Home | History | Annotate | Line # | Download | only in raidframe
rf_map.c revision 1.5.2.9
      1  1.5.2.7  nathanw /*	$NetBSD: rf_map.c,v 1.5.2.9 2002/10/18 02:43:50 nathanw Exp $	*/
      2      1.1    oster /*
      3      1.1    oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4      1.1    oster  * All rights reserved.
      5      1.1    oster  *
      6      1.1    oster  * Author: Mark Holland
      7      1.1    oster  *
      8      1.1    oster  * Permission to use, copy, modify and distribute this software and
      9      1.1    oster  * its documentation is hereby granted, provided that both the copyright
     10      1.1    oster  * notice and this permission notice appear in all copies of the
     11      1.1    oster  * software, derivative works or modified versions, and any portions
     12      1.1    oster  * thereof, and that both notices appear in supporting documentation.
     13      1.1    oster  *
     14      1.1    oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15      1.1    oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16      1.1    oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17      1.1    oster  *
     18      1.1    oster  * Carnegie Mellon requests users of this software to return to
     19      1.1    oster  *
     20      1.1    oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21      1.1    oster  *  School of Computer Science
     22      1.1    oster  *  Carnegie Mellon University
     23      1.1    oster  *  Pittsburgh PA 15213-3890
     24      1.1    oster  *
     25      1.1    oster  * any improvements or extensions that they make and grant Carnegie the
     26      1.1    oster  * rights to redistribute these changes.
     27      1.1    oster  */
     28      1.1    oster 
     29      1.1    oster /**************************************************************************
     30      1.1    oster  *
     31      1.1    oster  * map.c -- main code for mapping RAID addresses to physical disk addresses
     32      1.1    oster  *
     33      1.1    oster  **************************************************************************/
     34  1.5.2.3  nathanw 
     35  1.5.2.3  nathanw #include <sys/cdefs.h>
     36  1.5.2.7  nathanw __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.5.2.9 2002/10/18 02:43:50 nathanw Exp $");
     37      1.1    oster 
     38  1.5.2.2  nathanw #include <dev/raidframe/raidframevar.h>
     39  1.5.2.2  nathanw 
     40      1.1    oster #include "rf_threadstuff.h"
     41      1.1    oster #include "rf_raid.h"
     42      1.1    oster #include "rf_general.h"
     43      1.1    oster #include "rf_map.h"
     44      1.1    oster #include "rf_freelist.h"
     45      1.1    oster #include "rf_shutdown.h"
     46      1.1    oster 
     47      1.3    oster static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count);
     48      1.3    oster static void
     49      1.3    oster rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end,
     50      1.3    oster     int count);
     51      1.1    oster 
     52  1.5.2.9  nathanw /***************************************************************************
     53      1.1    oster  *
     54  1.5.2.9  nathanw  * MapAccess -- main 1st order mapping routine.  Maps an access in the
     55  1.5.2.9  nathanw  * RAID address space to the corresponding set of physical disk
     56  1.5.2.9  nathanw  * addresses.  The result is returned as a list of AccessStripeMap
     57  1.5.2.9  nathanw  * structures, one per stripe accessed.  Each ASM structure contains a
     58  1.5.2.9  nathanw  * pointer to a list of PhysDiskAddr structures, which describe the
     59  1.5.2.9  nathanw  * physical locations touched by the user access.  Note that this routine
     60  1.5.2.9  nathanw  * returns only static mapping information, i.e. the list of physical
     61  1.5.2.9  nathanw  * addresses returned does not necessarily identify the set of physical
     62  1.5.2.9  nathanw  * locations that will actually be read or written.  The routine also
     63  1.5.2.9  nathanw  * maps the parity.  The physical disk location returned always indicates
     64  1.5.2.9  nathanw  * the entire parity unit, even when only a subset of it is being
     65  1.5.2.9  nathanw  * accessed.  This is because an access that is not stripe unit aligned
     66  1.5.2.9  nathanw  * but that spans a stripe unit boundary may require access two distinct
     67  1.5.2.9  nathanw  * portions of the parity unit, and we can't yet tell which portion(s)
     68  1.5.2.9  nathanw  * we'll actually need.  We leave it up to the algorithm selection code
     69  1.5.2.9  nathanw  * to decide what subset of the parity unit to access.  Note that
     70  1.5.2.9  nathanw  * addresses in the RAID address space must always be maintained as
     71      1.1    oster  * longs, instead of ints.
