Home | History | Annotate | Line # | Download | only in raidframe
rf_map.c revision 1.21
      1 /*	$NetBSD: rf_map.c,v 1.21 2002/09/24 00:12:55 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /**************************************************************************
     30  *
     31  * map.c -- main code for mapping RAID addresses to physical disk addresses
     32  *
     33  **************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.21 2002/09/24 00:12:55 oster Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_threadstuff.h"
     41 #include "rf_raid.h"
     42 #include "rf_general.h"
     43 #include "rf_map.h"
     44 #include "rf_freelist.h"
     45 #include "rf_shutdown.h"
     46 
     47 static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count);
     48 static void
     49 rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end,
     50     int count);
     51 
     52 /***************************************************************************
     53  *
     54  * MapAccess -- main 1st order mapping routine.  Maps an access in the
     55  * RAID address space to the corresponding set of physical disk
     56  * addresses.  The result is returned as a list of AccessStripeMap
     57  * structures, one per stripe accessed.  Each ASM structure contains a
     58  * pointer to a list of PhysDiskAddr structures, which describe the
     59  * physical locations touched by the user access.  Note that this routine
     60  * returns only static mapping information, i.e. the list of physical
     61  * addresses returned does not necessarily identify the set of physical
     62  * locations that will actually be read or written.  The routine also
     63  * maps the parity.  The physical disk location returned always indicates
     64  * the entire parity unit, even when only a subset of it is being
     65  * accessed.  This is because an access that is not stripe unit aligned
     66  * but that spans a stripe unit boundary may require access two distinct
     67  * portions of the parity unit, and we can't yet tell which portion(s)
     68  * we'll actually need.  We leave it up to the algorithm selection code
     69  * to decide what subset of the parity unit to access.  Note that
     70  * addresses in the RAID address space must always be maintained as
     71  * longs, instead of ints.
     72  *
     73  * This routine returns NULL if numBlocks is 0
     74  *
     75  ***************************************************************************/
     76 
     77 RF_AccessStripeMapHeader_t *
     78 rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap)
     79 	RF_Raid_t *raidPtr;
     80 	RF_RaidAddr_t raidAddress;	/* starting address in RAID address
     81 					 * space */
     82 	RF_SectorCount_t numBlocks;	/* number of blocks in RAID address
     83 					 * space to access */
     84 	caddr_t buffer;		/* buffer to supply/receive data */
     85 	int     remap;		/* 1 => remap addresses to spare space */
     86 {
     87 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
     88 	RF_AccessStripeMapHeader_t *asm_hdr = NULL;
     89 	RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
     90 	int     faultsTolerated = layoutPtr->map->faultsTolerated;
     91 	RF_RaidAddr_t startAddress = raidAddress;	/* we'll change
     92 							 * raidAddress along the
     93 							 * way */
     94 	RF_RaidAddr_t endAddress = raidAddress + numBlocks;
     95 	RF_RaidDisk_t **disks = raidPtr->Disks;
     96 
     97 	RF_PhysDiskAddr_t *pda_p, *pda_q;
     98 	RF_StripeCount_t numStripes = 0;
     99 	RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress;
    100 	RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
    101 	RF_StripeCount_t totStripes;
    102 	RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
    103 	RF_AccessStripeMap_t *asmList, *t_asm;
    104 	RF_PhysDiskAddr_t *pdaList, *t_pda;
    105 
    106 	/* allocate all the ASMs and PDAs up front */
    107 	lastRaidAddr = raidAddress + numBlocks - 1;
    108 	stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
    109 	lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
    110 	totStripes = lastSID - stripeID + 1;
    111 	SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
    112 	lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
    113 
    114 	asmList = rf_AllocASMList(totStripes);
    115 	pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes);	/* may also need pda(s)
    116 											 * per stripe for parity */
    117 
    118 	if (raidAddress + numBlocks > raidPtr->totalSectors) {
    119 		RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
    120 		    (int) raidAddress);
    121 		return (NULL);
    122 	}
    123 #if RF_DEBUG_MAP
    124 	if (rf_mapDebug)
    125 		rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
    126 #endif
    127 	for (; raidAddress < endAddress;) {
    128 		/* make the next stripe structure */
    129 		RF_ASSERT(asmList);
    130 		t_asm = asmList;
    131 		asmList = asmList->next;
    132 		memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
    133 		if (!asm_p)
    134 			asm_list = asm_p = t_asm;
    135 		else {
    136 			asm_p->next = t_asm;
    137 			asm_p = asm_p->next;
    138 		}
    139 		numStripes++;
    140 
    141 		/* map SUs from current location to the end of the stripe */
    142 		asm_p->stripeID =	/* rf_RaidAddressToStripeID(layoutPtr,
