rf_map.c revision 1.51 1 1.51 oster /* $NetBSD: rf_map.c,v 1.51 2021/07/23 00:54:45 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /**************************************************************************
30 1.1 oster *
31 1.1 oster * map.c -- main code for mapping RAID addresses to physical disk addresses
32 1.1 oster *
33 1.1 oster **************************************************************************/
34 1.9 lukem
35 1.9 lukem #include <sys/cdefs.h>
36 1.51 oster __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.51 2021/07/23 00:54:45 oster Exp $");
37 1.1 oster
38 1.7 oster #include <dev/raidframe/raidframevar.h>
39 1.7 oster
40 1.1 oster #include "rf_threadstuff.h"
41 1.1 oster #include "rf_raid.h"
42 1.1 oster #include "rf_general.h"
43 1.1 oster #include "rf_map.h"
44 1.1 oster #include "rf_shutdown.h"
45 1.1 oster
46 1.51 oster static void rf_FreePDAList(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda_list);
47 1.51 oster static void rf_FreeASMList(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asm_list);
48 1.1 oster
49 1.21 oster /***************************************************************************
50 1.1 oster *
51 1.21 oster * MapAccess -- main 1st order mapping routine. Maps an access in the
52 1.21 oster * RAID address space to the corresponding set of physical disk
53 1.21 oster * addresses. The result is returned as a list of AccessStripeMap
54 1.21 oster * structures, one per stripe accessed. Each ASM structure contains a
55 1.21 oster * pointer to a list of PhysDiskAddr structures, which describe the
56 1.25 oster * physical locations touched by the user access. Note that this
57 1.25 oster * routine returns only static mapping information, i.e. the list of
58 1.25 oster * physical addresses returned does not necessarily identify the set
59 1.25 oster * of physical locations that will actually be read or written. The
60 1.25 oster * routine also maps the parity. The physical disk location returned
61 1.25 oster * always indicates the entire parity unit, even when only a subset of
62 1.25 oster * it is being accessed. This is because an access that is not stripe
63 1.25 oster * unit aligned but that spans a stripe unit boundary may require
64 1.25 oster * access two distinct portions of the parity unit, and we can't yet
65 1.25 oster * tell which portion(s) we'll actually need. We leave it up to the
66 1.25 oster * algorithm selection code to decide what subset of the parity unit
67 1.25 oster * to access. Note that addresses in the RAID address space must
68 1.25 oster * always be maintained as longs, instead of ints.
69 1.38 perry *
70 1.1 oster * This routine returns NULL if numBlocks is 0
71 1.1 oster *
72 1.26 oster * raidAddress - starting address in RAID address space
73 1.26 oster * numBlocks - number of blocks in RAID address space to access
74 1.50 msaitoh * buffer - buffer to supply/receive data
75 1.26 oster * remap - 1 => remap address to spare space
76 1.21 oster ***************************************************************************/
77 1.1 oster
78 1.3 oster RF_AccessStripeMapHeader_t *
79 1.26 oster rf_MapAccess(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddress,
80 1.43 christos RF_SectorCount_t numBlocks, void *buffer, int remap)
81 1.3 oster {
82 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
83 1.3 oster RF_AccessStripeMapHeader_t *asm_hdr = NULL;
84 1.3 oster RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
85 1.3 oster int faultsTolerated = layoutPtr->map->faultsTolerated;
86 1.25 oster /* we'll change raidAddress along the way */
87 1.25 oster RF_RaidAddr_t startAddress = raidAddress;
88 1.3 oster RF_RaidAddr_t endAddress = raidAddress + numBlocks;
89 1.23 oster RF_RaidDisk_t *disks = raidPtr->Disks;
90 1.31 oster RF_PhysDiskAddr_t *pda_p;
91 1.31 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
92 1.31 oster RF_PhysDiskAddr_t *pda_q;
93 1.31 oster #endif
94 1.3 oster RF_StripeCount_t numStripes = 0;
95 1.38 perry RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress,
96 1.25 oster nextStripeUnitAddress;
97 1.3 oster RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
98 1.3 oster RF_StripeCount_t totStripes;
99 1.3 oster RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
100 1.3 oster RF_AccessStripeMap_t *asmList, *t_asm;
101 1.3 oster RF_PhysDiskAddr_t *pdaList, *t_pda;
102 1.3 oster
103 1.3 oster /* allocate all the ASMs and PDAs up front */
104 1.3 oster lastRaidAddr = raidAddress + numBlocks - 1;
105 1.3 oster stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
106 1.3 oster lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
107 1.3 oster totStripes = lastSID - stripeID + 1;
108 1.3 oster SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
109 1.3 oster lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
110 1.3 oster
111 1.51 oster asmList = rf_AllocASMList(raidPtr, totStripes);
112 1.25 oster
113 1.25 oster /* may also need pda(s) per stripe for parity */
114 1.51 oster pdaList = rf_AllocPDAList(raidPtr, lastSUID - SUID + 1 +
115 1.38 perry faultsTolerated * totStripes);
116 1.25 oster
117 1.3 oster
118 1.3 oster if (raidAddress + numBlocks > raidPtr->totalSectors) {
119 1.3 oster RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
120 1.3 oster (int) raidAddress);
121 1.3 oster return (NULL);
122 1.3 oster }
123 1.15 oster #if RF_DEBUG_MAP
124 1.3 oster if (rf_mapDebug)
125 1.3 oster rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
126 1.15 oster #endif
127 1.3 oster for (; raidAddress < endAddress;) {
128 1.3 oster /* make the next stripe structure */
129 1.3 oster RF_ASSERT(asmList);
130 1.3 oster t_asm = asmList;
131 1.3 oster asmList = asmList->next;
132 1.48 christos memset(t_asm, 0, sizeof(*t_asm));
133 1.3 oster if (!asm_p)
134 1.3 oster asm_list = asm_p = t_asm;
135 1.3 oster else {
136 1.3 oster asm_p->next = t_asm;
137 1.3 oster asm_p = asm_p->next;
138 1.3 oster }
139 1.3 oster numStripes++;
140 1.3 oster
141 1.3 oster /* map SUs from current location to the end of the stripe */