     72  1.5.2.9  nathanw  *
     73      1.1    oster  * This routine returns NULL if numBlocks is 0
     74      1.1    oster  *
     75  1.5.2.9  nathanw  ***************************************************************************/
     76      1.1    oster 
     77      1.3    oster RF_AccessStripeMapHeader_t *
     78      1.3    oster rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap)
     79      1.3    oster 	RF_Raid_t *raidPtr;
     80      1.3    oster 	RF_RaidAddr_t raidAddress;	/* starting address in RAID address
     81      1.3    oster 					 * space */
     82      1.3    oster 	RF_SectorCount_t numBlocks;	/* number of blocks in RAID address
     83      1.3    oster 					 * space to access */
     84      1.3    oster 	caddr_t buffer;		/* buffer to supply/receive data */
     85      1.3    oster 	int     remap;		/* 1 => remap addresses to spare space */
     86      1.3    oster {
     87      1.3    oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
     88      1.3    oster 	RF_AccessStripeMapHeader_t *asm_hdr = NULL;
     89      1.3    oster 	RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
     90      1.3    oster 	int     faultsTolerated = layoutPtr->map->faultsTolerated;
     91      1.3    oster 	RF_RaidAddr_t startAddress = raidAddress;	/* we'll change
     92      1.3    oster 							 * raidAddress along the
     93      1.3    oster 							 * way */
     94      1.3    oster 	RF_RaidAddr_t endAddress = raidAddress + numBlocks;
     95      1.3    oster 	RF_RaidDisk_t **disks = raidPtr->Disks;
     96      1.3    oster 
     97      1.3    oster 	RF_PhysDiskAddr_t *pda_p, *pda_q;
     98      1.3    oster 	RF_StripeCount_t numStripes = 0;
     99      1.3    oster 	RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress;
    100      1.3    oster 	RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
    101      1.3    oster 	RF_StripeCount_t totStripes;
    102      1.3    oster 	RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
    103      1.3    oster 	RF_AccessStripeMap_t *asmList, *t_asm;
    104      1.3    oster 	RF_PhysDiskAddr_t *pdaList, *t_pda;
    105      1.3    oster 
    106      1.3    oster 	/* allocate all the ASMs and PDAs up front */
    107      1.3    oster 	lastRaidAddr = raidAddress + numBlocks - 1;
    108      1.3    oster 	stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
    109      1.3    oster 	lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
    110      1.3    oster 	totStripes = lastSID - stripeID + 1;
    111      1.3    oster 	SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
    112      1.3    oster 	lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
    113      1.3    oster 
    114      1.3    oster 	asmList = rf_AllocASMList(totStripes);
    115      1.3    oster 	pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes);	/* may also need pda(s)
    116      1.3    oster 											 * per stripe for parity */
    117      1.3    oster 
    118      1.3    oster 	if (raidAddress + numBlocks > raidPtr->totalSectors) {
    119      1.3    oster 		RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
    120      1.3    oster 		    (int) raidAddress);
    121      1.3    oster 		return (NULL);
    122      1.3    oster 	}
    123  1.5.2.9  nathanw #if RF_DEBUG_MAP
    124      1.3    oster 	if (rf_mapDebug)
    125      1.3    oster 		rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
    126  1.5.2.9  nathanw #endif
    127      1.3    oster 	for (; raidAddress < endAddress;) {
    128      1.3    oster 		/* make the next stripe structure */
    129      1.3    oster 		RF_ASSERT(asmList);
    130      1.3    oster 		t_asm = asmList;
    131      1.3    oster 		asmList = asmList->next;
    132  1.5.2.1  nathanw 		memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
    133      1.3    oster 		if (!asm_p)
    134      1.3    oster 			asm_list = asm_p = t_asm;
    135      1.3    oster 		else {
    136      1.3    oster 			asm_p->next = t_asm;
    137      1.3    oster 			asm_p = asm_p->next;
    138      1.3    oster 		}
    139      1.3    oster 		numStripes++;
    140      1.3    oster 
    141      1.3    oster 		/* map SUs from current location to the end of the stripe */
    142      1.3    oster 		asm_p->stripeID =	/* rf_RaidAddressToStripeID(layoutPtr,
    143      1.3    oster 		        raidAddress) */ stripeID++;
    144      1.3    oster 		stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
    145      1.3    oster 		stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
    146      1.3    oster 		asm_p->raidAddress = raidAddress;
    147      1.3    oster 		asm_p->endRaidAddress = stripeEndAddress;
    148      1.3    oster 
    149      1.3    oster 		/* map each stripe unit in the stripe */
    150      1.3    oster 		pda_p = NULL;
    151      1.3    oster 		startAddrWithinStripe = raidAddress;	/* Raid addr of start of
    152      1.3    oster 							 * portion of access
    153      1.3    oster 							 * that is within this
    154      1.3    oster 							 * stripe */
    155      1.3    oster 		for (; raidAddress < stripeEndAddress;) {
    156      1.3    oster 			RF_ASSERT(pdaList);
    157      1.3    oster 			t_pda = pdaList;
    158      1.3    oster 			pdaList = pdaList->next;
    159  1.5.2.1  nathanw 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    160      1.3    oster 			if (!pda_p)
    161      1.3    oster 				asm_p->physInfo = pda_p = t_pda;
    162      1.3    oster 			else {
    163      1.3    oster 				pda_p->next = t_pda;
    164      1.3    oster 				pda_p = pda_p->next;
    165      1.3    oster 			}
    166      1.3    oster 
    167      1.3    oster 			pda_p->type = RF_PDA_TYPE_DATA;
    168      1.3    oster 			(layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
    169      1.3    oster 
    170      1.3    oster 			/* mark any failures we find.  failedPDA is don't-care
    171      1.3    oster 			 * if there is more than one failure */
    172      1.3    oster 			pda_p->raidAddress = raidAddress;	/* the RAID address
    173      1.3    oster 								 * corresponding to this
    174      1.3    oster 								 * physical disk address */
    175      1.3    oster 			nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
    176      1.3    oster 			pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
    177      1.3    oster 			RF_ASSERT(pda_p->numSector != 0);
    178      1.3    oster 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
    179      1.3    oster 			pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
    180      1.3    oster 			asm_p->totalSectorsAccessed += pda_p->numSector;
    181      1.3    oster 			asm_p->numStripeUnitsAccessed++;
    182      1.3    oster 			asm_p->origRow = pda_p->row;	/* redundant but
    183      1.3    oster 							 * harmless to do this
    184      1.3    oster 							 * in every loop
    185      1.3    oster 							 * iteration */
    186      1.3    oster 
    187      1.3    oster 			raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
    188      1.3    oster 		}
    189      1.3    oster 
