     oster 	}
    523   1.3     oster }
    524   1.3     oster 
    525  1.38     perry void
    526  1.26     oster rf_FreeAccessStripeMap(RF_AccessStripeMapHeader_t *hdr)
    527   1.3     oster {
    528  1.28     oster 	RF_AccessStripeMap_t *p;
    529   1.3     oster 	RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
    530  1.47     oster 	int     count = 0, t;
    531   1.3     oster 
    532   1.3     oster 	for (p = hdr->stripeMap; p; p = p->next) {
    533   1.3     oster 
    534   1.3     oster 		/* link the 3 pda lists into the accumulating pda list */
    535   1.3     oster 
    536   1.3     oster 		if (!pdaList)
    537   1.3     oster 			pdaList = p->qInfo;
    538   1.3     oster 		else
    539   1.3     oster 			pdaEnd->next = p->qInfo;
    540   1.3     oster 		for (trailer = NULL, pdp = p->qInfo; pdp;) {
    541   1.3     oster 			trailer = pdp;
    542   1.3     oster 			pdp = pdp->next;
    543   1.3     oster 			count++;
    544   1.3     oster 		}
    545   1.3     oster 		if (trailer)
    546   1.3     oster 			pdaEnd = trailer;
    547   1.3     oster 
    548   1.3     oster 		if (!pdaList)
    549   1.3     oster 			pdaList = p->parityInfo;
    550   1.3     oster 		else
    551   1.3     oster 			pdaEnd->next = p->parityInfo;
    552   1.3     oster 		for (trailer = NULL, pdp = p->parityInfo; pdp;) {
    553   1.3     oster 			trailer = pdp;
    554   1.3     oster 			pdp = pdp->next;
    555   1.3     oster 			count++;
    556   1.3     oster 		}
    557   1.3     oster 		if (trailer)
    558   1.3     oster 			pdaEnd = trailer;
    559   1.3     oster 
    560   1.3     oster 		if (!pdaList)
    561   1.3     oster 			pdaList = p->physInfo;
    562   1.3     oster 		else
    563   1.3     oster 			pdaEnd->next = p->physInfo;
    564   1.3     oster 		for (trailer = NULL, pdp = p->physInfo; pdp;) {
    565   1.3     oster 			trailer = pdp;
    566   1.3     oster 			pdp = pdp->next;
    567   1.3     oster 			count++;
    568   1.3     oster 		}
    569   1.3     oster 		if (trailer)
    570   1.3     oster 			pdaEnd = trailer;
    571   1.3     oster 	}
    572   1.3     oster 
    573   1.3     oster 	/* debug only */
    574   1.3     oster 	for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
    575   1.3     oster 		t++;
    576   1.3     oster 	RF_ASSERT(t == count);
    577   1.3     oster 
    578   1.3     oster 	if (pdaList)
    579  1.27     oster 		rf_FreePDAList(pdaList);
    580  1.27     oster 	rf_FreeASMList(hdr->stripeMap);
    581   1.3     oster 	rf_FreeAccessStripeMapHeader(hdr);
    582   1.1     oster }
    583  1.21     oster /* We can't use the large write optimization if there are any failures
    584  1.21     oster  * in the stripe.  In the declustered layout, there is no way to
    585  1.21     oster  * immediately determine what disks constitute a stripe, so we
    586  1.21     oster  * actually have to hunt through the stripe looking for failures.  The
    587  1.21     oster  * reason we map the parity instead of just using asm->parityInfo->col
    588  1.21     oster  * is because the latter may have been already redirected to a spare
    589  1.21     oster  * drive, which would mess up the computation of the stripe offset.