    143 		        raidAddress) */ stripeID++;
    144 		stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
    145 		stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
    146 		asm_p->raidAddress = raidAddress;
    147 		asm_p->endRaidAddress = stripeEndAddress;
    148 
    149 		/* map each stripe unit in the stripe */
    150 		pda_p = NULL;
    151 		startAddrWithinStripe = raidAddress;	/* Raid addr of start of
    152 							 * portion of access
    153 							 * that is within this
    154 							 * stripe */
    155 		for (; raidAddress < stripeEndAddress;) {
    156 			RF_ASSERT(pdaList);
    157 			t_pda = pdaList;
    158 			pdaList = pdaList->next;
    159 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    160 			if (!pda_p)
    161 				asm_p->physInfo = pda_p = t_pda;
    162 			else {
    163 				pda_p->next = t_pda;
    164 				pda_p = pda_p->next;
    165 			}
    166 
    167 			pda_p->type = RF_PDA_TYPE_DATA;
    168 			(layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
    169 
    170 			/* mark any failures we find.  failedPDA is don't-care
    171 			 * if there is more than one failure */
    172 			pda_p->raidAddress = raidAddress;	/* the RAID address
    173 								 * corresponding to this
    174 								 * physical disk address */
    175 			nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
    176 			pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
    177 			RF_ASSERT(pda_p->numSector != 0);
    178 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
    179 			pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
    180 			asm_p->totalSectorsAccessed += pda_p->numSector;
    181 			asm_p->numStripeUnitsAccessed++;
    182 			asm_p->origRow = pda_p->row;	/* redundant but
    183 							 * harmless to do this
    184 							 * in every loop
    185 							 * iteration */
    186 
    187 			raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
    188 		}
    189 
    190 		/* Map the parity. At this stage, the startSector and
    191 		 * numSector fields for the parity unit are always set to
    192 		 * indicate the entire parity unit. We may modify this after
    193 		 * mapping the data portion. */
    194 		switch (faultsTolerated) {
    195 		case 0:
    196 			break;
    197 		case 1:	/* single fault tolerant */
    198 			RF_ASSERT(pdaList);
    199 			t_pda = pdaList;
    200 			pdaList = pdaList->next;
    201 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    202 			pda_p = asm_p->parityInfo = t_pda;
    203 			pda_p->type = RF_PDA_TYPE_PARITY;
    204 			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    205 			    &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
    206 			pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
    207 			/* raidAddr may be needed to find unit to redirect to */
    208 			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    209 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
    210 			rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    211 
    212 			break;
    213 		case 2:	/* two fault tolerant */
    214 			RF_ASSERT(pdaList && pdaList->next);
    215 			t_pda = pdaList;
    216 			pdaList = pdaList->next;
    217 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    218 			pda_p = asm_p->parityInfo = t_pda;
    219 			pda_p->type = RF_PDA_TYPE_PARITY;
    220 			t_pda = pdaList;
    221 			pdaList = pdaList->next;
    222 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    223 			pda_q = asm_p->qInfo = t_pda;
    224 			pda_q->type = RF_PDA_TYPE_Q;
    225 			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    226 			    &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
    227 			(layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    228 			    &(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap);
    229 			pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
    230 			/* raidAddr may be needed to find unit to redirect to */
    231 			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    232 			pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    233 			/* failure mode stuff */
    234 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
    235 			rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
    236 			rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    237 			rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    238 			break;
    239 		}
    240 	}
    241 	RF_ASSERT(asmList == NULL && pdaList == NULL);
    242 	/* make the header structure */
    243 	asm_hdr = rf_AllocAccessStripeMapHeader();
    244 	RF_ASSERT(numStripes == totStripes);
    245 	asm_hdr->numStripes = numStripes;
    246 	asm_hdr->stripeMap = asm_list;
    247 
    248 #if RF_DEBUG_MAP
    249 	if (rf_mapDebug)
    250 		rf_PrintAccessStripeMap(asm_hdr);
    251 #endif
    252 	return (asm_hdr);
    253 }
    254 
    255 /***************************************************************************
    256  * This routine walks through an ASM list and marks the PDAs that have
    257  * failed.  It's called only when a disk failure causes an in-flight
    258  * DAG to fail.  The parity may consist of two components, but we want
    259  * to use only one failedPDA pointer.  Thus we set failedPDA to point
    260  * to the first parity component, and rely on the rest of the code to
    261  * do the right thing with this.