    190      1.3    oster 		/* Map the parity. At this stage, the startSector and
    191      1.3    oster 		 * numSector fields for the parity unit are always set to
    192      1.3    oster 		 * indicate the entire parity unit. We may modify this after
    193      1.3    oster 		 * mapping the data portion. */
    194      1.3    oster 		switch (faultsTolerated) {
    195      1.3    oster 		case 0:
    196      1.3    oster 			break;
    197      1.3    oster 		case 1:	/* single fault tolerant */
    198      1.3    oster 			RF_ASSERT(pdaList);
    199      1.3    oster 			t_pda = pdaList;
    200      1.3    oster 			pdaList = pdaList->next;
    201  1.5.2.1  nathanw 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    202      1.3    oster 			pda_p = asm_p->parityInfo = t_pda;
    203      1.3    oster 			pda_p->type = RF_PDA_TYPE_PARITY;
    204      1.3    oster 			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    205      1.3    oster 			    &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
    206      1.3    oster 			pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
    207      1.3    oster 			/* raidAddr may be needed to find unit to redirect to */
    208      1.3    oster 			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    209      1.3    oster 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
    210      1.3    oster 			rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    211      1.3    oster 
    212      1.3    oster 			break;
    213      1.3    oster 		case 2:	/* two fault tolerant */
    214      1.3    oster 			RF_ASSERT(pdaList && pdaList->next);
    215      1.3    oster 			t_pda = pdaList;
    216      1.3    oster 			pdaList = pdaList->next;
    217  1.5.2.1  nathanw 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    218      1.3    oster 			pda_p = asm_p->parityInfo = t_pda;
    219      1.3    oster 			pda_p->type = RF_PDA_TYPE_PARITY;
    220      1.3    oster 			t_pda = pdaList;
    221      1.3    oster 			pdaList = pdaList->next;
    222  1.5.2.1  nathanw 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    223      1.3    oster 			pda_q = asm_p->qInfo = t_pda;
    224      1.3    oster 			pda_q->type = RF_PDA_TYPE_Q;
    225      1.3    oster 			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    226      1.3    oster 			    &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
    227      1.3    oster 			(layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    228      1.3    oster 			    &(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap);
    229      1.3    oster 			pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
    230      1.3    oster 			/* raidAddr may be needed to find unit to redirect to */
    231      1.3    oster 			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    232      1.3    oster 			pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    233      1.3    oster 			/* failure mode stuff */
    234      1.3    oster 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
    235      1.3    oster 			rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
    236      1.3    oster 			rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    237      1.3    oster 			rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    238      1.3    oster 			break;
    239      1.3    oster 		}
    240      1.3    oster 	}
    241      1.3    oster 	RF_ASSERT(asmList == NULL && pdaList == NULL);
    242      1.3    oster 	/* make the header structure */
    243      1.3    oster 	asm_hdr = rf_AllocAccessStripeMapHeader();
    244      1.3    oster 	RF_ASSERT(numStripes == totStripes);
    245      1.3    oster 	asm_hdr->numStripes = numStripes;
    246      1.3    oster 	asm_hdr->stripeMap = asm_list;
    247      1.3    oster 
    248  1.5.2.9  nathanw #if RF_DEBUG_MAP
    249      1.3    oster 	if (rf_mapDebug)
    250      1.3    oster 		rf_PrintAccessStripeMap(asm_hdr);
    251  1.5.2.9  nathanw #endif
    252      1.3    oster 	return (asm_hdr);
    253      1.1    oster }
    254  1.5.2.9  nathanw 
    255  1.5.2.9  nathanw /***************************************************************************
    256  1.5.2.9  nathanw  * This routine walks through an ASM list and marks the PDAs that have
    257  1.5.2.9  nathanw  * failed.  It's called only when a disk failure causes an in-flight
    258  1.5.2.9  nathanw  * DAG to fail.  The parity may consist of two components, but we want
    259  1.5.2.9  nathanw  * to use only one failedPDA pointer.  Thus we set failedPDA to point
    260  1.5.2.9  nathanw  * to the first parity component, and rely on the rest of the code to
    261  1.5.2.9  nathanw  * do the right thing with this.
    262  1.5.2.9  nathanw  ***************************************************************************/
    263      1.1    oster 
    264      1.3    oster void
    265      1.3    oster rf_MarkFailuresInASMList(raidPtr, asm_h)
    266      1.3    oster 	RF_Raid_t *raidPtr;
    267      1.3    oster 	RF_AccessStripeMapHeader_t *asm_h;
    268      1.3    oster {
    269      1.3    oster 	RF_RaidDisk_t **disks = raidPtr->Disks;
    270      1.3    oster 	RF_AccessStripeMap_t *asmap;
    271      1.3    oster 	RF_PhysDiskAddr_t *pda;
    272      1.3    oster 
    273      1.3    oster 	for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
    274      1.3    oster 		asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0;
    275      1.3    oster 		asmap->numFailedPDAs = 0;
    276  1.5.2.1  nathanw 		memset((char *) asmap->failedPDAs, 0,
    277      1.3    oster 		    RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
    278      1.3    oster 		for (pda = asmap->physInfo; pda; pda = pda->next) {
    279      1.3    oster 			if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
    280      1.3    oster 				asmap->numDataFailed++;
    281      1.3    oster 				asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    282      1.3    oster 				asmap->numFailedPDAs++;
    283      1.3    oster 			}
    284      1.3    oster 		}
    285      1.3    oster 		pda = asmap->parityInfo;
    286      1.3    oster 		if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
    287      1.3    oster 			asmap->numParityFailed++;
    288      1.3    oster 			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    289      1.3    oster 			asmap->numFailedPDAs++;
    290      1.3    oster 		}
    291      1.3    oster 		pda = asmap->qInfo;
    292      1.3    oster 		if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
    293      1.3    oster 			asmap->numQFailed++;
    294      1.3    oster 			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    295      1.3    oster 			asmap->numFailedPDAs++;
    296      1.3    oster 		}
    297      1.3    oster 	}
    298      1.1    oster }
    299      1.3    oster 
    300  1.5.2.9  nathanw /***************************************************************************
    301      1.1    oster  *
    302  1.5.2.9  nathanw  * routines to allocate and free list elements.  All allocation
    303  1.5.2.9  nathanw  * routines zero the structure before returning it.