142 1.3 oster asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
143 1.3 oster raidAddress) */ stripeID++;
144 1.3 oster stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
145 1.3 oster stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
146 1.3 oster asm_p->raidAddress = raidAddress;
147 1.3 oster asm_p->endRaidAddress = stripeEndAddress;
148 1.3 oster
149 1.3 oster /* map each stripe unit in the stripe */
150 1.3 oster pda_p = NULL;
151 1.25 oster
152 1.25 oster /* Raid addr of start of portion of access that is
153 1.25 oster within this stripe */
154 1.38 perry startAddrWithinStripe = raidAddress;
155 1.25 oster
156 1.3 oster for (; raidAddress < stripeEndAddress;) {
157 1.3 oster RF_ASSERT(pdaList);
158 1.3 oster t_pda = pdaList;
159 1.3 oster pdaList = pdaList->next;
160 1.48 christos memset(t_pda, 0, sizeof(*t_pda));
161 1.3 oster if (!pda_p)
162 1.3 oster asm_p->physInfo = pda_p = t_pda;
163 1.3 oster else {
164 1.3 oster pda_p->next = t_pda;
165 1.3 oster pda_p = pda_p->next;
166 1.3 oster }
167 1.3 oster
168 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
169 1.38 perry (layoutPtr->map->MapSector) (raidPtr, raidAddress,
170 1.38 perry &(pda_p->col),
171 1.38 perry &(pda_p->startSector),
172 1.25 oster remap);
173 1.25 oster
174 1.25 oster /* mark any failures we find. failedPDA is
175 1.25 oster * don't-care if there is more than one
176 1.25 oster * failure */
177 1.25 oster
178 1.25 oster /* the RAID address corresponding to this
179 1.25 oster physical diskaddress */
180 1.38 perry pda_p->raidAddress = raidAddress;
181 1.3 oster nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
182 1.3 oster pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
183 1.3 oster RF_ASSERT(pda_p->numSector != 0);
184 1.3 oster rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
185 1.43 christos pda_p->bufPtr = (char *)buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
186 1.3 oster asm_p->totalSectorsAccessed += pda_p->numSector;
187 1.3 oster asm_p->numStripeUnitsAccessed++;
188 1.3 oster
189 1.3 oster raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
190 1.3 oster }
191 1.3 oster
192 1.3 oster /* Map the parity. At this stage, the startSector and
193 1.25 oster * numSector fields for the parity unit are always set
194 1.25 oster * to indicate the entire parity unit. We may modify
195 1.25 oster * this after mapping the data portion. */
196 1.3 oster switch (faultsTolerated) {
197 1.3 oster case 0:
198 1.3 oster break;
199 1.3 oster case 1: /* single fault tolerant */
200 1.3 oster RF_ASSERT(pdaList);
201 1.3 oster t_pda = pdaList;
202 1.3 oster pdaList = pdaList->next;
203 1.48 christos memset(t_pda, 0, sizeof(*t_pda));
204 1.3 oster pda_p = asm_p->parityInfo = t_pda;
205 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
206 1.3 oster (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
207 1.23 oster &(pda_p->col), &(pda_p->startSector), remap);
208 1.3 oster pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
209 1.3 oster /* raidAddr may be needed to find unit to redirect to */
210 1.3 oster pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
211 1.3 oster rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
212 1.51 oster rf_ASMParityAdjust(raidPtr, asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
213 1.3 oster
214 1.3 oster break;
215 1.31 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
216 1.3 oster case 2: /* two fault tolerant */
217 1.3 oster RF_ASSERT(pdaList && pdaList->next);
218 1.3 oster t_pda = pdaList;
219 1.3 oster pdaList = pdaList->next;
220 1.48 christos memset(t_pda, 0, sizeof(*t_pda));
221 1.3 oster pda_p = asm_p->parityInfo = t_pda;
222 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
223 1.3 oster t_pda = pdaList;
224 1.3 oster pdaList = pdaList->next;
225 1.48 christos memset(t_pda, 0, sizeof(*t_pda));
226 1.3 oster pda_q = asm_p->qInfo = t_pda;
227 1.3 oster pda_q->type = RF_PDA_TYPE_Q;
228 1.3 oster (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
229 1.23 oster &(pda_p->col), &(pda_p->startSector), remap);
230 1.3 oster (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
231 1.23 oster &(pda_q->col), &(pda_q->startSector), remap);
232 1.3 oster pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
233 1.3 oster /* raidAddr may be needed to find unit to redirect to */
234 1.3 oster pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
235 1.3 oster pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
236 1.3 oster /* failure mode stuff */
237 1.3 oster rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
238 1.3 oster rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
239 1.51 oster rf_ASMParityAdjust(raidPtr, asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
240 1.51 oster rf_ASMParityAdjust(raidPtr, asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
241 1.3 oster break;
242 1.31 oster #endif
243 1.3 oster }
244 1.3 oster }
245 1.3 oster RF_ASSERT(asmList == NULL && pdaList == NULL);
246 1.3 oster /* make the header structure */
247 1.51 oster asm_hdr = rf_AllocAccessStripeMapHeader(raidPtr);
248 1.3 oster RF_ASSERT(numStripes == totStripes);
249 1.3 oster asm_hdr->numStripes = numStripes;
250 1.3 oster asm_hdr->stripeMap = asm_list;
251 1.3 oster
252 1.15 oster #if RF_DEBUG_MAP
253 1.3 oster if (rf_mapDebug)
254 1.3 oster rf_PrintAccessStripeMap(asm_hdr);
255 1.15 oster #endif
256 1.3 oster return (asm_hdr);
257 1.1 oster }
258 1.21 oster
259 1.21 oster /***************************************************************************
260 1.21 oster * This routine walks through an ASM list and marks the PDAs that have
261 1.21 oster * failed. It's called only when a disk failure causes an in-flight
262 1.21 oster * DAG to fail. The parity may consist of two components, but we want
263 1.21 oster * to use only one failedPDA pointer. Thus we set failedPDA to point
264 1.21 oster * to the first parity component, and rely on the rest of the code to
265 1.21 oster * do the right thing with this.
