rf_map.c revision 1.11.8.1 1 /* $NetBSD: rf_map.c,v 1.11.8.1 2002/05/30 14:47:02 gehenna Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /**************************************************************************
30 *
31 * map.c -- main code for mapping RAID addresses to physical disk addresses
32 *
33 **************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.11.8.1 2002/05/30 14:47:02 gehenna Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_threadstuff.h"
41 #include "rf_raid.h"
42 #include "rf_general.h"
43 #include "rf_map.h"
44 #include "rf_freelist.h"
45 #include "rf_shutdown.h"
46
47 static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count);
48 static void
49 rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end,
50 int count);
51
52 /*****************************************************************************************
53 *
54 * MapAccess -- main 1st order mapping routine.
55 *
56 * Maps an access in the RAID address space to the corresponding set of physical disk
57 * addresses. The result is returned as a list of AccessStripeMap structures, one per
58 * stripe accessed. Each ASM structure contains a pointer to a list of PhysDiskAddr
59 * structures, which describe the physical locations touched by the user access. Note
60 * that this routine returns only static mapping information, i.e. the list of physical
61 * addresses returned does not necessarily identify the set of physical locations that
62 * will actually be read or written.
63 *
64 * The routine also maps the parity. The physical disk location returned always
65 * indicates the entire parity unit, even when only a subset of it is being accessed.
66 * This is because an access that is not stripe unit aligned but that spans a stripe
67 * unit boundary may require access two distinct portions of the parity unit, and we
68 * can't yet tell which portion(s) we'll actually need. We leave it up to the algorithm
69 * selection code to decide what subset of the parity unit to access.
70 *
71 * Note that addresses in the RAID address space must always be maintained as
72 * longs, instead of ints.
73 *
74 * This routine returns NULL if numBlocks is 0
75 *
76 ****************************************************************************************/
77
78 RF_AccessStripeMapHeader_t *
79 rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap)
80 RF_Raid_t *raidPtr;
81 RF_RaidAddr_t raidAddress; /* starting address in RAID address
82 * space */
83 RF_SectorCount_t numBlocks; /* number of blocks in RAID address
84 * space to access */
85 caddr_t buffer; /* buffer to supply/receive data */
86 int remap; /* 1 => remap addresses to spare space */
87 {
88 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
89 RF_AccessStripeMapHeader_t *asm_hdr = NULL;
90 RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
91 int faultsTolerated = layoutPtr->map->faultsTolerated;
92 RF_RaidAddr_t startAddress = raidAddress; /* we'll change
93 * raidAddress along the
94 * way */
95 RF_RaidAddr_t endAddress = raidAddress + numBlocks;
96 RF_RaidDisk_t **disks = raidPtr->Disks;
97
98 RF_PhysDiskAddr_t *pda_p, *pda_q;
99 RF_StripeCount_t numStripes = 0;
100 RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress;
101 RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
102 RF_StripeCount_t totStripes;
103 RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
104 RF_AccessStripeMap_t *asmList, *t_asm;
105 RF_PhysDiskAddr_t *pdaList, *t_pda;
106
107 /* allocate all the ASMs and PDAs up front */
108 lastRaidAddr = raidAddress + numBlocks - 1;
109 stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
110 lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
111 totStripes = lastSID - stripeID + 1;
112 SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
113 lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
114
115 asmList = rf_AllocASMList(totStripes);
116 pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes); /* may also need pda(s)
117 * per stripe for parity */
118
119 if (raidAddress + numBlocks > raidPtr->totalSectors) {
120 RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
121 (int) raidAddress);
122 return (NULL);
123 }
124 if (rf_mapDebug)
125 rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
126 for (; raidAddress < endAddress;) {
127 /* make the next stripe structure */
128 RF_ASSERT(asmList);
129 t_asm = asmList;
130 asmList = asmList->next;
131 memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
132 if (!asm_p)
133 asm_list = asm_p = t_asm;
134 else {
135 asm_p->next = t_asm;
136 asm_p = asm_p->next;
137 }
138 numStripes++;
139
140 /* map SUs from current location to the end of the stripe */