    590   1.1     oster  *
    591  1.21     oster  * ASSUMES AT MOST ONE FAILURE IN THE STRIPE.  */
    592  1.38     perry int
    593  1.26     oster rf_CheckStripeForFailures(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    594   1.3     oster {
    595  1.23     oster 	RF_RowCol_t tcol, pcol, *diskids, i;
    596   1.3     oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    597   1.3     oster 	RF_StripeCount_t stripeOffset;
    598   1.3     oster 	int     numFailures;
    599   1.3     oster 	RF_RaidAddr_t sosAddr;
    600   1.3     oster 	RF_SectorNum_t diskOffset, poffset;
    601   1.3     oster 
    602   1.3     oster 	/* quick out in the fault-free case.  */
    603  1.45       mrg 	rf_lock_mutex2(raidPtr->mutex);
    604   1.3     oster 	numFailures = raidPtr->numFailures;
    605  1.45       mrg 	rf_unlock_mutex2(raidPtr->mutex);
    606   1.3     oster 	if (numFailures == 0)
    607   1.3     oster 		return (0);
    608   1.3     oster 
    609  1.38     perry 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
    610  1.25     oster 						     asmap->raidAddress);
    611  1.38     perry 	(layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress,
    612  1.25     oster 					  &diskids);
    613  1.38     perry 	(layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress,
    614  1.25     oster 				     &pcol, &poffset, 0);	/* get pcol */
    615   1.3     oster 
    616  1.25     oster 	/* this need not be true if we've redirected the access to a
    617  1.25     oster 	 * spare in another row RF_ASSERT(row == testrow); */
    618   1.3     oster 	stripeOffset = 0;
    619   1.3     oster 	for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
    620   1.3     oster 		if (diskids[i] != pcol) {
    621  1.23     oster 			if (RF_DEAD_DISK(raidPtr->Disks[diskids[i]].status)) {
    622  1.23     oster 				if (raidPtr->status != rf_rs_reconstructing)
    623   1.3     oster 					return (1);
    624  1.23     oster 				RF_ASSERT(raidPtr->reconControl->fcol == diskids[i]);
    625   1.3     oster 				layoutPtr->map->MapSector(raidPtr,
    626   1.3     oster 				    sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
    627  1.23     oster 				    &tcol, &diskOffset, 0);
    628  1.23     oster 				RF_ASSERT(tcol == diskids[i]);
    629  1.23     oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, diskOffset))
    630   1.3     oster 					return (1);
    631   1.3     oster 				asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
    632   1.3     oster 				return (0);
    633   1.3     oster 			}
    634   1.3     oster 			stripeOffset++;
    635   1.3     oster 		}
    636   1.3     oster 	}
    637   1.3     oster 	return (0);
    638   1.1     oster }
    639  1.18     oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
    640   1.1     oster /*
    641   1.1     oster    return the number of failed data units in the stripe.
    642   1.1     oster */
    643   1.1     oster 
    644  1.38     perry int
    645  1.26     oster rf_NumFailedDataUnitsInStripe(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    646   1.3     oster {
    647   1.3     oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    648  1.23     oster 	RF_RowCol_t tcol, i;
    649   1.3     oster 	RF_SectorNum_t diskOffset;
    650   1.3     oster 	RF_RaidAddr_t sosAddr;
    651   1.3     oster 	int     numFailures;
    652   1.3     oster 
    653   1.3     oster 	/* quick out in the fault-free case.  */
    654  1.45       mrg 	rf_lock_mutex2(raidPtr->mutex);
    655   1.3     oster 	numFailures = raidPtr->numFailures;
    656  1.45       mrg 	rf_unlock_mutex2(raidPtr->mutex);
    657   1.3     oster 	if (numFailures == 0)
    658   1.3     oster 		return (0);
    659   1.3     oster 	numFailures = 0;
    660   1.3     oster 
    661  1.38     perry 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
    662  1.25     oster 						     asmap->raidAddress);
    663   1.3     oster 	for (i = 0; i < layoutPtr->numDataCol; i++) {
    664   1.3     oster 		(layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
