rf_map.c revision 1.21 1 /* $NetBSD: rf_map.c,v 1.21 2002/09/24 00:12:55 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /**************************************************************************
30 *
31 * map.c -- main code for mapping RAID addresses to physical disk addresses
32 *
33 **************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.21 2002/09/24 00:12:55 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_threadstuff.h"
41 #include "rf_raid.h"
42 #include "rf_general.h"
43 #include "rf_map.h"
44 #include "rf_freelist.h"
45 #include "rf_shutdown.h"
46
47 static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count);
48 static void
49 rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end,
50 int count);
51
52 /***************************************************************************
53 *
54 * MapAccess -- main 1st order mapping routine. Maps an access in the
55 * RAID address space to the corresponding set of physical disk
56 * addresses. The result is returned as a list of AccessStripeMap
57 * structures, one per stripe accessed. Each ASM structure contains a
58 * pointer to a list of PhysDiskAddr structures, which describe the
59 * physical locations touched by the user access. Note that this routine
60 * returns only static mapping information, i.e. the list of physical
61 * addresses returned does not necessarily identify the set of physical
62 * locations that will actually be read or written. The routine also
63 * maps the parity. The physical disk location returned always indicates
64 * the entire parity unit, even when only a subset of it is being
65 * accessed. This is because an access that is not stripe unit aligned
66 * but that spans a stripe unit boundary may require access two distinct
67 * portions of the parity unit, and we can't yet tell which portion(s)
68 * we'll actually need. We leave it up to the algorithm selection code
69 * to decide what subset of the parity unit to access. Note that
70 * addresses in the RAID address space must always be maintained as
71 * longs, instead of ints.
72 *
73 * This routine returns NULL if numBlocks is 0
74 *
75 ***************************************************************************/
76
77 RF_AccessStripeMapHeader_t *
78 rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap)
79 RF_Raid_t *raidPtr;
80 RF_RaidAddr_t raidAddress; /* starting address in RAID address
81 * space */
82 RF_SectorCount_t numBlocks; /* number of blocks in RAID address
83 * space to access */
84 caddr_t buffer; /* buffer to supply/receive data */
85 int remap; /* 1 => remap addresses to spare space */
86 {
87 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
88 RF_AccessStripeMapHeader_t *asm_hdr = NULL;
89 RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
90 int faultsTolerated = layoutPtr->map->faultsTolerated;
91 RF_RaidAddr_t startAddress = raidAddress; /* we'll change
92 * raidAddress along the
93 * way */
94 RF_RaidAddr_t endAddress = raidAddress + numBlocks;
95 RF_RaidDisk_t **disks = raidPtr->Disks;
96
97 RF_PhysDiskAddr_t *pda_p, *pda_q;
98 RF_StripeCount_t numStripes = 0;
99 RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress;
100 RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
101 RF_StripeCount_t totStripes;
102 RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
103 RF_AccessStripeMap_t *asmList, *t_asm;
104 RF_PhysDiskAddr_t *pdaList, *t_pda;
105
106 /* allocate all the ASMs and PDAs up front */
107 lastRaidAddr = raidAddress + numBlocks - 1;
108 stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
109 lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
110 totStripes = lastSID - stripeID + 1;
111 SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
112 lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
113
114 asmList = rf_AllocASMList(totStripes);
115 pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes); /* may also need pda(s)
116 * per stripe for parity */
117
118 if (raidAddress + numBlocks > raidPtr->totalSectors) {
119 RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
120 (int) raidAddress);
121 return (NULL);
122 }
123 #if RF_DEBUG_MAP
124 if (rf_mapDebug)
125 rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
126 #endif
127 for (; raidAddress < endAddress;) {
128 /* make the next stripe structure */
129 RF_ASSERT(asmList);
130 t_asm = asmList;
131 asmList = asmList->next;
132 memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
133 if (!asm_p)
134 asm_list = asm_p = t_asm;
135 else {
136 asm_p->next = t_asm;
137 asm_p = asm_p->next;
138 }
139 numStripes++;
140
141 /* map SUs from current location to the end of the stripe */
142 asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
143 raidAddress) */ stripeID++;
144 stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
145 stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
146 asm_p->raidAddress = raidAddress;
147 asm_p->endRaidAddress = stripeEndAddress;
148
149 /* map each stripe unit in the stripe */
150 pda_p = NULL;
151 startAddrWithinStripe = raidAddress; /* Raid addr of start of
152 * portion of access
153 * that is within this
154 * stripe */
155 for (; raidAddress < stripeEndAddress;) {
156 RF_ASSERT(pdaList);
157 t_pda = pdaList;
158 pdaList = pdaList->next;
159 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
160 if (!pda_p)
161 asm_p->physInfo = pda_p = t_pda;