141 asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
142 raidAddress) */ stripeID++;
143 stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
144 stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
145 asm_p->raidAddress = raidAddress;
146 asm_p->endRaidAddress = stripeEndAddress;
147
148 /* map each stripe unit in the stripe */
149 pda_p = NULL;
150 startAddrWithinStripe = raidAddress; /* Raid addr of start of
151 * portion of access
152 * that is within this
153 * stripe */
154 for (; raidAddress < stripeEndAddress;) {
155 RF_ASSERT(pdaList);
156 t_pda = pdaList;
157 pdaList = pdaList->next;
158 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
159 if (!pda_p)
160 asm_p->physInfo = pda_p = t_pda;
161 else {
162 pda_p->next = t_pda;
163 pda_p = pda_p->next;
164 }
165
166 pda_p->type = RF_PDA_TYPE_DATA;
167 (layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
168
169 /* mark any failures we find. failedPDA is don't-care
170 * if there is more than one failure */
171 pda_p->raidAddress = raidAddress; /* the RAID address
172 * corresponding to this
173 * physical disk address */
174 nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
175 pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
176 RF_ASSERT(pda_p->numSector != 0);
177 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
178 pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
179 asm_p->totalSectorsAccessed += pda_p->numSector;
180 asm_p->numStripeUnitsAccessed++;
181 asm_p->origRow = pda_p->row; /* redundant but
182 * harmless to do this
183 * in every loop
184 * iteration */
185
186 raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
187 }
188
189 /* Map the parity. At this stage, the startSector and
190 * numSector fields for the parity unit are always set to
191 * indicate the entire parity unit. We may modify this after
192 * mapping the data portion. */
193 switch (faultsTolerated) {
194 case 0:
195 break;
196 case 1: /* single fault tolerant */
197 RF_ASSERT(pdaList);
198 t_pda = pdaList;
199 pdaList = pdaList->next;
200 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
201 pda_p = asm_p->parityInfo = t_pda;
202 pda_p->type = RF_PDA_TYPE_PARITY;
203 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
204 &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
205 pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
206 /* raidAddr may be needed to find unit to redirect to */
207 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
208 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
209 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
210
211 break;
212 case 2: /* two fault tolerant */
213 RF_ASSERT(pdaList && pdaList->next);
214 t_pda = pdaList;
215 pdaList = pdaList->next;
216 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
217 pda_p = asm_p->parityInfo = t_pda;
218 pda_p->type = RF_PDA_TYPE_PARITY;
219 t_pda = pdaList;
220 pdaList = pdaList->next;
221 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
222 pda_q = asm_p->qInfo = t_pda;
223 pda_q->type = RF_PDA_TYPE_Q;
224 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
225 &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
226 (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
227 &(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap);
228 pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
229 /* raidAddr may be needed to find unit to redirect to */
230 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
231 pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
232 /* failure mode stuff */
233 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
234 rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
235 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
236 rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
237 break;
238 }
239 }
240 RF_ASSERT(asmList == NULL && pdaList == NULL);
241 /* make the header structure */
242 asm_hdr = rf_AllocAccessStripeMapHeader();
243 RF_ASSERT(numStripes == totStripes);
244 asm_hdr->numStripes = numStripes;
245 asm_hdr->stripeMap = asm_list;
246
247 if (rf_mapDebug)
248 rf_PrintAccessStripeMap(asm_hdr);
249 return (asm_hdr);
250 }
251 /*****************************************************************************************
252 * This routine walks through an ASM list and marks the PDAs that have failed.
253 * It's called only when a disk failure causes an in-flight DAG to fail.
254 * The parity may consist of two components, but we want to use only one failedPDA
255 * pointer. Thus we set failedPDA to point to the first parity component, and rely
256 * on the rest of the code to do the right thing with this.