    665  1.40     oster 		    &tcol, &diskOffset, 0);
    666  1.23     oster 		if (RF_DEAD_DISK(raidPtr->Disks[tcol].status))
    667   1.3     oster 			numFailures++;
    668   1.3     oster 	}
    669   1.1     oster 
    670   1.3     oster 	return numFailures;
    671   1.1     oster }
    672  1.18     oster #endif
    673   1.1     oster 
    674  1.25     oster /****************************************************************************
    675   1.1     oster  *
    676   1.1     oster  * debug routines
    677   1.1     oster  *
    678  1.25     oster  ***************************************************************************/
    679  1.18     oster #if RF_DEBUG_MAP
    680  1.38     perry void
    681  1.26     oster rf_PrintAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h)
    682   1.1     oster {
    683   1.3     oster 	rf_PrintFullAccessStripeMap(asm_h, 0);
    684   1.1     oster }
    685  1.18     oster #endif
    686   1.1     oster 
    687  1.26     oster /* prbuf - flag to print buffer pointers */
    688  1.38     perry void
    689  1.26     oster rf_PrintFullAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h, int prbuf)
    690   1.3     oster {
    691   1.3     oster 	int     i;
    692   1.3     oster 	RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
    693   1.3     oster 	RF_PhysDiskAddr_t *p;
    694   1.3     oster 	printf("%d stripes total\n", (int) asm_h->numStripes);
    695   1.3     oster 	for (; asmap; asmap = asmap->next) {
    696   1.3     oster 		/* printf("Num failures: %d\n",asmap->numDataFailed); */
    697   1.3     oster 		/* printf("Num sectors:
    698   1.3     oster 		 * %d\n",(int)asmap->totalSectorsAccessed); */
    699   1.3     oster 		printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
    700   1.3     oster 		    (int) asmap->stripeID,
    701   1.3     oster 		    (int) asmap->totalSectorsAccessed,
    702   1.3     oster 		    (int) asmap->numDataFailed,
    703   1.3     oster 		    (int) asmap->numParityFailed);
    704   1.3     oster 		if (asmap->parityInfo) {
    705  1.23     oster 			printf("Parity [c%d s%d-%d", asmap->parityInfo->col,
    706   1.3     oster 			    (int) asmap->parityInfo->startSector,
    707   1.3     oster 			    (int) (asmap->parityInfo->startSector +
    708   1.3     oster 				asmap->parityInfo->numSector - 1));
    709   1.3     oster 			if (prbuf)
    710   1.3     oster 				printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
    711   1.3     oster 			if (asmap->parityInfo->next) {
    712  1.23     oster 				printf(", c%d s%d-%d", asmap->parityInfo->next->col,
    713   1.3     oster 				    (int) asmap->parityInfo->next->startSector,
    714   1.3     oster 				    (int) (asmap->parityInfo->next->startSector +
    715   1.3     oster 					asmap->parityInfo->next->numSector - 1));
    716   1.3     oster 				if (prbuf)
    717   1.3     oster 					printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
    718   1.3     oster 				RF_ASSERT(asmap->parityInfo->next->next == NULL);
    719   1.3     oster 			}
    720   1.3     oster 			printf("]\n\t");
    721   1.3     oster 		}
    722   1.3     oster 		for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
    723  1.23     oster 			printf("SU c%d s%d-%d ", p->col, (int) p->startSector,
    724   1.3     oster 			    (int) (p->startSector + p->numSector - 1));
    725   1.3     oster 			if (prbuf)
    726   1.3     oster 				printf("b0x%lx ", (unsigned long) p->bufPtr);
    727   1.3     oster 			if (i && !(i & 1))
    728   1.3     oster 				printf("\n\t");
    729   1.3     oster 		}
    730   1.3     oster 		printf("\n");
    731   1.3     oster 		p = asm_h->stripeMap->failedPDAs[0];
    732   1.3     oster 		if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
    733   1.3     oster 			printf("[multiple failures]\n");
    734   1.3     oster 		else
    735   1.3     oster 			if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
    736  1.23     oster 				printf("\t[Failed PDA: c%d s%d-%d]\n", p->col,