266 1.21 oster ***************************************************************************/
267 1.1 oster
268 1.38 perry void
269 1.38 perry rf_MarkFailuresInASMList(RF_Raid_t *raidPtr,
270 1.26 oster RF_AccessStripeMapHeader_t *asm_h)
271 1.3 oster {
272 1.23 oster RF_RaidDisk_t *disks = raidPtr->Disks;
273 1.3 oster RF_AccessStripeMap_t *asmap;
274 1.3 oster RF_PhysDiskAddr_t *pda;
275 1.3 oster
276 1.3 oster for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
277 1.25 oster asmap->numDataFailed = 0;
278 1.25 oster asmap->numParityFailed = 0;
279 1.25 oster asmap->numQFailed = 0;
280 1.3 oster asmap->numFailedPDAs = 0;
281 1.48 christos memset(asmap->failedPDAs, 0,
282 1.48 christos RF_MAX_FAILED_PDA * sizeof(*asmap->failedPDAs));
283 1.3 oster for (pda = asmap->physInfo; pda; pda = pda->next) {
284 1.23 oster if (RF_DEAD_DISK(disks[pda->col].status)) {
285 1.3 oster asmap->numDataFailed++;
286 1.3 oster asmap->failedPDAs[asmap->numFailedPDAs] = pda;
287 1.3 oster asmap->numFailedPDAs++;
288 1.3 oster }
289 1.3 oster }
290 1.3 oster pda = asmap->parityInfo;
291 1.23 oster if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
292 1.3 oster asmap->numParityFailed++;
293 1.3 oster asmap->failedPDAs[asmap->numFailedPDAs] = pda;
294 1.3 oster asmap->numFailedPDAs++;
295 1.3 oster }
296 1.3 oster pda = asmap->qInfo;
297 1.23 oster if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
298 1.3 oster asmap->numQFailed++;
299 1.3 oster asmap->failedPDAs[asmap->numFailedPDAs] = pda;
300 1.3 oster asmap->numFailedPDAs++;
301 1.3 oster }
302 1.3 oster }
303 1.1 oster }
304 1.3 oster
305 1.21 oster /***************************************************************************
306 1.1 oster *
307 1.21 oster * routines to allocate and free list elements. All allocation
308 1.21 oster * routines zero the structure before returning it.
309 1.1 oster *
310 1.21 oster * FreePhysDiskAddr is static. It should never be called directly,
311 1.21 oster * because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
312 1.21 oster * list.
313 1.1 oster *
314 1.21 oster ***************************************************************************/
315 1.1 oster
316 1.1 oster #define RF_MAX_FREE_ASMHDR 128
317 1.30 oster #define RF_MIN_FREE_ASMHDR 32
318 1.1 oster
319 1.1 oster #define RF_MAX_FREE_ASM 192
320 1.30 oster #define RF_MIN_FREE_ASM 64
321 1.1 oster
322 1.1 oster #define RF_MAX_FREE_PDA 192
323 1.30 oster #define RF_MIN_FREE_PDA 64
324 1.1 oster
325 1.34 oster #define RF_MAX_FREE_ASMHLE 64
326 1.34 oster #define RF_MIN_FREE_ASMHLE 16
327 1.34 oster
328 1.34 oster #define RF_MAX_FREE_FSS 128
329 1.34 oster #define RF_MIN_FREE_FSS 32
330 1.34 oster
331 1.34 oster #define RF_MAX_FREE_VFPLE 128
332 1.34 oster #define RF_MIN_FREE_VFPLE 32
333 1.34 oster
334 1.37 oster #define RF_MAX_FREE_VPLE 128
335 1.37 oster #define RF_MIN_FREE_VPLE 32
336 1.37 oster
337 1.34 oster
338 1.25 oster /* called at shutdown time. So far, all that is necessary is to
339 1.25 oster release all the free lists */
340 1.1 oster static void rf_ShutdownMapModule(void *);
341 1.38 perry static void
342 1.51 oster rf_ShutdownMapModule(void *arg)
343 1.1 oster {
344 1.51 oster RF_Raid_t *raidPtr;
345 1.51 oster
346 1.51 oster raidPtr = (RF_Raid_t *) arg;
347 1.51 oster
348 1.51 oster pool_destroy(&raidPtr->pools.asm_hdr);
349 1.51 oster pool_destroy(&raidPtr->pools.asmap);
350 1.51 oster pool_destroy(&raidPtr->pools.asmhle);
351 1.51 oster pool_destroy(&raidPtr->pools.pda);
352 1.51 oster pool_destroy(&raidPtr->pools.fss);
353 1.51 oster pool_destroy(&raidPtr->pools.vfple);
354 1.51 oster pool_destroy(&raidPtr->pools.vple);
355 1.1 oster }
356 1.1 oster
357 1.38 perry int
358 1.51 oster rf_ConfigureMapModule(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
359 1.51 oster RF_Config_t *cfgPtr)