257 ****************************************************************************************/
258
259 void
260 rf_MarkFailuresInASMList(raidPtr, asm_h)
261 RF_Raid_t *raidPtr;
262 RF_AccessStripeMapHeader_t *asm_h;
263 {
264 RF_RaidDisk_t **disks = raidPtr->Disks;
265 RF_AccessStripeMap_t *asmap;
266 RF_PhysDiskAddr_t *pda;
267
268 for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
269 asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0;
270 asmap->numFailedPDAs = 0;
271 memset((char *) asmap->failedPDAs, 0,
272 RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
273 for (pda = asmap->physInfo; pda; pda = pda->next) {
274 if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
275 asmap->numDataFailed++;
276 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
277 asmap->numFailedPDAs++;
278 }
279 }
280 pda = asmap->parityInfo;
281 if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
282 asmap->numParityFailed++;
283 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
284 asmap->numFailedPDAs++;
285 }
286 pda = asmap->qInfo;
287 if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
288 asmap->numQFailed++;
289 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
290 asmap->numFailedPDAs++;
291 }
292 }
293 }
294 /*****************************************************************************************
295 *
296 * DuplicateASM -- duplicates an ASM and returns the new one
297 *
298 ****************************************************************************************/
299 RF_AccessStripeMap_t *
300 rf_DuplicateASM(asmap)
301 RF_AccessStripeMap_t *asmap;
302 {
303 RF_AccessStripeMap_t *new_asm;
304 RF_PhysDiskAddr_t *pda, *new_pda, *t_pda;
305
306 new_pda = NULL;
307 new_asm = rf_AllocAccessStripeMapComponent();
308 memcpy((char *) new_asm, (char *) asmap, sizeof(RF_AccessStripeMap_t));
309 new_asm->numFailedPDAs = 0; /* ??? */
310 new_asm->failedPDAs[0] = NULL;
311 new_asm->physInfo = NULL;
312 new_asm->parityInfo = NULL;
313 new_asm->next = NULL;
314
315 for (pda = asmap->physInfo; pda; pda = pda->next) { /* copy the physInfo
316 * list */
317 t_pda = rf_AllocPhysDiskAddr();
318 memcpy((char *) t_pda, (char *) pda, sizeof(RF_PhysDiskAddr_t));
319 t_pda->next = NULL;
320 if (!new_asm->physInfo) {
321 new_asm->physInfo = t_pda;
322 new_pda = t_pda;
323 } else {
324 new_pda->next = t_pda;
325 new_pda = new_pda->next;
326 }
327 if (pda == asmap->failedPDAs[0])
328 new_asm->failedPDAs[0] = t_pda;
329 }
330 for (pda = asmap->parityInfo; pda; pda = pda->next) { /* copy the parityInfo
331 * list */
332 t_pda = rf_AllocPhysDiskAddr();
333 memcpy((char *) t_pda, (char *) pda, sizeof(RF_PhysDiskAddr_t));
334 t_pda->next = NULL;
335 if (!new_asm->parityInfo) {
336 new_asm->parityInfo = t_pda;
337 new_pda = t_pda;
338 } else {
339 new_pda->next = t_pda;
340 new_pda = new_pda->next;
341 }
342 if (pda == asmap->failedPDAs[0])
343 new_asm->failedPDAs[0] = t_pda;
344 }
345 return (new_asm);
346 }
347 /*****************************************************************************************
348 *
349 * DuplicatePDA -- duplicates a PDA and returns the new one
350 *
351 ****************************************************************************************/
352 RF_PhysDiskAddr_t *
353 rf_DuplicatePDA(pda)
354 RF_PhysDiskAddr_t *pda;
355 {
356 RF_PhysDiskAddr_t *new;
357
358 new = rf_AllocPhysDiskAddr();
359 memcpy((char *) new, (char *) pda, sizeof(RF_PhysDiskAddr_t));
360 return (new);
361 }
362 /*****************************************************************************************
363 *
364 * routines to allocate and free list elements. All allocation routines zero the
365 * structure before returning it.
366 *
367 * FreePhysDiskAddr is static. It should never be called directly, because
368 * FreeAccessStripeMap takes care of freeing the PhysDiskAddr list.