162 else {
163 pda_p->next = t_pda;
164 pda_p = pda_p->next;
165 }
166
167 pda_p->type = RF_PDA_TYPE_DATA;
168 (layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
169
170 /* mark any failures we find. failedPDA is don't-care
171 * if there is more than one failure */
172 pda_p->raidAddress = raidAddress; /* the RAID address
173 * corresponding to this
174 * physical disk address */
175 nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
176 pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
177 RF_ASSERT(pda_p->numSector != 0);
178 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
179 pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
180 asm_p->totalSectorsAccessed += pda_p->numSector;
181 asm_p->numStripeUnitsAccessed++;
182 asm_p->origRow = pda_p->row; /* redundant but
183 * harmless to do this
184 * in every loop
185 * iteration */
186
187 raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
188 }
189
190 /* Map the parity. At this stage, the startSector and
191 * numSector fields for the parity unit are always set to
192 * indicate the entire parity unit. We may modify this after
193 * mapping the data portion. */
194 switch (faultsTolerated) {
195 case 0:
196 break;
197 case 1: /* single fault tolerant */
198 RF_ASSERT(pdaList);
199 t_pda = pdaList;
200 pdaList = pdaList->next;
201 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
202 pda_p = asm_p->parityInfo = t_pda;
203 pda_p->type = RF_PDA_TYPE_PARITY;
204 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
205 &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
206 pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
207 /* raidAddr may be needed to find unit to redirect to */
208 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
209 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
210 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
211
212 break;
213 case 2: /* two fault tolerant */
214 RF_ASSERT(pdaList && pdaList->next);
215 t_pda = pdaList;
216 pdaList = pdaList->next;
217 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
218 pda_p = asm_p->parityInfo = t_pda;
219 pda_p->type = RF_PDA_TYPE_PARITY;
220 t_pda = pdaList;
221 pdaList = pdaList->next;
222 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
223 pda_q = asm_p->qInfo = t_pda;
224 pda_q->type = RF_PDA_TYPE_Q;
225 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
226 &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
227 (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
228 &(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap);
229 pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
230 /* raidAddr may be needed to find unit to redirect to */
231 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
232 pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
233 /* failure mode stuff */
234 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
235 rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
236 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
237 rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
238 break;
239 }
240 }
241 RF_ASSERT(asmList == NULL && pdaList == NULL);
242 /* make the header structure */
243 asm_hdr = rf_AllocAccessStripeMapHeader();
244 RF_ASSERT(numStripes == totStripes);
245 asm_hdr->numStripes = numStripes;
246 asm_hdr->stripeMap = asm_list;
247
248 #if RF_DEBUG_MAP
249 if (rf_mapDebug)
250 rf_PrintAccessStripeMap(asm_hdr);
251 #endif
252 return (asm_hdr);
253 }
254
255 /***************************************************************************
256 * This routine walks through an ASM list and marks the PDAs that have
257 * failed. It's called only when a disk failure causes an in-flight
258 * DAG to fail. The parity may consist of two components, but we want
259 * to use only one failedPDA pointer. Thus we set failedPDA to point
260 * to the first parity component, and rely on the rest of the code to
261 * do the right thing with this.
262 ***************************************************************************/
263
264 void
265 rf_MarkFailuresInASMList(raidPtr, asm_h)
266 RF_Raid_t *raidPtr;
267 RF_AccessStripeMapHeader_t *asm_h;
268 {
269 RF_RaidDisk_t **disks = raidPtr->Disks;
270 RF_AccessStripeMap_t *asmap;
271 RF_PhysDiskAddr_t *pda;
272
273 for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
274 asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0;
275 asmap->numFailedPDAs = 0;
276 memset((char *) asmap->failedPDAs, 0,
277 RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
278 for (pda = asmap->physInfo; pda; pda = pda->next) {
279 if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
280 asmap->numDataFailed++;
281 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
282 asmap->numFailedPDAs++;
283 }
284 }
285 pda = asmap->parityInfo;
286 if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
287 asmap->numParityFailed++;
288 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
289 asmap->numFailedPDAs++;
290 }
291 pda = asmap->qInfo;
292 if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
293 asmap->numQFailed++;
294 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
295 asmap->numFailedPDAs++;
296 }
297 }
298 }
299
300 /***************************************************************************
301 *
302 * routines to allocate and free list elements. All allocation
303 * routines zero the structure before returning it.