    262  ***************************************************************************/
    263 
    264 void
    265 rf_MarkFailuresInASMList(raidPtr, asm_h)
    266 	RF_Raid_t *raidPtr;
    267 	RF_AccessStripeMapHeader_t *asm_h;
    268 {
    269 	RF_RaidDisk_t **disks = raidPtr->Disks;
    270 	RF_AccessStripeMap_t *asmap;
    271 	RF_PhysDiskAddr_t *pda;
    272 
    273 	for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
    274 		asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0;
    275 		asmap->numFailedPDAs = 0;
    276 		memset((char *) asmap->failedPDAs, 0,
    277 		    RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
    278 		for (pda = asmap->physInfo; pda; pda = pda->next) {
    279 			if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
    280 				asmap->numDataFailed++;
    281 				asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    282 				asmap->numFailedPDAs++;
    283 			}
    284 		}
    285 		pda = asmap->parityInfo;
    286 		if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
    287 			asmap->numParityFailed++;
    288 			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    289 			asmap->numFailedPDAs++;
    290 		}
    291 		pda = asmap->qInfo;
    292 		if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
    293 			asmap->numQFailed++;
    294 			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    295 			asmap->numFailedPDAs++;
    296 		}
    297 	}
    298 }
    299 
    300 /***************************************************************************
    301  *
    302  * routines to allocate and free list elements.  All allocation
    303  * routines zero the structure before returning it.
    304  *
    305  * FreePhysDiskAddr is static.  It should never be called directly,
    306  * because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
    307  * list.
    308  *
    309  ***************************************************************************/
    310 
    311 static RF_FreeList_t *rf_asmhdr_freelist;
    312 #define RF_MAX_FREE_ASMHDR 128
    313 #define RF_ASMHDR_INC       16
    314 #define RF_ASMHDR_INITIAL   32
    315 
    316 static RF_FreeList_t *rf_asm_freelist;
    317 #define RF_MAX_FREE_ASM 192
    318 #define RF_ASM_INC       24
    319 #define RF_ASM_INITIAL   64
    320 
    321 static RF_FreeList_t *rf_pda_freelist;
    322 #define RF_MAX_FREE_PDA 192
    323 #define RF_PDA_INC       24
    324 #define RF_PDA_INITIAL   64
    325 
    326 /* called at shutdown time.  So far, all that is necessary is to release all the free lists */
    327 static void rf_ShutdownMapModule(void *);
    328 static void
    329 rf_ShutdownMapModule(ignored)
    330 	void   *ignored;
    331 {
    332 	RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
    333 	RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
    334 	RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *));
    335 }
    336 
    337 int
    338 rf_ConfigureMapModule(listp)
    339 	RF_ShutdownList_t **listp;
    340 {
    341 	int     rc;
    342 
    343 	RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR,
    344 	    RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t));
    345 	if (rf_asmhdr_freelist == NULL) {
    346 		return (ENOMEM);
    347 	}
    348 	RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM,
    349 	    RF_ASM_INC, sizeof(RF_AccessStripeMap_t));
    350 	if (rf_asm_freelist == NULL) {
    351 		RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
    352 		return (ENOMEM);
    353 	}
    354 	RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA,
    355 	    RF_PDA_INC, sizeof(RF_PhysDiskAddr_t));
    356 	if (rf_pda_freelist == NULL) {
    357 		RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
    358 		RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
    359 		return (ENOMEM);
    360 	}