369 *
370 ****************************************************************************************/
371
372 static RF_FreeList_t *rf_asmhdr_freelist;
373 #define RF_MAX_FREE_ASMHDR 128
374 #define RF_ASMHDR_INC 16
375 #define RF_ASMHDR_INITIAL 32
376
377 static RF_FreeList_t *rf_asm_freelist;
378 #define RF_MAX_FREE_ASM 192
379 #define RF_ASM_INC 24
380 #define RF_ASM_INITIAL 64
381
382 static RF_FreeList_t *rf_pda_freelist;
383 #define RF_MAX_FREE_PDA 192
384 #define RF_PDA_INC 24
385 #define RF_PDA_INITIAL 64
386
387 /* called at shutdown time. So far, all that is necessary is to release all the free lists */
388 static void rf_ShutdownMapModule(void *);
389 static void
390 rf_ShutdownMapModule(ignored)
391 void *ignored;
392 {
393 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
394 RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
395 RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *));
396 }
397
398 int
399 rf_ConfigureMapModule(listp)
400 RF_ShutdownList_t **listp;
401 {
402 int rc;
403
404 RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR,
405 RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t));
406 if (rf_asmhdr_freelist == NULL) {
407 return (ENOMEM);
408 }
409 RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM,
410 RF_ASM_INC, sizeof(RF_AccessStripeMap_t));
411 if (rf_asm_freelist == NULL) {
412 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
413 return (ENOMEM);
414 }
415 RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA,
416 RF_PDA_INC, sizeof(RF_PhysDiskAddr_t));
417 if (rf_pda_freelist == NULL) {
418 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
419 RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
420 return (ENOMEM);
421 }
422 rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
423 if (rc) {
424 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__,
425 __LINE__, rc);
426 rf_ShutdownMapModule(NULL);
427 return (rc);
428 }
429 RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next,
430 (RF_AccessStripeMapHeader_t *));
431 RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next,
432 (RF_AccessStripeMap_t *));
433 RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next,
434 (RF_PhysDiskAddr_t *));
435
436 return (0);
437 }
438
439 RF_AccessStripeMapHeader_t *
440 rf_AllocAccessStripeMapHeader()
441 {
442 RF_AccessStripeMapHeader_t *p;
443
444 RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *));
445 memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
446
447 return (p);
448 }
449
450
451 void
452 rf_FreeAccessStripeMapHeader(p)
453 RF_AccessStripeMapHeader_t *p;
454 {
455 RF_FREELIST_FREE(rf_asmhdr_freelist, p, next);
456 }
457
458 RF_PhysDiskAddr_t *
459 rf_AllocPhysDiskAddr()
460 {
461 RF_PhysDiskAddr_t *p;
462
463 RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *));
464 memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
465
466 return (p);
467 }
468 /* allocates a list of PDAs, locking the free list only once
469 * when we have to call calloc, we do it one component at a time to simplify
470 * the process of freeing the list at program shutdown. This should not be
471 * much of a performance hit, because it should be very infrequently executed.
472 */
473 RF_PhysDiskAddr_t *
474 rf_AllocPDAList(count)
475 int count;
476 {
477 RF_PhysDiskAddr_t *p = NULL;
478
479 RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count);
480 return (p);
481 }
482
483 void
484 rf_FreePhysDiskAddr(p)
485 RF_PhysDiskAddr_t *p;
486 {
487 RF_FREELIST_FREE(rf_pda_freelist, p, next);
488 }
489
490 static void
491 rf_FreePDAList(l_start, l_end, count)
492 RF_PhysDiskAddr_t *l_start, *l_end; /* pointers to start and end
493 * of list */
494 int count; /* number of elements in list */
495 {
496 RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count);
497 }
498
499 RF_AccessStripeMap_t *
500 rf_AllocAccessStripeMapComponent()
501 {
502 RF_AccessStripeMap_t *p;
503
504 RF_FREELIST_GET(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *));
505 memset((char *) p, 0, sizeof(RF_AccessStripeMap_t));
506
507 return (p);
508 }
509 /* this is essentially identical to AllocPDAList. I should combine the two.
510 * when we have to call calloc, we do it one component at a time to simplify
511 * the process of freeing the list at program shutdown. This should not be
512 * much of a performance hit, because it should be very infrequently executed.