    304      1.1    oster  *
    305  1.5.2.9  nathanw  * FreePhysDiskAddr is static.  It should never be called directly,
    306  1.5.2.9  nathanw  * because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
    307  1.5.2.9  nathanw  * list.
    308      1.1    oster  *
    309  1.5.2.9  nathanw  ***************************************************************************/
    310      1.1    oster 
    311      1.1    oster static RF_FreeList_t *rf_asmhdr_freelist;
    312      1.1    oster #define RF_MAX_FREE_ASMHDR 128
    313      1.1    oster #define RF_ASMHDR_INC       16
    314      1.1    oster #define RF_ASMHDR_INITIAL   32
    315      1.1    oster 
    316      1.1    oster static RF_FreeList_t *rf_asm_freelist;
    317      1.1    oster #define RF_MAX_FREE_ASM 192
    318      1.1    oster #define RF_ASM_INC       24
    319      1.1    oster #define RF_ASM_INITIAL   64
    320      1.1    oster 
    321      1.1    oster static RF_FreeList_t *rf_pda_freelist;
    322      1.1    oster #define RF_MAX_FREE_PDA 192
    323      1.1    oster #define RF_PDA_INC       24
    324      1.1    oster #define RF_PDA_INITIAL   64
    325      1.1    oster 
    326      1.1    oster /* called at shutdown time.  So far, all that is necessary is to release all the free lists */
    327      1.1    oster static void rf_ShutdownMapModule(void *);
    328      1.3    oster static void
    329      1.3    oster rf_ShutdownMapModule(ignored)
    330      1.3    oster 	void   *ignored;
    331      1.1    oster {
    332      1.3    oster 	RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
    333      1.3    oster 	RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
    334      1.3    oster 	RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *));
    335      1.1    oster }
    336      1.1    oster 
    337      1.3    oster int
    338      1.3    oster rf_ConfigureMapModule(listp)
    339      1.3    oster 	RF_ShutdownList_t **listp;
    340      1.1    oster {
    341      1.3    oster 	int     rc;
    342      1.1    oster 
    343      1.1    oster 	RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR,
    344      1.3    oster 	    RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t));
    345      1.1    oster 	if (rf_asmhdr_freelist == NULL) {
    346      1.3    oster 		return (ENOMEM);
    347      1.1    oster 	}
    348      1.1    oster 	RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM,
    349      1.3    oster 	    RF_ASM_INC, sizeof(RF_AccessStripeMap_t));
    350      1.1    oster 	if (rf_asm_freelist == NULL) {
    351      1.3    oster 		RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
    352      1.3    oster 		return (ENOMEM);
    353      1.1    oster 	}
    354      1.1    oster 	RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA,
    355      1.3    oster 	    RF_PDA_INC, sizeof(RF_PhysDiskAddr_t));
    356      1.1    oster 	if (rf_pda_freelist == NULL) {
    357      1.3    oster 		RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
    358      1.3    oster 		RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
    359      1.3    oster 		return (ENOMEM);
    360      1.1    oster 	}
    361      1.1    oster 	rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
    362      1.1    oster 	if (rc) {
    363  1.5.2.8  nathanw 		rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
    364      1.1    oster 		rf_ShutdownMapModule(NULL);
    365      1.3    oster 		return (rc);
    366      1.1    oster 	}
    367      1.3    oster 	RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next,
    368      1.3    oster 	    (RF_AccessStripeMapHeader_t *));
    369      1.3    oster 	RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next,
    370      1.3    oster 	    (RF_AccessStripeMap_t *));
    371      1.3    oster 	RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next,
    372      1.3    oster 	    (RF_PhysDiskAddr_t *));
    373      1.1    oster 
    374      1.3    oster 	return (0);
    375      1.1    oster }
    376      1.1    oster 
    377      1.3    oster RF_AccessStripeMapHeader_t *
    378      1.3    oster rf_AllocAccessStripeMapHeader()
    379      1.1    oster {
    380      1.1    oster 	RF_AccessStripeMapHeader_t *p;
    381      1.1    oster 
    382      1.3    oster 	RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *));
    383  1.5.2.1  nathanw 	memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
    384      1.1    oster 
    385      1.3    oster 	return (p);
    386      1.1    oster }
    387      1.1    oster 
    388      1.1    oster 
    389      1.3    oster void
    390      1.3    oster rf_FreeAccessStripeMapHeader(p)
    391      1.3    oster 	RF_AccessStripeMapHeader_t *p;
    392      1.1    oster {
    393      1.3    oster 	RF_FREELIST_FREE(rf_asmhdr_freelist, p, next);
    394      1.1    oster }
    395      1.1    oster 
    396      1.3    oster RF_PhysDiskAddr_t *
    397      1.3    oster rf_AllocPhysDiskAddr()
    398      1.1    oster {
    399      1.1    oster 	RF_PhysDiskAddr_t *p;
    400      1.1    oster 
    401      1.3    oster 	RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *));
    402  1.5.2.1  nathanw 	memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
    403      1.1    oster 
    404      1.3    oster 	return (p);
    405      1.1    oster }
    406      1.1    oster /* allocates a list of PDAs, locking the free list only once
    407      1.1    oster  * when we have to call calloc, we do it one component at a time to simplify
    408      1.1    oster  * the process of freeing the list at program shutdown.  This should not be
    409      1.1    oster  * much of a performance hit, because it should be very infrequently executed.