    361 	rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
    362 	if (rc) {
    363 		rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
    364 		rf_ShutdownMapModule(NULL);
    365 		return (rc);
    366 	}
    367 	RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next,
    368 	    (RF_AccessStripeMapHeader_t *));
    369 	RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next,
    370 	    (RF_AccessStripeMap_t *));
    371 	RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next,
    372 	    (RF_PhysDiskAddr_t *));
    373 
    374 	return (0);
    375 }
    376 
    377 RF_AccessStripeMapHeader_t *
    378 rf_AllocAccessStripeMapHeader()
    379 {
    380 	RF_AccessStripeMapHeader_t *p;
    381 
    382 	RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *));
    383 	memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
    384 
    385 	return (p);
    386 }
    387 
    388 
    389 void
    390 rf_FreeAccessStripeMapHeader(p)
    391 	RF_AccessStripeMapHeader_t *p;
    392 {
    393 	RF_FREELIST_FREE(rf_asmhdr_freelist, p, next);
    394 }
    395 
    396 RF_PhysDiskAddr_t *
    397 rf_AllocPhysDiskAddr()
    398 {
    399 	RF_PhysDiskAddr_t *p;
    400 
    401 	RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *));
    402 	memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
    403 
    404 	return (p);
    405 }
    406 /* allocates a list of PDAs, locking the free list only once
    407  * when we have to call calloc, we do it one component at a time to simplify
    408  * the process of freeing the list at program shutdown.  This should not be
    409  * much of a performance hit, because it should be very infrequently executed.
    410  */
    411 RF_PhysDiskAddr_t *
    412 rf_AllocPDAList(count)
    413 	int     count;
    414 {
    415 	RF_PhysDiskAddr_t *p = NULL;
    416 
    417 	RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count);
    418 	return (p);
    419 }
    420 
    421 #if RF_INCLUDE_PARITYLOGGING > 0
    422 void
    423 rf_FreePhysDiskAddr(p)
    424 	RF_PhysDiskAddr_t *p;
    425 {
    426 	RF_FREELIST_FREE(rf_pda_freelist, p, next);
    427 }
    428 #endif
    429 
    430 static void
    431 rf_FreePDAList(l_start, l_end, count)
    432 	RF_PhysDiskAddr_t *l_start, *l_end;	/* pointers to start and end
    433 						 * of list */
    434 	int     count;		/* number of elements in list */
    435 {
    436 	RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count);
    437 }
    438 
    439 /* this is essentially identical to AllocPDAList.  I should combine the two.
    440  * when we have to call calloc, we do it one component at a time to simplify
    441  * the process of freeing the list at program shutdown.  This should not be
    442  * much of a performance hit, because it should be very infrequently executed.
    443  */
    444 RF_AccessStripeMap_t *
    445 rf_AllocASMList(count)
    446 	int     count;
    447 {
    448 	RF_AccessStripeMap_t *p = NULL;
    449 
    450 	RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count);
    451 	return (p);
    452 }
    453 
    454 static void
    455 rf_FreeASMList(l_start, l_end, count)
    456 	RF_AccessStripeMap_t *l_start, *l_end;
    457 	int     count;
    458 {
    459 	RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count);
    460 }
    461 
    462 void
    463 rf_FreeAccessStripeMap(hdr)
    464 	RF_AccessStripeMapHeader_t *hdr;
    465 {
    466 	RF_AccessStripeMap_t *p, *pt = NULL;
    467 	RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
    468 	int     count = 0, t, asm_count = 0;
    469 
    470 	for (p = hdr->stripeMap; p; p = p->next) {
    471 
    472 		/* link the 3 pda lists into the accumulating pda list */
    473 
    474 		if (!pdaList)
    475 			pdaList = p->qInfo;
    476 		else
    477 			pdaEnd->next = p->qInfo;