513 */
514 RF_AccessStripeMap_t *
515 rf_AllocASMList(count)
516 int count;
517 {
518 RF_AccessStripeMap_t *p = NULL;
519
520 RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count);
521 return (p);
522 }
523
524 void
525 rf_FreeAccessStripeMapComponent(p)
526 RF_AccessStripeMap_t *p;
527 {
528 RF_FREELIST_FREE(rf_asm_freelist, p, next);
529 }
530
531 static void
532 rf_FreeASMList(l_start, l_end, count)
533 RF_AccessStripeMap_t *l_start, *l_end;
534 int count;
535 {
536 RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count);
537 }
538
539 void
540 rf_FreeAccessStripeMap(hdr)
541 RF_AccessStripeMapHeader_t *hdr;
542 {
543 RF_AccessStripeMap_t *p, *pt = NULL;
544 RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
545 int count = 0, t, asm_count = 0;
546
547 for (p = hdr->stripeMap; p; p = p->next) {
548
549 /* link the 3 pda lists into the accumulating pda list */
550
551 if (!pdaList)
552 pdaList = p->qInfo;
553 else
554 pdaEnd->next = p->qInfo;
555 for (trailer = NULL, pdp = p->qInfo; pdp;) {
556 trailer = pdp;
557 pdp = pdp->next;
558 count++;
559 }
560 if (trailer)
561 pdaEnd = trailer;
562
563 if (!pdaList)
564 pdaList = p->parityInfo;
565 else
566 pdaEnd->next = p->parityInfo;
567 for (trailer = NULL, pdp = p->parityInfo; pdp;) {
568 trailer = pdp;
569 pdp = pdp->next;
570 count++;
571 }
572 if (trailer)
573 pdaEnd = trailer;
574
575 if (!pdaList)
576 pdaList = p->physInfo;
577 else
578 pdaEnd->next = p->physInfo;
579 for (trailer = NULL, pdp = p->physInfo; pdp;) {
580 trailer = pdp;
581 pdp = pdp->next;
582 count++;
583 }
584 if (trailer)
585 pdaEnd = trailer;
586
587 pt = p;
588 asm_count++;
589 }
590
591 /* debug only */
592 for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
593 t++;
594 RF_ASSERT(t == count);
595
596 if (pdaList)
597 rf_FreePDAList(pdaList, pdaEnd, count);
598 rf_FreeASMList(hdr->stripeMap, pt, asm_count);
599 rf_FreeAccessStripeMapHeader(hdr);
600 }
601 /* We can't use the large write optimization if there are any failures in the stripe.
602 * In the declustered layout, there is no way to immediately determine what disks
603 * constitute a stripe, so we actually have to hunt through the stripe looking for failures.
604 * The reason we map the parity instead of just using asm->parityInfo->col is because
605 * the latter may have been already redirected to a spare drive, which would
606 * mess up the computation of the stripe offset.
607 *
608 * ASSUMES AT MOST ONE FAILURE IN THE STRIPE.
609 */
610 int
611 rf_CheckStripeForFailures(raidPtr, asmap)
612 RF_Raid_t *raidPtr;
613 RF_AccessStripeMap_t *asmap;
614 {
615 RF_RowCol_t trow, tcol, prow, pcol, *diskids, row, i;
616 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
617 RF_StripeCount_t stripeOffset;
618 int numFailures;
619 RF_RaidAddr_t sosAddr;
620 RF_SectorNum_t diskOffset, poffset;
621 RF_RowCol_t testrow;
622
623 /* quick out in the fault-free case. */
624 RF_LOCK_MUTEX(raidPtr->mutex);
625 numFailures = raidPtr->numFailures;
626 RF_UNLOCK_MUTEX(raidPtr->mutex);
627 if (numFailures == 0)
628 return (0);
629
630 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
631 row = asmap->physInfo->row;
632 (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow);
633 (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0); /* get pcol */
634
635 /* this need not be true if we've redirected the access to a spare in
636 * another row RF_ASSERT(row == testrow); */
637 stripeOffset = 0;
638 for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
639 if (diskids[i] != pcol) {
640 if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) {
641 if (raidPtr->status[testrow] != rf_rs_reconstructing)
642 return (1);
643 RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]);
644 layoutPtr->map->MapSector(raidPtr,
645 sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
646 &trow, &tcol, &diskOffset, 0);
647 RF_ASSERT((trow == testrow) && (tcol == diskids[i]));
648 if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset))
649 return (1);
650 asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
651 return (0);
652 }
653 stripeOffset++;
654 }
655 }
656 return (0);
657 }
658 /*
659 return the number of failed data units in the stripe.