360 1.1 oster {
361 1.1 oster
362 1.51 oster rf_pool_init(raidPtr, raidPtr->poolNames.asm_hdr, &raidPtr->pools.asm_hdr, sizeof(RF_AccessStripeMapHeader_t),
363 1.51 oster "asmhdr", RF_MIN_FREE_ASMHDR, RF_MAX_FREE_ASMHDR);
364 1.51 oster rf_pool_init(raidPtr, raidPtr->poolNames.asmap, &raidPtr->pools.asmap, sizeof(RF_AccessStripeMap_t),
365 1.51 oster "asmap", RF_MIN_FREE_ASM, RF_MAX_FREE_ASM);
366 1.51 oster rf_pool_init(raidPtr, raidPtr->poolNames.asmhle, &raidPtr->pools.asmhle, sizeof(RF_ASMHeaderListElem_t),
367 1.51 oster "asmhle", RF_MIN_FREE_ASMHLE, RF_MAX_FREE_ASMHLE);
368 1.51 oster rf_pool_init(raidPtr, raidPtr->poolNames.pda, &raidPtr->pools.pda, sizeof(RF_PhysDiskAddr_t),
369 1.51 oster "pda", RF_MIN_FREE_PDA, RF_MAX_FREE_PDA);
370 1.51 oster rf_pool_init(raidPtr, raidPtr->poolNames.fss, &raidPtr->pools.fss, sizeof(RF_FailedStripe_t),
371 1.51 oster "fss", RF_MIN_FREE_FSS, RF_MAX_FREE_FSS);
372 1.51 oster rf_pool_init(raidPtr, raidPtr->poolNames.vfple, &raidPtr->pools.vfple, sizeof(RF_VoidFunctionPointerListElem_t),
373 1.51 oster "vfple", RF_MIN_FREE_VFPLE, RF_MAX_FREE_VFPLE);
374 1.51 oster rf_pool_init(raidPtr, raidPtr->poolNames.vple, &raidPtr->pools.vple, sizeof(RF_VoidPointerListElem_t),
375 1.51 oster "vple", RF_MIN_FREE_VPLE, RF_MAX_FREE_VPLE);
376 1.51 oster rf_ShutdownCreate(listp, rf_ShutdownMapModule, raidPtr);
377 1.29 oster
378 1.3 oster return (0);
379 1.1 oster }
380 1.1 oster
381 1.3 oster RF_AccessStripeMapHeader_t *
382 1.51 oster rf_AllocAccessStripeMapHeader(RF_Raid_t *raidPtr)
383 1.1 oster {
384 1.51 oster return pool_get(&raidPtr->pools.asm_hdr, PR_WAITOK | PR_ZERO);
385 1.1 oster }
386 1.1 oster
387 1.38 perry void
388 1.51 oster rf_FreeAccessStripeMapHeader(RF_Raid_t *raidPtr, RF_AccessStripeMapHeader_t *p)
389 1.1 oster {
390 1.51 oster pool_put(&raidPtr->pools.asm_hdr, p);
391 1.1 oster }
392 1.1 oster
393 1.34 oster
394 1.34 oster RF_VoidFunctionPointerListElem_t *
395 1.51 oster rf_AllocVFPListElem(RF_Raid_t *raidPtr)
396 1.34 oster {
397 1.51 oster return pool_get(&raidPtr->pools.vfple, PR_WAITOK | PR_ZERO);
398 1.34 oster }
399 1.34 oster
400 1.34 oster void
401 1.51 oster rf_FreeVFPListElem(RF_Raid_t *raidPtr, RF_VoidFunctionPointerListElem_t *p)
402 1.34 oster {
403 1.34 oster
404 1.51 oster pool_put(&raidPtr->pools.vfple, p);
405 1.34 oster }
406 1.34 oster
407 1.37 oster
408 1.37 oster RF_VoidPointerListElem_t *
409 1.51 oster rf_AllocVPListElem(RF_Raid_t *raidPtr)
410 1.37 oster {
411 1.51 oster return pool_get(&raidPtr->pools.vple, PR_WAITOK | PR_ZERO);
412 1.37 oster }
413 1.37 oster
414 1.37 oster void
415 1.51 oster rf_FreeVPListElem(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *p)
416 1.37 oster {
417 1.37 oster
418 1.51 oster pool_put(&raidPtr->pools.vple, p);
419 1.37 oster }
420 1.37 oster
421 1.34 oster RF_ASMHeaderListElem_t *
422 1.51 oster rf_AllocASMHeaderListElem(RF_Raid_t *raidPtr)
423 1.34 oster {
424 1.51 oster return pool_get(&raidPtr->pools.asmhle, PR_WAITOK | PR_ZERO);
425 1.34 oster }
426 1.34 oster
427 1.34 oster void
428 1.51 oster rf_FreeASMHeaderListElem(RF_Raid_t *raidPtr, RF_ASMHeaderListElem_t *p)
429 1.34 oster {
430 1.34 oster
431 1.51 oster pool_put(&raidPtr->pools.asmhle, p);
432 1.34 oster }
433 1.34 oster
434 1.34 oster RF_FailedStripe_t *
435 1.51 oster rf_AllocFailedStripeStruct(RF_Raid_t *raidPtr)
436 1.34 oster {
437 1.51 oster return pool_get(&raidPtr->pools.fss, PR_WAITOK | PR_ZERO);
438 1.34 oster }
439 1.34 oster
440 1.34 oster void
441 1.51 oster rf_FreeFailedStripeStruct(RF_Raid_t *raidPtr, RF_FailedStripe_t *p)
442 1.34 oster {
443 1.51 oster pool_put(&raidPtr->pools.fss, p);
444 1.34 oster }
445 1.34 oster
446 1.34 oster
447 1.34 oster
448 1.34 oster
449 1.34 oster
450 1.3 oster RF_PhysDiskAddr_t *
451 1.51 oster rf_AllocPhysDiskAddr(RF_Raid_t *raidPtr)