    737   1.3     oster 				    (int) p->startSector, (int) (p->startSector + p->numSector - 1));
    738   1.3     oster 	}
    739   1.1     oster }
    740   1.1     oster 
    741  1.15     oster #if RF_MAP_DEBUG
    742  1.38     perry void
    743  1.38     perry rf_PrintRaidAddressInfo(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
    744  1.26     oster 			RF_SectorCount_t numBlocks)
    745   1.3     oster {
    746   1.3     oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    747   1.3     oster 	RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
    748   1.3     oster 
    749   1.3     oster 	printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
    750   1.3     oster 	for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
    751   1.3     oster 		printf("%d (0x%x), ", (int) ra, (int) ra);
    752   1.3     oster 	}
    753   1.3     oster 	printf("\n");
    754   1.3     oster 	printf("Offset into stripe unit: %d (0x%x)\n",
    755   1.3     oster 	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
    756   1.3     oster 	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
    757   1.3     oster }
    758  1.15     oster #endif
    759  1.25     oster /* given a parity descriptor and the starting address within a stripe,
    760  1.25     oster  * range restrict the parity descriptor to touch only the correct
    761  1.25     oster  * stuff.  */
    762  1.38     perry void
    763  1.26     oster rf_ASMParityAdjust(RF_PhysDiskAddr_t *toAdjust,
    764  1.26     oster 		   RF_StripeNum_t startAddrWithinStripe,
    765  1.26     oster 		   RF_SectorNum_t endAddress,
    766  1.26     oster 		   RF_RaidLayout_t *layoutPtr,
    767  1.26     oster 		   RF_AccessStripeMap_t *asm_p)
    768   1.3     oster {
    769   1.3     oster 	RF_PhysDiskAddr_t *new_pda;
    770   1.3     oster 
    771  1.25     oster 	/* when we're accessing only a portion of one stripe unit, we
    772  1.25     oster 	 * want the parity descriptor to identify only the chunk of
    773  1.25     oster 	 * parity associated with the data.  When the access spans
    774  1.25     oster 	 * exactly one stripe unit boundary and is less than a stripe
    775  1.25     oster 	 * unit in size, it uses two disjoint regions of the parity
    776  1.25     oster 	 * unit.  When an access spans more than one stripe unit
    777  1.25     oster 	 * boundary, it uses all of the parity unit.
    778  1.38     perry 	 *
    779  1.25     oster 	 * To better handle the case where stripe units are small, we
    780  1.25     oster 	 * may eventually want to change the 2nd case so that if the
    781  1.25     oster 	 * SU size is below some threshold, we just read/write the
    782  1.25     oster 	 * whole thing instead of breaking it up into two accesses. */
    783   1.3     oster 	if (asm_p->numStripeUnitsAccessed == 1) {
    784   1.3     oster 		int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
    785   1.3     oster 		toAdjust->startSector += x;
    786   1.3     oster 		toAdjust->raidAddress += x;
    787   1.3     oster 		toAdjust->numSector = asm_p->physInfo->numSector;
    788   1.3     oster 		RF_ASSERT(toAdjust->numSector != 0);
    789   1.3     oster 	} else
    790   1.3     oster 		if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
    791   1.3     oster 			int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
    792   1.3     oster 
    793   1.3     oster 			/* create a second pda and copy the parity map info
    794   1.3     oster 			 * into it */
    795   1.3     oster 			RF_ASSERT(toAdjust->next == NULL);
    796  1.38     perry 			/* the following will get freed in rf_FreeAccessStripeMap() via
    797  1.35     oster 			   rf_FreePDAList() */
    798   1.3     oster 			new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
    799   1.3     oster 			*new_pda = *toAdjust;	/* structure assignment */
    800   1.3     oster 			new_pda->next = NULL;
    801   1.3     oster 
    802   1.3     oster 			/* adjust the start sector & number of blocks for the
    803   1.3     oster 			 * first parity pda */