    410      1.1    oster  */
    411      1.3    oster RF_PhysDiskAddr_t *
    412      1.3    oster rf_AllocPDAList(count)
    413      1.3    oster 	int     count;
    414      1.1    oster {
    415      1.1    oster 	RF_PhysDiskAddr_t *p = NULL;
    416      1.1    oster 
    417      1.3    oster 	RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count);
    418      1.3    oster 	return (p);
    419      1.1    oster }
    420      1.1    oster 
    421  1.5.2.9  nathanw #if RF_INCLUDE_PARITYLOGGING > 0
    422      1.3    oster void
    423      1.3    oster rf_FreePhysDiskAddr(p)
    424      1.3    oster 	RF_PhysDiskAddr_t *p;
    425      1.1    oster {
    426      1.3    oster 	RF_FREELIST_FREE(rf_pda_freelist, p, next);
    427      1.1    oster }
    428  1.5.2.9  nathanw #endif
    429      1.1    oster 
    430      1.3    oster static void
    431      1.3    oster rf_FreePDAList(l_start, l_end, count)
    432      1.3    oster 	RF_PhysDiskAddr_t *l_start, *l_end;	/* pointers to start and end
    433      1.3    oster 						 * of list */
    434      1.3    oster 	int     count;		/* number of elements in list */
    435      1.1    oster {
    436      1.3    oster 	RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count);
    437      1.1    oster }
    438      1.1    oster 
    439      1.1    oster /* this is essentially identical to AllocPDAList.  I should combine the two.
    440      1.1    oster  * when we have to call calloc, we do it one component at a time to simplify
    441      1.1    oster  * the process of freeing the list at program shutdown.  This should not be
    442      1.1    oster  * much of a performance hit, because it should be very infrequently executed.
    443      1.1    oster  */
    444      1.3    oster RF_AccessStripeMap_t *
    445      1.3    oster rf_AllocASMList(count)
    446      1.3    oster 	int     count;
    447      1.1    oster {
    448      1.1    oster 	RF_AccessStripeMap_t *p = NULL;
    449      1.1    oster 
    450      1.3    oster 	RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count);
    451      1.3    oster 	return (p);
    452      1.1    oster }
    453      1.1    oster 
    454      1.3    oster static void
    455      1.3    oster rf_FreeASMList(l_start, l_end, count)
    456      1.3    oster 	RF_AccessStripeMap_t *l_start, *l_end;
    457      1.3    oster 	int     count;
    458      1.3    oster {
    459      1.3    oster 	RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count);
    460      1.3    oster }
    461      1.3    oster 
    462      1.3    oster void
    463      1.3    oster rf_FreeAccessStripeMap(hdr)
    464      1.3    oster 	RF_AccessStripeMapHeader_t *hdr;
    465      1.3    oster {
    466      1.3    oster 	RF_AccessStripeMap_t *p, *pt = NULL;
    467      1.3    oster 	RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
    468      1.3    oster 	int     count = 0, t, asm_count = 0;
    469      1.3    oster 
    470      1.3    oster 	for (p = hdr->stripeMap; p; p = p->next) {
    471      1.3    oster 
    472      1.3    oster 		/* link the 3 pda lists into the accumulating pda list */
    473      1.3    oster 
    474      1.3    oster 		if (!pdaList)
    475      1.3    oster 			pdaList = p->qInfo;
    476      1.3    oster 		else
    477      1.3    oster 			pdaEnd->next = p->qInfo;
    478      1.3    oster 		for (trailer = NULL, pdp = p->qInfo; pdp;) {
    479      1.3    oster 			trailer = pdp;
    480      1.3    oster 			pdp = pdp->next;
    481      1.3    oster 			count++;
    482      1.3    oster 		}
    483      1.3    oster 		if (trailer)
    484      1.3    oster 			pdaEnd = trailer;
    485      1.3    oster 
    486      1.3    oster 		if (!pdaList)
    487      1.3    oster 			pdaList = p->parityInfo;
    488      1.3    oster 		else
    489      1.3    oster 			pdaEnd->next = p->parityInfo;
    490      1.3    oster 		for (trailer = NULL, pdp = p->parityInfo; pdp;) {
    491      1.3    oster 			trailer = pdp;
    492      1.3    oster 			pdp = pdp->next;
    493      1.3    oster 			count++;
    494      1.3    oster 		}
    495      1.3    oster 		if (trailer)
    496      1.3    oster 			pdaEnd = trailer;
    497      1.3    oster 
    498      1.3    oster 		if (!pdaList)
    499      1.3    oster 			pdaList = p->physInfo;
    500      1.3    oster 		else
    501      1.3    oster 			pdaEnd->next = p->physInfo;
    502      1.3    oster 		for (trailer = NULL, pdp = p->physInfo; pdp;) {
    503      1.3    oster 			trailer = pdp;
    504      1.3    oster 			pdp = pdp->next;
    505      1.3    oster 			count++;
    506      1.3    oster 		}
    507      1.3    oster 		if (trailer)
    508      1.3    oster 			pdaEnd = trailer;
    509      1.3    oster 
    510      1.3    oster 		pt = p;
    511      1.3    oster 		asm_count++;
    512      1.3    oster 	}
    513      1.3    oster 
    514      1.3    oster 	/* debug only */
    515      1.3    oster 	for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
    516      1.3    oster 		t++;
    517      1.3    oster 	RF_ASSERT(t == count);
    518      1.3    oster 
    519      1.3    oster 	if (pdaList)
    520      1.3    oster 		rf_FreePDAList(pdaList, pdaEnd, count);
    521      1.3    oster 	rf_FreeASMList(hdr->stripeMap, pt, asm_count);
    522      1.3    oster 	rf_FreeAccessStripeMapHeader(hdr);
    523      1.1    oster }
    524  1.5.2.9  nathanw /* We can't use the large write optimization if there are any failures
    525  1.5.2.9  nathanw  * in the stripe.  In the declustered layout, there is no way to
    526  1.5.2.9  nathanw  * immediately determine what disks constitute a stripe, so we
    527  1.5.2.9  nathanw  * actually have to hunt through the stripe looking for failures.  The
    528  1.5.2.9  nathanw  * reason we map the parity instead of just using asm->parityInfo->col
    529  1.5.2.9  nathanw  * is because the latter may have been already redirected to a spare
    530  1.5.2.9  nathanw  * drive, which would mess up the computation of the stripe offset.