660 */
661
662 int
663 rf_NumFailedDataUnitsInStripe(raidPtr, asmap)
664 RF_Raid_t *raidPtr;
665 RF_AccessStripeMap_t *asmap;
666 {
667 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
668 RF_RowCol_t trow, tcol, row, i;
669 RF_SectorNum_t diskOffset;
670 RF_RaidAddr_t sosAddr;
671 int numFailures;
672
673 /* quick out in the fault-free case. */
674 RF_LOCK_MUTEX(raidPtr->mutex);
675 numFailures = raidPtr->numFailures;
676 RF_UNLOCK_MUTEX(raidPtr->mutex);
677 if (numFailures == 0)
678 return (0);
679 numFailures = 0;
680
681 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
682 row = asmap->physInfo->row;
683 for (i = 0; i < layoutPtr->numDataCol; i++) {
684 (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
685 &trow, &tcol, &diskOffset, 0);
686 if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status))
687 numFailures++;
688 }
689
690 return numFailures;
691 }
692
693
694 /*****************************************************************************************
695 *
696 * debug routines
697 *
698 ****************************************************************************************/
699
700 void
701 rf_PrintAccessStripeMap(asm_h)
702 RF_AccessStripeMapHeader_t *asm_h;
703 {
704 rf_PrintFullAccessStripeMap(asm_h, 0);
705 }
706
707 void
708 rf_PrintFullAccessStripeMap(asm_h, prbuf)
709 RF_AccessStripeMapHeader_t *asm_h;
710 int prbuf; /* flag to print buffer pointers */
711 {
712 int i;
713 RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
714 RF_PhysDiskAddr_t *p;
715 printf("%d stripes total\n", (int) asm_h->numStripes);
716 for (; asmap; asmap = asmap->next) {
717 /* printf("Num failures: %d\n",asmap->numDataFailed); */
718 /* printf("Num sectors:
719 * %d\n",(int)asmap->totalSectorsAccessed); */
720 printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
721 (int) asmap->stripeID,
722 (int) asmap->totalSectorsAccessed,
723 (int) asmap->numDataFailed,
724 (int) asmap->numParityFailed);
725 if (asmap->parityInfo) {
726 printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col,
727 (int) asmap->parityInfo->startSector,
728 (int) (asmap->parityInfo->startSector +
729 asmap->parityInfo->numSector - 1));
730 if (prbuf)
731 printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
732 if (asmap->parityInfo->next) {
733 printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row,
734 asmap->parityInfo->next->col,
735 (int) asmap->parityInfo->next->startSector,
736 (int) (asmap->parityInfo->next->startSector +
737 asmap->parityInfo->next->numSector - 1));
738 if (prbuf)
739 printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
740 RF_ASSERT(asmap->parityInfo->next->next == NULL);
741 }
742 printf("]\n\t");
743 }
744 for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
745 printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector,
746 (int) (p->startSector + p->numSector - 1));
747 if (prbuf)
748 printf("b0x%lx ", (unsigned long) p->bufPtr);
749 if (i && !(i & 1))
750 printf("\n\t");
751 }
752 printf("\n");
753 p = asm_h->stripeMap->failedPDAs[0];
754 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
755 printf("[multiple failures]\n");
756 else
757 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
758 printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col,
759 (int) p->startSector, (int) (p->startSector + p->numSector - 1));
760 }
761 }
762
763 void
764 rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks)
765 RF_Raid_t *raidPtr;
766 RF_RaidAddr_t raidAddr;
767 RF_SectorCount_t numBlocks;
768 {
769 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
770 RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
771
772 printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
773 for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
774 printf("%d (0x%x), ", (int) ra, (int) ra);
775 }
776 printf("\n");
777 printf("Offset into stripe unit: %d (0x%x)\n",
778 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
779 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
780 }
781 /*
782 given a parity descriptor and the starting address within a stripe,
783 range restrict the parity descriptor to touch only the correct stuff.