304 *
305 * FreePhysDiskAddr is static. It should never be called directly,
306 * because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
307 * list.
308 *
309 ***************************************************************************/
310
311 static RF_FreeList_t *rf_asmhdr_freelist;
312 #define RF_MAX_FREE_ASMHDR 128
313 #define RF_ASMHDR_INC 16
314 #define RF_ASMHDR_INITIAL 32
315
316 static RF_FreeList_t *rf_asm_freelist;
317 #define RF_MAX_FREE_ASM 192
318 #define RF_ASM_INC 24
319 #define RF_ASM_INITIAL 64
320
321 static RF_FreeList_t *rf_pda_freelist;
322 #define RF_MAX_FREE_PDA 192
323 #define RF_PDA_INC 24
324 #define RF_PDA_INITIAL 64
325
326 /* called at shutdown time. So far, all that is necessary is to release all the free lists */
327 static void rf_ShutdownMapModule(void *);
328 static void
329 rf_ShutdownMapModule(ignored)
330 void *ignored;
331 {
332 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
333 RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
334 RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *));
335 }
336
337 int
338 rf_ConfigureMapModule(listp)
339 RF_ShutdownList_t **listp;
340 {
341 int rc;
342
343 RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR,
344 RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t));
345 if (rf_asmhdr_freelist == NULL) {
346 return (ENOMEM);
347 }
348 RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM,
349 RF_ASM_INC, sizeof(RF_AccessStripeMap_t));
350 if (rf_asm_freelist == NULL) {
351 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
352 return (ENOMEM);
353 }
354 RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA,
355 RF_PDA_INC, sizeof(RF_PhysDiskAddr_t));
356 if (rf_pda_freelist == NULL) {
357 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
358 RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
359 return (ENOMEM);
360 }
361 rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
362 if (rc) {
363 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
364 rf_ShutdownMapModule(NULL);
365 return (rc);
366 }
367 RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next,
368 (RF_AccessStripeMapHeader_t *));
369 RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next,
370 (RF_AccessStripeMap_t *));
371 RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next,
372 (RF_PhysDiskAddr_t *));
373
374 return (0);
375 }
376
377 RF_AccessStripeMapHeader_t *
378 rf_AllocAccessStripeMapHeader()
379 {
380 RF_AccessStripeMapHeader_t *p;
381
382 RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *));
383 memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
384
385 return (p);
386 }
387
388
389 void
390 rf_FreeAccessStripeMapHeader(p)
391 RF_AccessStripeMapHeader_t *p;
392 {
393 RF_FREELIST_FREE(rf_asmhdr_freelist, p, next);
394 }
395
396 RF_PhysDiskAddr_t *
397 rf_AllocPhysDiskAddr()
398 {
399 RF_PhysDiskAddr_t *p;
400
401 RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *));
402 memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
403
404 return (p);
405 }
406 /* allocates a list of PDAs, locking the free list only once
407 * when we have to call calloc, we do it one component at a time to simplify
408 * the process of freeing the list at program shutdown. This should not be
409 * much of a performance hit, because it should be very infrequently executed.
410 */
411 RF_PhysDiskAddr_t *
412 rf_AllocPDAList(count)
413 int count;
414 {
415 RF_PhysDiskAddr_t *p = NULL;
416
417 RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count);
418 return (p);
419 }
420
421 #if RF_INCLUDE_PARITYLOGGING > 0
422 void
423 rf_FreePhysDiskAddr(p)
424 RF_PhysDiskAddr_t *p;
425 {
426 RF_FREELIST_FREE(rf_pda_freelist, p, next);
427 }
428 #endif
429
430 static void
431 rf_FreePDAList(l_start, l_end, count)
432 RF_PhysDiskAddr_t *l_start, *l_end; /* pointers to start and end
433 * of list */
434 int count; /* number of elements in list */
435 {
436 RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count);
437 }
438
439 /* this is essentially identical to AllocPDAList. I should combine the two.