    804   1.3     oster 			toAdjust->startSector += x;
    805   1.3     oster 			toAdjust->raidAddress += x;
    806   1.3     oster 			toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
    807   1.3     oster 			RF_ASSERT(toAdjust->numSector != 0);
    808   1.3     oster 
    809   1.3     oster 			/* adjust the second pda */
    810   1.3     oster 			new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
    811   1.3     oster 			/* new_pda->raidAddress =
    812   1.3     oster 			 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
    813   1.3     oster 			 * toAdjust->raidAddress); */
    814   1.3     oster 			RF_ASSERT(new_pda->numSector != 0);
    815   1.3     oster 		}
    816   1.1     oster }
    817  1.11     oster 
    818  1.25     oster /* Check if a disk has been spared or failed. If spared, redirect the
    819  1.46     oster  * I/O.  If it has been failed, record it in the asm pointer.  Fifth
    820  1.25     oster  * arg is whether data or parity.  */
    821  1.38     perry void
    822  1.26     oster rf_ASMCheckStatus(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda_p,
    823  1.26     oster 		  RF_AccessStripeMap_t *asm_p, RF_RaidDisk_t *disks,
    824  1.26     oster 		  int parity)
    825   1.3     oster {
    826   1.3     oster 	RF_DiskStatus_t dstatus;
    827  1.23     oster 	RF_RowCol_t fcol;
    828   1.3     oster 
    829  1.23     oster 	dstatus = disks[pda_p->col].status;
    830   1.3     oster 
    831   1.3     oster 	if (dstatus == rf_ds_spared) {
    832   1.3     oster 		/* if the disk has been spared, redirect access to the spare */
    833   1.3     oster 		fcol = pda_p->col;
    834  1.23     oster 		pda_p->col = disks[fcol].spareCol;
    835   1.3     oster 	} else
    836   1.3     oster 		if (dstatus == rf_ds_dist_spared) {
    837   1.3     oster 			/* ditto if disk has been spared to dist spare space */
    838  1.15     oster #if RF_DEBUG_MAP
    839  1.23     oster 			RF_RowCol_t oc = pda_p->col;
    840   1.3     oster 			RF_SectorNum_t oo = pda_p->startSector;
    841  1.15     oster #endif
    842   1.3     oster 			if (pda_p->type == RF_PDA_TYPE_DATA)
    843  1.23     oster 				raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
    844   1.3     oster 			else
    845  1.23     oster 				raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
    846   1.3     oster 
    847  1.15     oster #if RF_DEBUG_MAP
    848   1.3     oster 			if (rf_mapDebug) {
    849  1.23     oster 				printf("Redirected c %d o %d -> c %d o %d\n", oc, (int) oo,
    850  1.23     oster 				    pda_p->col, (int) pda_p->startSector);
    851   1.3     oster 			}
    852  1.15     oster #endif
    853   1.3     oster 		} else
    854   1.3     oster 			if (RF_DEAD_DISK(dstatus)) {
    855   1.3     oster 				/* if the disk is inaccessible, mark the
    856   1.3     oster 				 * failure */
    857   1.3     oster 				if (parity)
    858   1.3     oster 					asm_p->numParityFailed++;
    859   1.3     oster 				else {
    860   1.3     oster 					asm_p->numDataFailed++;
    861   1.3     oster 				}
    862   1.3     oster 				asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
    863   1.3     oster 				asm_p->numFailedPDAs++;
    864   1.1     oster #if 0
    865   1.3     oster 				switch (asm_p->numParityFailed + asm_p->numDataFailed) {
    866   1.3     oster 				case 1:
    867   1.3     oster 					asm_p->failedPDAs[0] = pda_p;
    868   1.3     oster 					break;
    869   1.3     oster 				case 2:
    870   1.3     oster 					asm_p->failedPDAs[1] = pda_p;
    871   1.3     oster 				default:
    872   1.3     oster 					break;
    873   1.3     oster 				}
    874   1.1     oster #endif
    875   1.3     oster 			}
    876   1.3     oster 	/* the redirected access should never span a stripe unit boundary */
    877   1.3     oster 	RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
    878   1.3     oster 	    rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
    879   1.3     oster 	RF_ASSERT(pda_p->col != -1);
    880   1.1     oster }
    881