784 */
785 void
786 rf_ASMParityAdjust(
787 RF_PhysDiskAddr_t * toAdjust,
788 RF_StripeNum_t startAddrWithinStripe,
789 RF_SectorNum_t endAddress,
790 RF_RaidLayout_t * layoutPtr,
791 RF_AccessStripeMap_t * asm_p)
792 {
793 RF_PhysDiskAddr_t *new_pda;
794
795 /* when we're accessing only a portion of one stripe unit, we want the
796 * parity descriptor to identify only the chunk of parity associated
797 * with the data. When the access spans exactly one stripe unit
798 * boundary and is less than a stripe unit in size, it uses two
799 * disjoint regions of the parity unit. When an access spans more
800 * than one stripe unit boundary, it uses all of the parity unit.
801 *
802 * To better handle the case where stripe units are small, we may
803 * eventually want to change the 2nd case so that if the SU size is
804 * below some threshold, we just read/write the whole thing instead of
805 * breaking it up into two accesses. */
806 if (asm_p->numStripeUnitsAccessed == 1) {
807 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
808 toAdjust->startSector += x;
809 toAdjust->raidAddress += x;
810 toAdjust->numSector = asm_p->physInfo->numSector;
811 RF_ASSERT(toAdjust->numSector != 0);
812 } else
813 if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
814 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
815
816 /* create a second pda and copy the parity map info
817 * into it */
818 RF_ASSERT(toAdjust->next == NULL);
819 new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
820 *new_pda = *toAdjust; /* structure assignment */
821 new_pda->next = NULL;
822
823 /* adjust the start sector & number of blocks for the
824 * first parity pda */
825 toAdjust->startSector += x;
826 toAdjust->raidAddress += x;
827 toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
828 RF_ASSERT(toAdjust->numSector != 0);
829
830 /* adjust the second pda */
831 new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
832 /* new_pda->raidAddress =
833 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
834 * toAdjust->raidAddress); */
835 RF_ASSERT(new_pda->numSector != 0);
836 }
837 }
838
839 /*
840 Check if a disk has been spared or failed. If spared,
841 redirect the I/O.
842 If it has been failed, record it in the asm pointer.
843 Fourth arg is whether data or parity.
844 */
845 void
846 rf_ASMCheckStatus(
847 RF_Raid_t * raidPtr,
848 RF_PhysDiskAddr_t * pda_p,
849 RF_AccessStripeMap_t * asm_p,
850 RF_RaidDisk_t ** disks,
851 int parity)
852 {
853 RF_DiskStatus_t dstatus;
854 RF_RowCol_t frow, fcol;
855
856 dstatus = disks[pda_p->row][pda_p->col].status;
857
858 if (dstatus == rf_ds_spared) {
859 /* if the disk has been spared, redirect access to the spare */
860 frow = pda_p->row;
861 fcol = pda_p->col;
862 pda_p->row = disks[frow][fcol].spareRow;
863 pda_p->col = disks[frow][fcol].spareCol;
864 } else
865 if (dstatus == rf_ds_dist_spared) {
866 /* ditto if disk has been spared to dist spare space */
867 RF_RowCol_t or = pda_p->row, oc = pda_p->col;
868 RF_SectorNum_t oo = pda_p->startSector;
869
870 if (pda_p->type == RF_PDA_TYPE_DATA)
871 raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
872 else
873 raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
874
875 if (rf_mapDebug) {
876 printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo,
877 pda_p->row, pda_p->col, (int) pda_p->startSector);
878 }
879 } else
880 if (RF_DEAD_DISK(dstatus)) {
881 /* if the disk is inaccessible, mark the
882 * failure */
883 if (parity)
884 asm_p->numParityFailed++;
885 else {
886 asm_p->numDataFailed++;
887 }
888 asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
889 asm_p->numFailedPDAs++;
890 #if 0
891 switch (asm_p->numParityFailed + asm_p->numDataFailed) {
892 case 1:
893 asm_p->failedPDAs[0] = pda_p;
894 break;
895 case 2:
896 asm_p->failedPDAs[1] = pda_p;
897 default:
898 break;
899 }
900 #endif
901 }
902 /* the redirected access should never span a stripe unit boundary */
903 RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
904 rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
905 RF_ASSERT(pda_p->col != -1);
906 }
907