    531      1.1    oster  *
    532  1.5.2.9  nathanw  * ASSUMES AT MOST ONE FAILURE IN THE STRIPE.  */
    533      1.3    oster int
    534      1.3    oster rf_CheckStripeForFailures(raidPtr, asmap)
    535      1.3    oster 	RF_Raid_t *raidPtr;
    536      1.3    oster 	RF_AccessStripeMap_t *asmap;
    537      1.3    oster {
    538  1.5.2.9  nathanw 	RF_RowCol_t trow, tcol, prow, pcol, *diskids, i;
    539      1.3    oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    540      1.3    oster 	RF_StripeCount_t stripeOffset;
    541      1.3    oster 	int     numFailures;
    542      1.3    oster 	RF_RaidAddr_t sosAddr;
    543      1.3    oster 	RF_SectorNum_t diskOffset, poffset;
    544      1.3    oster 	RF_RowCol_t testrow;
    545      1.3    oster 
    546      1.3    oster 	/* quick out in the fault-free case.  */
    547      1.3    oster 	RF_LOCK_MUTEX(raidPtr->mutex);
    548      1.3    oster 	numFailures = raidPtr->numFailures;
    549      1.3    oster 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    550      1.3    oster 	if (numFailures == 0)
    551      1.3    oster 		return (0);
    552      1.3    oster 
    553      1.3    oster 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    554      1.3    oster 	(layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow);
    555      1.3    oster 	(layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0);	/* get pcol */
    556      1.3    oster 
    557      1.3    oster 	/* this need not be true if we've redirected the access to a spare in
    558      1.3    oster 	 * another row RF_ASSERT(row == testrow); */
    559      1.3    oster 	stripeOffset = 0;
    560      1.3    oster 	for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
    561      1.3    oster 		if (diskids[i] != pcol) {
    562      1.3    oster 			if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) {
    563      1.3    oster 				if (raidPtr->status[testrow] != rf_rs_reconstructing)
    564      1.3    oster 					return (1);
    565      1.3    oster 				RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]);
    566      1.3    oster 				layoutPtr->map->MapSector(raidPtr,
    567      1.3    oster 				    sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
    568      1.3    oster 				    &trow, &tcol, &diskOffset, 0);
    569      1.3    oster 				RF_ASSERT((trow == testrow) && (tcol == diskids[i]));
    570      1.3    oster 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset))
    571      1.3    oster 					return (1);
    572      1.3    oster 				asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
    573      1.3    oster 				return (0);
    574      1.3    oster 			}
    575      1.3    oster 			stripeOffset++;
    576      1.3    oster 		}
    577      1.3    oster 	}
    578      1.3    oster 	return (0);
    579      1.1    oster }
    580  1.5.2.9  nathanw #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
    581      1.1    oster /*
    582      1.1    oster    return the number of failed data units in the stripe.
    583      1.1    oster */
    584      1.1    oster 
    585      1.3    oster int
    586      1.3    oster rf_NumFailedDataUnitsInStripe(raidPtr, asmap)
    587      1.3    oster 	RF_Raid_t *raidPtr;
    588      1.3    oster 	RF_AccessStripeMap_t *asmap;
    589      1.3    oster {
    590      1.3    oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    591  1.5.2.9  nathanw 	RF_RowCol_t trow, tcol, i;
    592      1.3    oster 	RF_SectorNum_t diskOffset;
    593      1.3    oster 	RF_RaidAddr_t sosAddr;
    594      1.3    oster 	int     numFailures;
    595      1.3    oster 
    596      1.3    oster 	/* quick out in the fault-free case.  */
    597      1.3    oster 	RF_LOCK_MUTEX(raidPtr->mutex);
    598      1.3    oster 	numFailures = raidPtr->numFailures;
    599      1.3    oster 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    600      1.3    oster 	if (numFailures == 0)
    601      1.3    oster 		return (0);
    602      1.3    oster 	numFailures = 0;
    603      1.3    oster 
    604      1.3    oster 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    605      1.3    oster 	for (i = 0; i < layoutPtr->numDataCol; i++) {
    606      1.3    oster 		(layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
    607      1.3    oster 		    &trow, &tcol, &diskOffset, 0);
    608      1.3    oster 		if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status))
    609      1.3    oster 			numFailures++;
    610      1.3    oster 	}
    611      1.1    oster 
    612      1.3    oster 	return numFailures;
    613      1.1    oster }
    614  1.5.2.9  nathanw #endif
    615      1.1    oster 
    616      1.1    oster /*****************************************************************************************
    617      1.1    oster  *
    618      1.1    oster  * debug routines
    619      1.1    oster  *
    620      1.1    oster  ****************************************************************************************/
    621  1.5.2.9  nathanw #if RF_DEBUG_MAP
    622      1.3    oster void
    623      1.3    oster rf_PrintAccessStripeMap(asm_h)
    624      1.3    oster 	RF_AccessStripeMapHeader_t *asm_h;
    625      1.1    oster {
    626      1.3    oster 	rf_PrintFullAccessStripeMap(asm_h, 0);
    627      1.1    oster }
    628  1.5.2.9  nathanw #endif
    629      1.1    oster 
    630      1.3    oster void
    631      1.3    oster rf_PrintFullAccessStripeMap(asm_h, prbuf)
    632      1.3    oster 	RF_AccessStripeMapHeader_t *asm_h;
    633      1.3    oster 	int     prbuf;		/* flag to print buffer pointers */
    634      1.3    oster {