440 * when we have to call calloc, we do it one component at a time to simplify
441 * the process of freeing the list at program shutdown. This should not be
442 * much of a performance hit, because it should be very infrequently executed.
443 */
444 RF_AccessStripeMap_t *
445 rf_AllocASMList(count)
446 int count;
447 {
448 RF_AccessStripeMap_t *p = NULL;
449
450 RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count);
451 return (p);
452 }
453
454 static void
455 rf_FreeASMList(l_start, l_end, count)
456 RF_AccessStripeMap_t *l_start, *l_end;
457 int count;
458 {
459 RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count);
460 }
461
462 void
463 rf_FreeAccessStripeMap(hdr)
464 RF_AccessStripeMapHeader_t *hdr;
465 {
466 RF_AccessStripeMap_t *p, *pt = NULL;
467 RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
468 int count = 0, t, asm_count = 0;
469
470 for (p = hdr->stripeMap; p; p = p->next) {
471
472 /* link the 3 pda lists into the accumulating pda list */
473
474 if (!pdaList)
475 pdaList = p->qInfo;
476 else
477 pdaEnd->next = p->qInfo;
478 for (trailer = NULL, pdp = p->qInfo; pdp;) {
479 trailer = pdp;
480 pdp = pdp->next;
481 count++;
482 }
483 if (trailer)
484 pdaEnd = trailer;
485
486 if (!pdaList)
487 pdaList = p->parityInfo;
488 else
489 pdaEnd->next = p->parityInfo;
490 for (trailer = NULL, pdp = p->parityInfo; pdp;) {
491 trailer = pdp;
492 pdp = pdp->next;
493 count++;
494 }
495 if (trailer)
496 pdaEnd = trailer;
497
498 if (!pdaList)
499 pdaList = p->physInfo;
500 else
501 pdaEnd->next = p->physInfo;
502 for (trailer = NULL, pdp = p->physInfo; pdp;) {
503 trailer = pdp;
504 pdp = pdp->next;
505 count++;
506 }
507 if (trailer)
508 pdaEnd = trailer;
509
510 pt = p;
511 asm_count++;
512 }
513
514 /* debug only */
515 for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
516 t++;
517 RF_ASSERT(t == count);
518
519 if (pdaList)
520 rf_FreePDAList(pdaList, pdaEnd, count);
521 rf_FreeASMList(hdr->stripeMap, pt, asm_count);
522 rf_FreeAccessStripeMapHeader(hdr);
523 }
524 /* We can't use the large write optimization if there are any failures
525 * in the stripe. In the declustered layout, there is no way to
526 * immediately determine what disks constitute a stripe, so we
527 * actually have to hunt through the stripe looking for failures. The
528 * reason we map the parity instead of just using asm->parityInfo->col
529 * is because the latter may have been already redirected to a spare
530 * drive, which would mess up the computation of the stripe offset.
531 *
532 * ASSUMES AT MOST ONE FAILURE IN THE STRIPE. */
533 int
534 rf_CheckStripeForFailures(raidPtr, asmap)
535 RF_Raid_t *raidPtr;
536 RF_AccessStripeMap_t *asmap;
537 {
538 RF_RowCol_t trow, tcol, prow, pcol, *diskids, i;
539 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
540 RF_StripeCount_t stripeOffset;
541 int numFailures;
542 RF_RaidAddr_t sosAddr;
543 RF_SectorNum_t diskOffset, poffset;
544 RF_RowCol_t testrow;
545
546 /* quick out in the fault-free case. */
547 RF_LOCK_MUTEX(raidPtr->mutex);
548 numFailures = raidPtr->numFailures;
549 RF_UNLOCK_MUTEX(raidPtr->mutex);
550 if (numFailures == 0)
551 return (0);
552
553 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
554 (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow);
555 (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0); /* get pcol */
556
557 /* this need not be true if we've redirected the access to a spare in
558 * another row RF_ASSERT(row == testrow); */
559 stripeOffset = 0;
560 for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
561 if (diskids[i] != pcol) {
562 if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) {
563 if (raidPtr->status[testrow] != rf_rs_reconstructing)
564 return (1);
565 RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]);
566 layoutPtr->map->MapSector(raidPtr,
567 sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
568 &trow, &tcol, &diskOffset, 0);
569 RF_ASSERT((trow == testrow) && (tcol == diskids[i]));
570 if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset))
571 return (1);
572 asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
573 return (0);
574 }
575 stripeOffset++;
576 }
577 }
578 return (0);
579 }
580 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
581 /*
582 return the number of failed data units in the stripe.