452 1.1 oster {
453 1.51 oster return pool_get(&raidPtr->pools.pda, PR_WAITOK | PR_ZERO);
454 1.1 oster }
455 1.25 oster /* allocates a list of PDAs, locking the free list only once when we
456 1.25 oster * have to call calloc, we do it one component at a time to simplify
457 1.25 oster * the process of freeing the list at program shutdown. This should
458 1.25 oster * not be much of a performance hit, because it should be very
459 1.25 oster * infrequently executed. */
460 1.3 oster RF_PhysDiskAddr_t *
461 1.51 oster rf_AllocPDAList(RF_Raid_t *raidPtr, int count)
462 1.1 oster {
463 1.24 oster RF_PhysDiskAddr_t *p, *prev;
464 1.24 oster int i;
465 1.24 oster
466 1.24 oster p = NULL;
467 1.24 oster prev = NULL;
468 1.24 oster for (i = 0; i < count; i++) {
469 1.51 oster p = pool_get(&raidPtr->pools.pda, PR_WAITOK);
470 1.24 oster p->next = prev;
471 1.24 oster prev = p;
472 1.24 oster }
473 1.1 oster
474 1.3 oster return (p);
475 1.1 oster }
476 1.1 oster
477 1.38 perry void
478 1.51 oster rf_FreePhysDiskAddr(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *p)
479 1.1 oster {
480 1.51 oster pool_put(&raidPtr->pools.pda, p);
481 1.1 oster }
482 1.1 oster
483 1.38 perry static void
484 1.51 oster rf_FreePDAList(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda_list)
485 1.1 oster {
486 1.24 oster RF_PhysDiskAddr_t *p, *tmp;
487 1.24 oster
488 1.27 oster p=pda_list;
489 1.24 oster while (p) {
490 1.24 oster tmp = p->next;
491 1.51 oster pool_put(&raidPtr->pools.pda, p);
492 1.24 oster p = tmp;
493 1.24 oster }
494 1.1 oster }
495 1.1 oster
496 1.25 oster /* this is essentially identical to AllocPDAList. I should combine
497 1.25 oster * the two. when we have to call calloc, we do it one component at a
498 1.25 oster * time to simplify the process of freeing the list at program
499 1.25 oster * shutdown. This should not be much of a performance hit, because it
500 1.25 oster * should be very infrequently executed. */
501 1.3 oster RF_AccessStripeMap_t *
502 1.51 oster rf_AllocASMList(RF_Raid_t *raidPtr, int count)
503 1.1 oster {
504 1.24 oster RF_AccessStripeMap_t *p, *prev;
505 1.24 oster int i;
506 1.1 oster
507 1.24 oster p = NULL;
508 1.24 oster prev = NULL;
509 1.24 oster for (i = 0; i < count; i++) {
510 1.51 oster p = pool_get(&raidPtr->pools.asmap, PR_WAITOK);
511 1.24 oster p->next = prev;
512 1.24 oster prev = p;
513 1.24 oster }
514 1.3 oster return (p);
515 1.1 oster }
516 1.1 oster
517 1.38 perry static void
518 1.51 oster rf_FreeASMList(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asm_list)
519 1.3 oster {
520 1.24 oster RF_AccessStripeMap_t *p, *tmp;
521 1.24 oster
522 1.27 oster p=asm_list;
523 1.24 oster while (p) {
524 1.24 oster tmp = p->next;
525 1.51 oster pool_put(&raidPtr->pools.asmap, p);
526 1.24 oster p = tmp;
527 1.24 oster }
528 1.3 oster }
529 1.3 oster
530 1.38 perry void
531 1.51 oster rf_FreeAccessStripeMap(RF_Raid_t *raidPtr, RF_AccessStripeMapHeader_t *hdr)
532 1.3 oster {
533 1.28 oster RF_AccessStripeMap_t *p;
534 1.3 oster RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
535 1.47 oster int count = 0, t;
536 1.3 oster
537 1.3 oster for (p = hdr->stripeMap; p; p = p->next) {
538 1.3 oster
539 1.3 oster /* link the 3 pda lists into the accumulating pda list */
540 1.3 oster
541 1.3 oster if (!pdaList)
542 1.3 oster pdaList = p->qInfo;
543 1.3 oster else
544 1.3 oster pdaEnd->next = p->qInfo;
545 1.3 oster for (trailer = NULL, pdp = p->qInfo; pdp;) {
546 1.3 oster trailer = pdp;
547 1.3 oster pdp = pdp->next;
548 1.3 oster count++;
549 1.3 oster }
550 1.3 oster if (trailer)
551 1.3 oster pdaEnd = trailer;
552 1.3 oster
553 1.3 oster if (!pdaList)
554 1.3 oster pdaList = p->parityInfo;
555 1.3 oster else
556 1.3 oster pdaEnd->next = p->parityInfo;
557 1.3 oster for (trailer = NULL, pdp = p->parityInfo; pdp;) {