    635      1.3    oster 	int     i;
    636      1.3    oster 	RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
    637      1.3    oster 	RF_PhysDiskAddr_t *p;
    638      1.3    oster 	printf("%d stripes total\n", (int) asm_h->numStripes);
    639      1.3    oster 	for (; asmap; asmap = asmap->next) {
    640      1.3    oster 		/* printf("Num failures: %d\n",asmap->numDataFailed); */
    641      1.3    oster 		/* printf("Num sectors:
    642      1.3    oster 		 * %d\n",(int)asmap->totalSectorsAccessed); */
    643      1.3    oster 		printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
    644      1.3    oster 		    (int) asmap->stripeID,
    645      1.3    oster 		    (int) asmap->totalSectorsAccessed,
    646      1.3    oster 		    (int) asmap->numDataFailed,
    647      1.3    oster 		    (int) asmap->numParityFailed);
    648      1.3    oster 		if (asmap->parityInfo) {
    649      1.3    oster 			printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col,
    650      1.3    oster 			    (int) asmap->parityInfo->startSector,
    651      1.3    oster 			    (int) (asmap->parityInfo->startSector +
    652      1.3    oster 				asmap->parityInfo->numSector - 1));
    653      1.3    oster 			if (prbuf)
    654      1.3    oster 				printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
    655      1.3    oster 			if (asmap->parityInfo->next) {
    656      1.3    oster 				printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row,
    657      1.3    oster 				    asmap->parityInfo->next->col,
    658      1.3    oster 				    (int) asmap->parityInfo->next->startSector,
    659      1.3    oster 				    (int) (asmap->parityInfo->next->startSector +
    660      1.3    oster 					asmap->parityInfo->next->numSector - 1));
    661      1.3    oster 				if (prbuf)
    662      1.3    oster 					printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
    663      1.3    oster 				RF_ASSERT(asmap->parityInfo->next->next == NULL);
    664      1.3    oster 			}
    665      1.3    oster 			printf("]\n\t");
    666      1.3    oster 		}
    667      1.3    oster 		for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
    668      1.3    oster 			printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector,
    669      1.3    oster 			    (int) (p->startSector + p->numSector - 1));
    670      1.3    oster 			if (prbuf)
    671      1.3    oster 				printf("b0x%lx ", (unsigned long) p->bufPtr);
    672      1.3    oster 			if (i && !(i & 1))
    673      1.3    oster 				printf("\n\t");
    674      1.3    oster 		}
    675      1.3    oster 		printf("\n");
    676      1.3    oster 		p = asm_h->stripeMap->failedPDAs[0];
    677      1.3    oster 		if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
    678      1.3    oster 			printf("[multiple failures]\n");
    679      1.3    oster 		else
    680      1.3    oster 			if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
    681      1.3    oster 				printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col,
    682      1.3    oster 				    (int) p->startSector, (int) (p->startSector + p->numSector - 1));
    683      1.3    oster 	}
    684      1.1    oster }
    685      1.1    oster 
    686  1.5.2.9  nathanw #if RF_MAP_DEBUG
    687      1.3    oster void
    688      1.3    oster rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks)
    689      1.3    oster 	RF_Raid_t *raidPtr;
    690      1.3    oster 	RF_RaidAddr_t raidAddr;
    691      1.3    oster 	RF_SectorCount_t numBlocks;
    692      1.3    oster {
    693      1.3    oster 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    694      1.3    oster 	RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
    695      1.3    oster 
    696      1.3    oster 	printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
    697      1.3    oster 	for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
    698      1.3    oster 		printf("%d (0x%x), ", (int) ra, (int) ra);
    699      1.3    oster 	}
    700      1.3    oster 	printf("\n");
    701      1.3    oster 	printf("Offset into stripe unit: %d (0x%x)\n",
    702      1.3    oster 	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
    703      1.3    oster 	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
    704      1.3    oster }
    705  1.5.2.9  nathanw #endif
    706      1.1    oster /*
    707      1.1    oster    given a parity descriptor and the starting address within a stripe,
    708      1.1    oster    range restrict the parity descriptor to touch only the correct stuff.
    709      1.1    oster */
    710      1.3    oster void
    711      1.3    oster rf_ASMParityAdjust(
    712      1.3    oster     RF_PhysDiskAddr_t * toAdjust,
    713      1.3    oster     RF_StripeNum_t startAddrWithinStripe,
    714      1.3    oster     RF_SectorNum_t endAddress,
    715      1.3    oster     RF_RaidLayout_t * layoutPtr,
    716      1.3    oster     RF_AccessStripeMap_t * asm_p)
    717      1.3    oster {
    718      1.3    oster 	RF_PhysDiskAddr_t *new_pda;
    719      1.3    oster 
    720      1.3    oster 	/* when we're accessing only a portion of one stripe unit, we want the
    721      1.3    oster 	 * parity descriptor to identify only the chunk of parity associated
    722      1.3    oster 	 * with the data.  When the access spans exactly one stripe unit
    723      1.3    oster 	 * boundary and is less than a stripe unit in size, it uses two
    724      1.3    oster 	 * disjoint regions of the parity unit.  When an access spans more
    725      1.3    oster 	 * than one stripe unit boundary, it uses all of the parity unit.