    478 		for (trailer = NULL, pdp = p->qInfo; pdp;) {
    479 			trailer = pdp;
    480 			pdp = pdp->next;
    481 			count++;
    482 		}
    483 		if (trailer)
    484 			pdaEnd = trailer;
    485 
    486 		if (!pdaList)
    487 			pdaList = p->parityInfo;
    488 		else
    489 			pdaEnd->next = p->parityInfo;
    490 		for (trailer = NULL, pdp = p->parityInfo; pdp;) {
    491 			trailer = pdp;
    492 			pdp = pdp->next;
    493 			count++;
    494 		}
    495 		if (trailer)
    496 			pdaEnd = trailer;
    497 
    498 		if (!pdaList)
    499 			pdaList = p->physInfo;
    500 		else
    501 			pdaEnd->next = p->physInfo;
    502 		for (trailer = NULL, pdp = p->physInfo; pdp;) {
    503 			trailer = pdp;
    504 			pdp = pdp->next;
    505 			count++;
    506 		}
    507 		if (trailer)
    508 			pdaEnd = trailer;
    509 
    510 		pt = p;
    511 		asm_count++;
    512 	}
    513 
    514 	/* debug only */
    515 	for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
    516 		t++;
    517 	RF_ASSERT(t == count);
    518 
    519 	if (pdaList)
    520 		rf_FreePDAList(pdaList, pdaEnd, count);
    521 	rf_FreeASMList(hdr->stripeMap, pt, asm_count);
    522 	rf_FreeAccessStripeMapHeader(hdr);
    523 }
    524 /* We can't use the large write optimization if there are any failures
    525  * in the stripe.  In the declustered layout, there is no way to
    526  * immediately determine what disks constitute a stripe, so we
    527  * actually have to hunt through the stripe looking for failures.  The
    528  * reason we map the parity instead of just using asm->parityInfo->col
    529  * is because the latter may have been already redirected to a spare
    530  * drive, which would mess up the computation of the stripe offset.
    531  *
    532  * ASSUMES AT MOST ONE FAILURE IN THE STRIPE.  */
    533 int
    534 rf_CheckStripeForFailures(raidPtr, asmap)
    535 	RF_Raid_t *raidPtr;
    536 	RF_AccessStripeMap_t *asmap;
    537 {
    538 	RF_RowCol_t trow, tcol, prow, pcol, *diskids, i;
    539 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    540 	RF_StripeCount_t stripeOffset;
    541 	int     numFailures;
    542 	RF_RaidAddr_t sosAddr;
    543 	RF_SectorNum_t diskOffset, poffset;
    544 	RF_RowCol_t testrow;
    545 
    546 	/* quick out in the fault-free case.  */
    547 	RF_LOCK_MUTEX(raidPtr->mutex);
    548 	numFailures = raidPtr->numFailures;
    549 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    550 	if (numFailures == 0)
    551 		return (0);
    552 
    553 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    554 	(layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow);
    555 	(layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0);	/* get pcol */
    556 
    557 	/* this need not be true if we've redirected the access to a spare in
    558 	 * another row RF_ASSERT(row == testrow); */
    559 	stripeOffset = 0;
    560 	for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
    561 		if (diskids[i] != pcol) {
    562 			if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) {
    563 				if (raidPtr->status[testrow] != rf_rs_reconstructing)
    564 					return (1);
    565 				RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]);
    566 				layoutPtr->map->MapSector(raidPtr,
    567 				    sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
    568 				    &trow, &tcol, &diskOffset, 0);
    569 				RF_ASSERT((trow == testrow) && (tcol == diskids[i]));
    570 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset))
    571 					return (1);
    572 				asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
    573 				return (0);
    574 			}
    575 			stripeOffset++;
    576 		}
    577 	}
    578 	return (0);
    579 }
    580 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
    581 /*
    582    return the number of failed data units in the stripe.