558 1.3 oster trailer = pdp;
559 1.3 oster pdp = pdp->next;
560 1.3 oster count++;
561 1.3 oster }
562 1.3 oster if (trailer)
563 1.3 oster pdaEnd = trailer;
564 1.3 oster
565 1.3 oster if (!pdaList)
566 1.3 oster pdaList = p->physInfo;
567 1.3 oster else
568 1.3 oster pdaEnd->next = p->physInfo;
569 1.3 oster for (trailer = NULL, pdp = p->physInfo; pdp;) {
570 1.3 oster trailer = pdp;
571 1.3 oster pdp = pdp->next;
572 1.3 oster count++;
573 1.3 oster }
574 1.3 oster if (trailer)
575 1.3 oster pdaEnd = trailer;
576 1.3 oster }
577 1.3 oster
578 1.3 oster /* debug only */
579 1.3 oster for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
580 1.3 oster t++;
581 1.3 oster RF_ASSERT(t == count);
582 1.3 oster
583 1.3 oster if (pdaList)
584 1.51 oster rf_FreePDAList(raidPtr, pdaList);
585 1.51 oster rf_FreeASMList(raidPtr, hdr->stripeMap);
586 1.51 oster rf_FreeAccessStripeMapHeader(raidPtr, hdr);
587 1.1 oster }
588 1.21 oster /* We can't use the large write optimization if there are any failures
589 1.21 oster * in the stripe. In the declustered layout, there is no way to
590 1.21 oster * immediately determine what disks constitute a stripe, so we
591 1.21 oster * actually have to hunt through the stripe looking for failures. The
592 1.21 oster * reason we map the parity instead of just using asm->parityInfo->col
593 1.21 oster * is because the latter may have been already redirected to a spare
594 1.21 oster * drive, which would mess up the computation of the stripe offset.
595 1.1 oster *
596 1.21 oster * ASSUMES AT MOST ONE FAILURE IN THE STRIPE. */
597 1.38 perry int
598 1.26 oster rf_CheckStripeForFailures(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
599 1.3 oster {
600 1.23 oster RF_RowCol_t tcol, pcol, *diskids, i;
601 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
602 1.3 oster RF_StripeCount_t stripeOffset;
603 1.3 oster int numFailures;
604 1.3 oster RF_RaidAddr_t sosAddr;
605 1.3 oster RF_SectorNum_t diskOffset, poffset;
606 1.3 oster
607 1.3 oster /* quick out in the fault-free case. */
608 1.45 mrg rf_lock_mutex2(raidPtr->mutex);
609 1.3 oster numFailures = raidPtr->numFailures;
610 1.45 mrg rf_unlock_mutex2(raidPtr->mutex);
611 1.3 oster if (numFailures == 0)
612 1.3 oster return (0);
613 1.3 oster
614 1.38 perry sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
615 1.25 oster asmap->raidAddress);
616 1.38 perry (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress,
617 1.25 oster &diskids);
618 1.38 perry (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress,
619 1.25 oster &pcol, &poffset, 0); /* get pcol */
620 1.3 oster
621 1.25 oster /* this need not be true if we've redirected the access to a
622 1.25 oster * spare in another row RF_ASSERT(row == testrow); */
623 1.3 oster stripeOffset = 0;
624 1.3 oster for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
625 1.3 oster if (diskids[i] != pcol) {
626 1.23 oster if (RF_DEAD_DISK(raidPtr->Disks[diskids[i]].status)) {
627 1.23 oster if (raidPtr->status != rf_rs_reconstructing)
628 1.3 oster return (1);
629 1.23 oster RF_ASSERT(raidPtr->reconControl->fcol == diskids[i]);
630 1.3 oster layoutPtr->map->MapSector(raidPtr,
631 1.3 oster sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
632 1.23 oster &tcol, &diskOffset, 0);
633 1.23 oster RF_ASSERT(tcol == diskids[i]);
634 1.23 oster if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, diskOffset))
635 1.3 oster return (1);
636 1.3 oster asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
637 1.3 oster return (0);
638 1.3 oster }
639 1.3 oster stripeOffset++;
640 1.3 oster }
641 1.3 oster }
642 1.3 oster return (0);
643 1.1 oster }
644 1.18 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
645 1.1 oster /*
646 1.1 oster return the number of failed data units in the stripe.