    726      1.3    oster 	 *
    727      1.3    oster 	 * To better handle the case where stripe units are small, we may
    728      1.3    oster 	 * eventually want to change the 2nd case so that if the SU size is
    729      1.3    oster 	 * below some threshold, we just read/write the whole thing instead of
    730      1.3    oster 	 * breaking it up into two accesses. */
    731      1.3    oster 	if (asm_p->numStripeUnitsAccessed == 1) {
    732      1.3    oster 		int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
    733      1.3    oster 		toAdjust->startSector += x;
    734      1.3    oster 		toAdjust->raidAddress += x;
    735      1.3    oster 		toAdjust->numSector = asm_p->physInfo->numSector;
    736      1.3    oster 		RF_ASSERT(toAdjust->numSector != 0);
    737      1.3    oster 	} else
    738      1.3    oster 		if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
    739      1.3    oster 			int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
    740      1.3    oster 
    741      1.3    oster 			/* create a second pda and copy the parity map info
    742      1.3    oster 			 * into it */
    743      1.3    oster 			RF_ASSERT(toAdjust->next == NULL);
    744      1.3    oster 			new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
    745      1.3    oster 			*new_pda = *toAdjust;	/* structure assignment */
    746      1.3    oster 			new_pda->next = NULL;
    747      1.3    oster 
    748      1.3    oster 			/* adjust the start sector & number of blocks for the
    749      1.3    oster 			 * first parity pda */
    750      1.3    oster 			toAdjust->startSector += x;
    751      1.3    oster 			toAdjust->raidAddress += x;
    752      1.3    oster 			toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
    753      1.3    oster 			RF_ASSERT(toAdjust->numSector != 0);
    754      1.3    oster 
    755      1.3    oster 			/* adjust the second pda */
    756      1.3    oster 			new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
    757      1.3    oster 			/* new_pda->raidAddress =
    758      1.3    oster 			 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
    759      1.3    oster 			 * toAdjust->raidAddress); */
    760      1.3    oster 			RF_ASSERT(new_pda->numSector != 0);
    761      1.3    oster 		}
    762      1.1    oster }
    763  1.5.2.4  nathanw 
    764      1.1    oster /*
    765      1.1    oster    Check if a disk has been spared or failed. If spared,
    766      1.3    oster    redirect the I/O.
    767      1.1    oster    If it has been failed, record it in the asm pointer.
    768      1.1    oster    Fourth arg is whether data or parity.
    769      1.1    oster */
    770      1.3    oster void
    771      1.3    oster rf_ASMCheckStatus(
    772      1.3    oster     RF_Raid_t * raidPtr,
    773      1.3    oster     RF_PhysDiskAddr_t * pda_p,
    774      1.3    oster     RF_AccessStripeMap_t * asm_p,
    775      1.3    oster     RF_RaidDisk_t ** disks,
    776      1.3    oster     int parity)
    777      1.3    oster {
    778      1.3    oster 	RF_DiskStatus_t dstatus;
    779      1.3    oster 	RF_RowCol_t frow, fcol;
    780      1.3    oster 
    781      1.3    oster 	dstatus = disks[pda_p->row][pda_p->col].status;
    782      1.3    oster 
    783      1.3    oster 	if (dstatus == rf_ds_spared) {
    784      1.3    oster 		/* if the disk has been spared, redirect access to the spare */
    785      1.3    oster 		frow = pda_p->row;
    786      1.3    oster 		fcol = pda_p->col;
    787      1.3    oster 		pda_p->row = disks[frow][fcol].spareRow;
    788      1.3    oster 		pda_p->col = disks[frow][fcol].spareCol;
    789      1.3    oster 	} else
    790      1.3    oster 		if (dstatus == rf_ds_dist_spared) {
    791      1.3    oster 			/* ditto if disk has been spared to dist spare space */
    792  1.5.2.9  nathanw #if RF_DEBUG_MAP
    793      1.3    oster 			RF_RowCol_t or = pda_p->row, oc = pda_p->col;
    794      1.3    oster 			RF_SectorNum_t oo = pda_p->startSector;
    795  1.5.2.9  nathanw #endif
    796      1.3    oster 			if (pda_p->type == RF_PDA_TYPE_DATA)
    797      1.3    oster 				raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
    798      1.3    oster 			else
    799      1.3    oster 				raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
    800      1.3    oster 
    801  1.5.2.9  nathanw #if RF_DEBUG_MAP
    802      1.3    oster 			if (rf_mapDebug) {
    803      1.3    oster 				printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo,
    804      1.3    oster 				    pda_p->row, pda_p->col, (int) pda_p->startSector);
    805      1.3    oster 			}
    806  1.5.2.9  nathanw #endif
    807      1.3    oster 		} else
    808      1.3    oster 			if (RF_DEAD_DISK(dstatus)) {
    809      1.3    oster 				/* if the disk is inaccessible, mark the
    810      1.3    oster 				 * failure */
    811      1.3    oster 				if (parity)
    812      1.3    oster 					asm_p->numParityFailed++;
    813      1.3    oster 				else {
    814      1.3    oster 					asm_p->numDataFailed++;
    815      1.3    oster 				}
    816      1.3    oster 				asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
    817      1.3    oster 				asm_p->numFailedPDAs++;
    818      1.1    oster #if 0
    819      1.3    oster 				switch (asm_p->numParityFailed + asm_p->numDataFailed) {
    820      1.3    oster 				case 1:
    821      1.3    oster 					asm_p->failedPDAs[0] = pda_p;
    822      1.3    oster 					break;
    823      1.3    oster 				case 2:
    824      1.3    oster 					asm_p->failedPDAs[1] = pda_p;
    825      1.3    oster 				default:
    826      1.3    oster 					break;
    827      1.3    oster 				}
    828      1.1    oster #endif
    829      1.3    oster 			}
    830      1.3    oster 	/* the redirected access should never span a stripe unit boundary */
    831      1.3    oster 	RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
    832      1.3    oster 	    rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
    833      1.3    oster 	RF_ASSERT(pda_p->col != -1);
    834      1.1    oster }
    835