583 */
584
585 int
586 rf_NumFailedDataUnitsInStripe(raidPtr, asmap)
587 RF_Raid_t *raidPtr;
588 RF_AccessStripeMap_t *asmap;
589 {
590 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
591 RF_RowCol_t trow, tcol, i;
592 RF_SectorNum_t diskOffset;
593 RF_RaidAddr_t sosAddr;
594 int numFailures;
595
596 /* quick out in the fault-free case. */
597 RF_LOCK_MUTEX(raidPtr->mutex);
598 numFailures = raidPtr->numFailures;
599 RF_UNLOCK_MUTEX(raidPtr->mutex);
600 if (numFailures == 0)
601 return (0);
602 numFailures = 0;
603
604 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
605 for (i = 0; i < layoutPtr->numDataCol; i++) {
606 (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
607 &trow, &tcol, &diskOffset, 0);
608 if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status))
609 numFailures++;
610 }
611
612 return numFailures;
613 }
614 #endif
615
616 /*****************************************************************************************
617 *
618 * debug routines
619 *
620 ****************************************************************************************/
621 #if RF_DEBUG_MAP
622 void
623 rf_PrintAccessStripeMap(asm_h)
624 RF_AccessStripeMapHeader_t *asm_h;
625 {
626 rf_PrintFullAccessStripeMap(asm_h, 0);
627 }
628 #endif
629
630 void
631 rf_PrintFullAccessStripeMap(asm_h, prbuf)
632 RF_AccessStripeMapHeader_t *asm_h;
633 int prbuf; /* flag to print buffer pointers */
634 {
635 int i;
636 RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
637 RF_PhysDiskAddr_t *p;
638 printf("%d stripes total\n", (int) asm_h->numStripes);
639 for (; asmap; asmap = asmap->next) {
640 /* printf("Num failures: %d\n",asmap->numDataFailed); */
641 /* printf("Num sectors:
642 * %d\n",(int)asmap->totalSectorsAccessed); */
643 printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
644 (int) asmap->stripeID,
645 (int) asmap->totalSectorsAccessed,
646 (int) asmap->numDataFailed,
647 (int) asmap->numParityFailed);
648 if (asmap->parityInfo) {
649 printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col,
650 (int) asmap->parityInfo->startSector,
651 (int) (asmap->parityInfo->startSector +
652 asmap->parityInfo->numSector - 1));
653 if (prbuf)
654 printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
655 if (asmap->parityInfo->next) {
656 printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row,
657 asmap->parityInfo->next->col,
658 (int) asmap->parityInfo->next->startSector,
659 (int) (asmap->parityInfo->next->startSector +
660 asmap->parityInfo->next->numSector - 1));
661 if (prbuf)
662 printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
663 RF_ASSERT(asmap->parityInfo->next->next == NULL);
664 }
665 printf("]\n\t");
666 }
667 for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
668 printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector,
669 (int) (p->startSector + p->numSector - 1));
670 if (prbuf)
671 printf("b0x%lx ", (unsigned long) p->bufPtr);
672 if (i && !(i & 1))
673 printf("\n\t");
674 }
675 printf("\n");
676 p = asm_h->stripeMap->failedPDAs[0];
677 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
678 printf("[multiple failures]\n");
679 else
680 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
681 printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col,
682 (int) p->startSector, (int) (p->startSector + p->numSector - 1));
683 }
684 }
685
686 #if RF_MAP_DEBUG
687 void
688 rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks)
689 RF_Raid_t *raidPtr;
690 RF_RaidAddr_t raidAddr;
691 RF_SectorCount_t numBlocks;
692 {
693 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
694 RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
695
696 printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
697 for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
698 printf("%d (0x%x), ", (int) ra, (int) ra);
699 }
700 printf("\n");
701 printf("Offset into stripe unit: %d (0x%x)\n",
702 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
703 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
704 }
705 #endif
706 /*
707 given a parity descriptor and the starting address within a stripe,
708 range restrict the parity descriptor to touch only the correct stuff.