647 1.1 oster */
648 1.1 oster
649 1.38 perry int
650 1.26 oster rf_NumFailedDataUnitsInStripe(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
651 1.3 oster {
652 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
653 1.23 oster RF_RowCol_t tcol, i;
654 1.3 oster RF_SectorNum_t diskOffset;
655 1.3 oster RF_RaidAddr_t sosAddr;
656 1.3 oster int numFailures;
657 1.3 oster
658 1.3 oster /* quick out in the fault-free case. */
659 1.45 mrg rf_lock_mutex2(raidPtr->mutex);
660 1.3 oster numFailures = raidPtr->numFailures;
661 1.45 mrg rf_unlock_mutex2(raidPtr->mutex);
662 1.3 oster if (numFailures == 0)
663 1.3 oster return (0);
664 1.3 oster numFailures = 0;
665 1.3 oster
666 1.38 perry sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
667 1.25 oster asmap->raidAddress);
668 1.3 oster for (i = 0; i < layoutPtr->numDataCol; i++) {
669 1.3 oster (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
670 1.40 oster &tcol, &diskOffset, 0);
671 1.23 oster if (RF_DEAD_DISK(raidPtr->Disks[tcol].status))
672 1.3 oster numFailures++;
673 1.3 oster }
674 1.1 oster
675 1.3 oster return numFailures;
676 1.1 oster }
677 1.18 oster #endif
678 1.1 oster
679 1.25 oster /****************************************************************************
680 1.1 oster *
681 1.1 oster * debug routines
682 1.1 oster *
683 1.25 oster ***************************************************************************/
684 1.18 oster #if RF_DEBUG_MAP
685 1.38 perry void
686 1.26 oster rf_PrintAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h)
687 1.1 oster {
688 1.3 oster rf_PrintFullAccessStripeMap(asm_h, 0);
689 1.1 oster }
690 1.18 oster #endif
691 1.1 oster
692 1.26 oster /* prbuf - flag to print buffer pointers */
693 1.38 perry void
694 1.26 oster rf_PrintFullAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h, int prbuf)
695 1.3 oster {
696 1.3 oster int i;
697 1.3 oster RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
698 1.3 oster RF_PhysDiskAddr_t *p;
699 1.3 oster printf("%d stripes total\n", (int) asm_h->numStripes);
700 1.3 oster for (; asmap; asmap = asmap->next) {
701 1.3 oster /* printf("Num failures: %d\n",asmap->numDataFailed); */
702 1.3 oster /* printf("Num sectors:
703 1.3 oster * %d\n",(int)asmap->totalSectorsAccessed); */
704 1.3 oster printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
705 1.3 oster (int) asmap->stripeID,
706 1.3 oster (int) asmap->totalSectorsAccessed,
707 1.3 oster (int) asmap->numDataFailed,
708 1.3 oster (int) asmap->numParityFailed);
709 1.3 oster if (asmap->parityInfo) {
710 1.23 oster printf("Parity [c%d s%d-%d", asmap->parityInfo->col,
711 1.3 oster (int) asmap->parityInfo->startSector,
712 1.3 oster (int) (asmap->parityInfo->startSector +
713 1.3 oster asmap->parityInfo->numSector - 1));
714 1.3 oster if (prbuf)
715 1.3 oster printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
716 1.3 oster if (asmap->parityInfo->next) {
717 1.23 oster printf(", c%d s%d-%d", asmap->parityInfo->next->col,
718 1.3 oster (int) asmap->parityInfo->next->startSector,
719 1.3 oster (int) (asmap->parityInfo->next->startSector +
720 1.3 oster asmap->parityInfo->next->numSector - 1));
721 1.3 oster if (prbuf)
722 1.3 oster printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
723 1.3 oster RF_ASSERT(asmap->parityInfo->next->next == NULL);
724 1.3 oster }
725 1.3 oster printf("]\n\t");
726 1.3 oster }
727 1.3 oster for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
728 1.23 oster printf("SU c%d s%d-%d ", p->col, (int) p->startSector,
729 1.3 oster (int) (p->startSector + p->numSector - 1));
730 1.3 oster if (prbuf)
731 1.3 oster printf("b0x%lx ", (unsigned long) p->bufPtr);
732 1.3 oster if (i && !(i & 1))
733 1.3 oster printf("\n\t");
734 1.3 oster }
735 1.3 oster printf("\n");
736 1.3 oster p = asm_h->stripeMap->failedPDAs[0];
737 1.3 oster if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
738 1.3 oster printf("[multiple failures]\n");
739 1.3 oster else
740 1.3 oster if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
741 1.23 oster printf("\t[Failed PDA: c%d s%d-%d]\n", p->col,
742 1.3 oster (int) p->startSector, (int) (p->startSector + p->numSector - 1));
743 1.3 oster }
744 1.1 oster }
745 1.1 oster
746 1.15 oster #if RF_MAP_DEBUG
747 1.38 perry void
748 1.38 perry rf_PrintRaidAddressInfo(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
749 1.26 oster RF_SectorCount_t numBlocks)
750 1.3 oster {
751 1.3 oster RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
752 1.3 oster RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
753 1.3 oster
754 1.3 oster printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
755 1.3 oster for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
756 1.3 oster printf("%d (0x%x), ", (int) ra, (int) ra);
757 1.3 oster }
758 1.3 oster printf("\n");
759 1.3 oster printf("Offset into stripe unit: %d (0x%x)\n",
760 1.3 oster (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
761 1.3 oster (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
762 1.3 oster }
763 1.15 oster #endif
764 1.25 oster /* given a parity descriptor and the starting address within a stripe,
765 1.25 oster * range restrict the parity descriptor to touch only the correct
766 1.25 oster * stuff. */
767 1.38 perry void
768 1.51 oster rf_ASMParityAdjust(RF_Raid_t *raidPtr,
769 1.51 oster RF_PhysDiskAddr_t *toAdjust,
770 1.26 oster RF_StripeNum_t startAddrWithinStripe,
771 1.26 oster RF_SectorNum_t endAddress,
772 1.26 oster RF_RaidLayout_t *layoutPtr,
773 1.26 oster RF_AccessStripeMap_t *asm_p)
774 1.3 oster {
775 1.3 oster RF_PhysDiskAddr_t *new_pda;
776 1.3 oster
777 1.25 oster /* when we're accessing only a portion of one stripe unit, we
778 1.25 oster * want the parity descriptor to identify only the chunk of
779 1.25 oster * parity associated with the data. When the access spans
780 1.25 oster * exactly one stripe unit boundary and is less than a stripe
781 1.25 oster * unit in size, it uses two disjoint regions of the parity
782 1.25 oster * unit. When an access spans more than one stripe unit
783 1.25 oster * boundary, it uses all of the parity unit.