    583 */
    584 
    585 int
    586 rf_NumFailedDataUnitsInStripe(raidPtr, asmap)
    587 	RF_Raid_t *raidPtr;
    588 	RF_AccessStripeMap_t *asmap;
    589 {
    590 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    591 	RF_RowCol_t trow, tcol, i;
    592 	RF_SectorNum_t diskOffset;
    593 	RF_RaidAddr_t sosAddr;
    594 	int     numFailures;
    595 
    596 	/* quick out in the fault-free case.  */
    597 	RF_LOCK_MUTEX(raidPtr->mutex);
    598 	numFailures = raidPtr->numFailures;
    599 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    600 	if (numFailures == 0)
    601 		return (0);
    602 	numFailures = 0;
    603 
    604 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    605 	for (i = 0; i < layoutPtr->numDataCol; i++) {
    606 		(layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
    607 		    &trow, &tcol, &diskOffset, 0);
    608 		if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status))
    609 			numFailures++;
    610 	}
    611 
    612 	return numFailures;
    613 }
    614 #endif
    615 
    616 /*****************************************************************************************
    617  *
    618  * debug routines
    619  *
    620  ****************************************************************************************/
    621 #if RF_DEBUG_MAP
    622 void
    623 rf_PrintAccessStripeMap(asm_h)
    624 	RF_AccessStripeMapHeader_t *asm_h;
    625 {
    626 	rf_PrintFullAccessStripeMap(asm_h, 0);
    627 }
    628 #endif
    629 
    630 void
    631 rf_PrintFullAccessStripeMap(asm_h, prbuf)
    632 	RF_AccessStripeMapHeader_t *asm_h;
    633 	int     prbuf;		/* flag to print buffer pointers */
    634 {
    635 	int     i;
    636 	RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
    637 	RF_PhysDiskAddr_t *p;
    638 	printf("%d stripes total\n", (int) asm_h->numStripes);
    639 	for (; asmap; asmap = asmap->next) {
    640 		/* printf("Num failures: %d\n",asmap->numDataFailed); */
    641 		/* printf("Num sectors:
    642 		 * %d\n",(int)asmap->totalSectorsAccessed); */
    643 		printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
    644 		    (int) asmap->stripeID,
    645 		    (int) asmap->totalSectorsAccessed,
    646 		    (int) asmap->numDataFailed,
    647 		    (int) asmap->numParityFailed);
    648 		if (asmap->parityInfo) {
    649 			printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col,
    650 			    (int) asmap->parityInfo->startSector,
    651 			    (int) (asmap->parityInfo->startSector +
    652 				asmap->parityInfo->numSector - 1));
    653 			if (prbuf)
    654 				printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
    655 			if (asmap->parityInfo->next) {
    656 				printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row,
    657 				    asmap->parityInfo->next->col,
    658 				    (int) asmap->parityInfo->next->startSector,
    659 				    (int) (asmap->parityInfo->next->startSector +
    660 					asmap->parityInfo->next->numSector - 1));
    661 				if (prbuf)
    662 					printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
    663 				RF_ASSERT(asmap->parityInfo->next->next == NULL);
    664 			}
    665 			printf("]\n\t");
    666 		}
    667 		for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
    668 			printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector,
    669 			    (int) (p->startSector + p->numSector - 1));
    670 			if (prbuf)
    671 				printf("b0x%lx ", (unsigned long) p->bufPtr);
    672 			if (i && !(i & 1))
    673 				printf("\n\t");
    674 		}
    675 		printf("\n");
    676 		p = asm_h->stripeMap->failedPDAs[0];
    677 		if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
    678 			printf("[multiple failures]\n");
    679 		else
    680 			if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
    681 				printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col,
    682 				    (int) p->startSector, (int) (p->startSector + p->numSector - 1));
    683 	}
    684 }
    685 
    686 #if RF_MAP_DEBUG
    687 void
    688 rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks)
    689 	RF_Raid_t *raidPtr;
    690 	RF_RaidAddr_t raidAddr;
    691 	RF_SectorCount_t numBlocks;
    692 {
    693 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    694 	RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
    695 
    696 	printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
    697 	for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
    698 		printf("%d (0x%x), ", (int) ra, (int) ra);
    699 	}
    700 	printf("\n");
    701 	printf("Offset into stripe unit: %d (0x%x)\n",
    702 	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
    703 	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
    704 }
    705 #endif
    706 /*
    707    given a parity descriptor and the starting address within a stripe,
    708    range restrict the parity descriptor to touch only the correct stuff.
    709 */
    710 void
    711 rf_ASMParityAdjust(
    712     RF_PhysDiskAddr_t * toAdjust,
    713     RF_StripeNum_t startAddrWithinStripe,
    714     RF_SectorNum_t endAddress,
    715     RF_RaidLayout_t * layoutPtr,
    716     RF_AccessStripeMap_t * asm_p)
    717 {
    718 	RF_PhysDiskAddr_t *new_pda;
    719 
    720 	/* when we're accessing only a portion of one stripe unit, we want the
    721 	 * parity descriptor to identify only the chunk of parity associated
    722 	 * with the data.  When the access spans exactly one stripe unit
    723 	 * boundary and is less than a stripe unit in size, it uses two
    724 	 * disjoint regions of the parity unit.  When an access spans more
    725 	 * than one stripe unit boundary, it uses all of the parity unit.