709 */
710 void
711 rf_ASMParityAdjust(
712 RF_PhysDiskAddr_t * toAdjust,
713 RF_StripeNum_t startAddrWithinStripe,
714 RF_SectorNum_t endAddress,
715 RF_RaidLayout_t * layoutPtr,
716 RF_AccessStripeMap_t * asm_p)
717 {
718 RF_PhysDiskAddr_t *new_pda;
719
720 /* when we're accessing only a portion of one stripe unit, we want the
721 * parity descriptor to identify only the chunk of parity associated
722 * with the data. When the access spans exactly one stripe unit
723 * boundary and is less than a stripe unit in size, it uses two
724 * disjoint regions of the parity unit. When an access spans more
725 * than one stripe unit boundary, it uses all of the parity unit.
726 *
727 * To better handle the case where stripe units are small, we may
728 * eventually want to change the 2nd case so that if the SU size is
729 * below some threshold, we just read/write the whole thing instead of
730 * breaking it up into two accesses. */
731 if (asm_p->numStripeUnitsAccessed == 1) {
732 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
733 toAdjust->startSector += x;
734 toAdjust->raidAddress += x;
735 toAdjust->numSector = asm_p->physInfo->numSector;
736 RF_ASSERT(toAdjust->numSector != 0);
737 } else
738 if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
739 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
740
741 /* create a second pda and copy the parity map info
742 * into it */
743 RF_ASSERT(toAdjust->next == NULL);
744 new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
745 *new_pda = *toAdjust; /* structure assignment */
746 new_pda->next = NULL;
747
748 /* adjust the start sector & number of blocks for the
749 * first parity pda */
750 toAdjust->startSector += x;
751 toAdjust->raidAddress += x;
752 toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
753 RF_ASSERT(toAdjust->numSector != 0);
754
755 /* adjust the second pda */
756 new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
757 /* new_pda->raidAddress =
758 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
759 * toAdjust->raidAddress); */
760 RF_ASSERT(new_pda->numSector != 0);
761 }
762 }
763
764 /*
765 Check if a disk has been spared or failed. If spared,
766 redirect the I/O.
767 If it has been failed, record it in the asm pointer.
768 Fourth arg is whether data or parity.
769 */
770 void
771 rf_ASMCheckStatus(
772 RF_Raid_t * raidPtr,
773 RF_PhysDiskAddr_t * pda_p,
774 RF_AccessStripeMap_t * asm_p,
775 RF_RaidDisk_t ** disks,
776 int parity)
777 {
778 RF_DiskStatus_t dstatus;
779 RF_RowCol_t frow, fcol;
780
781 dstatus = disks[pda_p->row][pda_p->col].status;
782
783 if (dstatus == rf_ds_spared) {
784 /* if the disk has been spared, redirect access to the spare */
785 frow = pda_p->row;
786 fcol = pda_p->col;
787 pda_p->row = disks[frow][fcol].spareRow;
788 pda_p->col = disks[frow][fcol].spareCol;
789 } else
790 if (dstatus == rf_ds_dist_spared) {
791 /* ditto if disk has been spared to dist spare space */
792 #if RF_DEBUG_MAP
793 RF_RowCol_t or = pda_p->row, oc = pda_p->col;
794 RF_SectorNum_t oo = pda_p->startSector;
795 #endif
796 if (pda_p->type == RF_PDA_TYPE_DATA)
797 raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
798 else
799 raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
800
801 #if RF_DEBUG_MAP
802 if (rf_mapDebug) {
803 printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo,
804 pda_p->row, pda_p->col, (int) pda_p->startSector);
805 }
806 #endif
807 } else
808 if (RF_DEAD_DISK(dstatus)) {
809 /* if the disk is inaccessible, mark the
810 * failure */
811 if (parity)
812 asm_p->numParityFailed++;
813 else {
814 asm_p->numDataFailed++;
815 }
816 asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
817 asm_p->numFailedPDAs++;
818 #if 0
819 switch (asm_p->numParityFailed + asm_p->numDataFailed) {
820 case 1:
821 asm_p->failedPDAs[0] = pda_p;
822 break;
823 case 2:
824 asm_p->failedPDAs[1] = pda_p;
825 default:
826 break;
827 }
828 #endif
829 }
830 /* the redirected access should never span a stripe unit boundary */
831 RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
832 rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
833 RF_ASSERT(pda_p->col != -1);
834 }
835