784 1.38 perry *
785 1.25 oster * To better handle the case where stripe units are small, we
786 1.25 oster * may eventually want to change the 2nd case so that if the
787 1.25 oster * SU size is below some threshold, we just read/write the
788 1.25 oster * whole thing instead of breaking it up into two accesses. */
789 1.3 oster if (asm_p->numStripeUnitsAccessed == 1) {
790 1.3 oster int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
791 1.3 oster toAdjust->startSector += x;
792 1.3 oster toAdjust->raidAddress += x;
793 1.3 oster toAdjust->numSector = asm_p->physInfo->numSector;
794 1.3 oster RF_ASSERT(toAdjust->numSector != 0);
795 1.3 oster } else
796 1.3 oster if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
797 1.3 oster int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
798 1.3 oster
799 1.3 oster /* create a second pda and copy the parity map info
800 1.3 oster * into it */
801 1.3 oster RF_ASSERT(toAdjust->next == NULL);
802 1.38 perry /* the following will get freed in rf_FreeAccessStripeMap() via
803 1.35 oster rf_FreePDAList() */
804 1.51 oster new_pda = toAdjust->next = rf_AllocPhysDiskAddr(raidPtr);
805 1.3 oster *new_pda = *toAdjust; /* structure assignment */
806 1.3 oster new_pda->next = NULL;
807 1.3 oster
808 1.3 oster /* adjust the start sector & number of blocks for the
809 1.3 oster * first parity pda */
810 1.3 oster toAdjust->startSector += x;
811 1.3 oster toAdjust->raidAddress += x;
812 1.3 oster toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
813 1.3 oster RF_ASSERT(toAdjust->numSector != 0);
814 1.3 oster
815 1.3 oster /* adjust the second pda */
816 1.3 oster new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
817 1.3 oster /* new_pda->raidAddress =
818 1.3 oster * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
819 1.3 oster * toAdjust->raidAddress); */
820 1.3 oster RF_ASSERT(new_pda->numSector != 0);
821 1.3 oster }
822 1.1 oster }
823 1.11 oster
824 1.25 oster /* Check if a disk has been spared or failed. If spared, redirect the
825 1.46 oster * I/O. If it has been failed, record it in the asm pointer. Fifth
826 1.25 oster * arg is whether data or parity. */
827 1.38 perry void
828 1.26 oster rf_ASMCheckStatus(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda_p,
829 1.26 oster RF_AccessStripeMap_t *asm_p, RF_RaidDisk_t *disks,
830 1.26 oster int parity)
831 1.3 oster {
832 1.3 oster RF_DiskStatus_t dstatus;
833 1.23 oster RF_RowCol_t fcol;
834 1.3 oster
835 1.23 oster dstatus = disks[pda_p->col].status;
836 1.3 oster
837 1.3 oster if (dstatus == rf_ds_spared) {
838 1.3 oster /* if the disk has been spared, redirect access to the spare */
839 1.3 oster fcol = pda_p->col;
840 1.23 oster pda_p->col = disks[fcol].spareCol;
841 1.3 oster } else
842 1.3 oster if (dstatus == rf_ds_dist_spared) {
843 1.3 oster /* ditto if disk has been spared to dist spare space */
844 1.15 oster #if RF_DEBUG_MAP
845 1.23 oster RF_RowCol_t oc = pda_p->col;
846 1.3 oster RF_SectorNum_t oo = pda_p->startSector;
847 1.15 oster #endif
848 1.3 oster if (pda_p->type == RF_PDA_TYPE_DATA)
849 1.23 oster raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
850 1.3 oster else
851 1.23 oster raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
852 1.3 oster
853 1.15 oster #if RF_DEBUG_MAP
854 1.3 oster if (rf_mapDebug) {
855 1.23 oster printf("Redirected c %d o %d -> c %d o %d\n", oc, (int) oo,
856 1.23 oster pda_p->col, (int) pda_p->startSector);
857 1.3 oster }
858 1.15 oster #endif
859 1.3 oster } else
860 1.3 oster if (RF_DEAD_DISK(dstatus)) {
861 1.3 oster /* if the disk is inaccessible, mark the
862 1.3 oster * failure */
863 1.3 oster if (parity)
864 1.3 oster asm_p->numParityFailed++;
865 1.3 oster else {
866 1.3 oster asm_p->numDataFailed++;
867 1.3 oster }
868 1.3 oster asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
869 1.3 oster asm_p->numFailedPDAs++;
870 1.1 oster #if 0
871 1.3 oster switch (asm_p->numParityFailed + asm_p->numDataFailed) {
872 1.3 oster case 1:
873 1.3 oster asm_p->failedPDAs[0] = pda_p;
874 1.3 oster break;
875 1.3 oster case 2:
876 1.3 oster asm_p->failedPDAs[1] = pda_p;
877 1.3 oster default:
878 1.3 oster break;
879 1.3 oster }
880 1.1 oster #endif
881 1.3 oster }
882 1.3 oster /* the redirected access should never span a stripe unit boundary */
883 1.3 oster RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
884 1.3 oster rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
885 1.3 oster RF_ASSERT(pda_p->col != -1);
886 1.1 oster }
887