    726 	 *
    727 	 * To better handle the case where stripe units are small, we may
    728 	 * eventually want to change the 2nd case so that if the SU size is
    729 	 * below some threshold, we just read/write the whole thing instead of
    730 	 * breaking it up into two accesses. */
    731 	if (asm_p->numStripeUnitsAccessed == 1) {
    732 		int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
    733 		toAdjust->startSector += x;
    734 		toAdjust->raidAddress += x;
    735 		toAdjust->numSector = asm_p->physInfo->numSector;
    736 		RF_ASSERT(toAdjust->numSector != 0);
    737 	} else
    738 		if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
    739 			int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
    740 
    741 			/* create a second pda and copy the parity map info
    742 			 * into it */
    743 			RF_ASSERT(toAdjust->next == NULL);
    744 			new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
    745 			*new_pda = *toAdjust;	/* structure assignment */
    746 			new_pda->next = NULL;
    747 
    748 			/* adjust the start sector & number of blocks for the
    749 			 * first parity pda */
    750 			toAdjust->startSector += x;
    751 			toAdjust->raidAddress += x;
    752 			toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
    753 			RF_ASSERT(toAdjust->numSector != 0);
    754 
    755 			/* adjust the second pda */
    756 			new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
    757 			/* new_pda->raidAddress =
    758 			 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
    759 			 * toAdjust->raidAddress); */
    760 			RF_ASSERT(new_pda->numSector != 0);
    761 		}
    762 }
    763 
    764 /*
    765    Check if a disk has been spared or failed. If spared,
    766    redirect the I/O.
    767    If it has been failed, record it in the asm pointer.
    768    Fourth arg is whether data or parity.
    769 */
    770 void
    771 rf_ASMCheckStatus(
    772     RF_Raid_t * raidPtr,
    773     RF_PhysDiskAddr_t * pda_p,
    774     RF_AccessStripeMap_t * asm_p,
    775     RF_RaidDisk_t ** disks,
    776     int parity)
    777 {
    778 	RF_DiskStatus_t dstatus;
    779 	RF_RowCol_t frow, fcol;
    780 
    781 	dstatus = disks[pda_p->row][pda_p->col].status;
    782 
    783 	if (dstatus == rf_ds_spared) {
    784 		/* if the disk has been spared, redirect access to the spare */
    785 		frow = pda_p->row;
    786 		fcol = pda_p->col;
    787 		pda_p->row = disks[frow][fcol].spareRow;
    788 		pda_p->col = disks[frow][fcol].spareCol;
    789 	} else
    790 		if (dstatus == rf_ds_dist_spared) {
    791 			/* ditto if disk has been spared to dist spare space */
    792 #if RF_DEBUG_MAP
    793 			RF_RowCol_t or = pda_p->row, oc = pda_p->col;
    794 			RF_SectorNum_t oo = pda_p->startSector;
    795 #endif
    796 			if (pda_p->type == RF_PDA_TYPE_DATA)
    797 				raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
    798 			else
    799 				raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
    800 
    801 #if RF_DEBUG_MAP
    802 			if (rf_mapDebug) {
    803 				printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo,
    804 				    pda_p->row, pda_p->col, (int) pda_p->startSector);
    805 			}
    806 #endif
    807 		} else
    808 			if (RF_DEAD_DISK(dstatus)) {
    809 				/* if the disk is inaccessible, mark the
    810 				 * failure */
    811 				if (parity)
    812 					asm_p->numParityFailed++;
    813 				else {
    814 					asm_p->numDataFailed++;
    815 				}
    816 				asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
    817 				asm_p->numFailedPDAs++;
    818 #if 0
    819 				switch (asm_p->numParityFailed + asm_p->numDataFailed) {
    820 				case 1:
    821 					asm_p->failedPDAs[0] = pda_p;
    822 					break;
    823 				case 2:
    824 					asm_p->failedPDAs[1] = pda_p;
    825 				default:
    826 					break;
    827 				}
    828 #endif
    829 			}
    830 	/* the redirected access should never span a stripe unit boundary */
    831 	RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
    832 	    rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
    833 	RF_ASSERT(pda_p->col != -1);
    834 }
    835