rf_map.c revision 1.23 1 /* $NetBSD: rf_map.c,v 1.23 2003/12/29 02:38:18 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /**************************************************************************
30 *
31 * map.c -- main code for mapping RAID addresses to physical disk addresses
32 *
33 **************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.23 2003/12/29 02:38:18 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_threadstuff.h"
41 #include "rf_raid.h"
42 #include "rf_general.h"
43 #include "rf_map.h"
44 #include "rf_freelist.h"
45 #include "rf_shutdown.h"
46
47 static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count);
48 static void
49 rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end,
50 int count);
51
52 /***************************************************************************
53 *
54 * MapAccess -- main 1st order mapping routine. Maps an access in the
55 * RAID address space to the corresponding set of physical disk
56 * addresses. The result is returned as a list of AccessStripeMap
57 * structures, one per stripe accessed. Each ASM structure contains a
58 * pointer to a list of PhysDiskAddr structures, which describe the
59 * physical locations touched by the user access. Note that this routine
60 * returns only static mapping information, i.e. the list of physical
61 * addresses returned does not necessarily identify the set of physical
62 * locations that will actually be read or written. The routine also
63 * maps the parity. The physical disk location returned always indicates
64 * the entire parity unit, even when only a subset of it is being
65 * accessed. This is because an access that is not stripe unit aligned
66 * but that spans a stripe unit boundary may require access two distinct
67 * portions of the parity unit, and we can't yet tell which portion(s)
68 * we'll actually need. We leave it up to the algorithm selection code
69 * to decide what subset of the parity unit to access. Note that
70 * addresses in the RAID address space must always be maintained as
71 * longs, instead of ints.
72 *
73 * This routine returns NULL if numBlocks is 0
74 *
75 ***************************************************************************/
76
77 RF_AccessStripeMapHeader_t *
78 rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap)
79 RF_Raid_t *raidPtr;
80 RF_RaidAddr_t raidAddress; /* starting address in RAID address
81 * space */
82 RF_SectorCount_t numBlocks; /* number of blocks in RAID address
83 * space to access */
84 caddr_t buffer; /* buffer to supply/receive data */
85 int remap; /* 1 => remap addresses to spare space */
86 {
87 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
88 RF_AccessStripeMapHeader_t *asm_hdr = NULL;
89 RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
90 int faultsTolerated = layoutPtr->map->faultsTolerated;
91 RF_RaidAddr_t startAddress = raidAddress; /* we'll change
92 * raidAddress along the
93 * way */
94 RF_RaidAddr_t endAddress = raidAddress + numBlocks;
95 RF_RaidDisk_t *disks = raidPtr->Disks;
96
97 RF_PhysDiskAddr_t *pda_p, *pda_q;
98 RF_StripeCount_t numStripes = 0;
99 RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress;
100 RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
101 RF_StripeCount_t totStripes;
102 RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
103 RF_AccessStripeMap_t *asmList, *t_asm;
104 RF_PhysDiskAddr_t *pdaList, *t_pda;
105
106 /* allocate all the ASMs and PDAs up front */
107 lastRaidAddr = raidAddress + numBlocks - 1;
108 stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
109 lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
110 totStripes = lastSID - stripeID + 1;
111 SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
112 lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
113
114 asmList = rf_AllocASMList(totStripes);
115 pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes); /* may also need pda(s)
116 * per stripe for parity */
117
118 if (raidAddress + numBlocks > raidPtr->totalSectors) {
119 RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
120 (int) raidAddress);
121 return (NULL);
122 }
123 #if RF_DEBUG_MAP
124 if (rf_mapDebug)
125 rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
126 #endif
127 for (; raidAddress < endAddress;) {
128 /* make the next stripe structure */
129 RF_ASSERT(asmList);
130 t_asm = asmList;
131 asmList = asmList->next;
132 memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
133 if (!asm_p)
134 asm_list = asm_p = t_asm;
135 else {
136 asm_p->next = t_asm;
137 asm_p = asm_p->next;
138 }
139 numStripes++;
140
141 /* map SUs from current location to the end of the stripe */
142 asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
143 raidAddress) */ stripeID++;
144 stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
145 stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
146 asm_p->raidAddress = raidAddress;
147 asm_p->endRaidAddress = stripeEndAddress;
148
149 /* map each stripe unit in the stripe */
150 pda_p = NULL;
151 startAddrWithinStripe = raidAddress; /* Raid addr of start of
152 * portion of access
153 * that is within this
154 * stripe */
155 for (; raidAddress < stripeEndAddress;) {
156 RF_ASSERT(pdaList);
157 t_pda = pdaList;
158 pdaList = pdaList->next;
159 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
160 if (!pda_p)
161 asm_p->physInfo = pda_p = t_pda;
162 else {
163 pda_p->next = t_pda;
164 pda_p = pda_p->next;
165 }
166
167 pda_p->type = RF_PDA_TYPE_DATA;
168 (layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->col), &(pda_p->startSector), remap);
169
170 /* mark any failures we find. failedPDA is don't-care
171 * if there is more than one failure */
172 pda_p->raidAddress = raidAddress; /* the RAID address
173 * corresponding to this
174 * physical disk address */
175 nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
176 pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
177 RF_ASSERT(pda_p->numSector != 0);
178 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
179 pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
180 asm_p->totalSectorsAccessed += pda_p->numSector;
181 asm_p->numStripeUnitsAccessed++;
182
183 raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
184 }
185
186 /* Map the parity. At this stage, the startSector and
187 * numSector fields for the parity unit are always set to
188 * indicate the entire parity unit. We may modify this after
189 * mapping the data portion. */
190 switch (faultsTolerated) {
191 case 0:
192 break;
193 case 1: /* single fault tolerant */
194 RF_ASSERT(pdaList);
195 t_pda = pdaList;
196 pdaList = pdaList->next;
197 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
198 pda_p = asm_p->parityInfo = t_pda;
199 pda_p->type = RF_PDA_TYPE_PARITY;
200 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
201 &(pda_p->col), &(pda_p->startSector), remap);
202 pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
203 /* raidAddr may be needed to find unit to redirect to */
204 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
205 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
206 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
207
208 break;
209 case 2: /* two fault tolerant */
210 RF_ASSERT(pdaList && pdaList->next);
211 t_pda = pdaList;
212 pdaList = pdaList->next;
213 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
214 pda_p = asm_p->parityInfo = t_pda;
215 pda_p->type = RF_PDA_TYPE_PARITY;
216 t_pda = pdaList;
217 pdaList = pdaList->next;
218 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
219 pda_q = asm_p->qInfo = t_pda;
220 pda_q->type = RF_PDA_TYPE_Q;
221 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
222 &(pda_p->col), &(pda_p->startSector), remap);
223 (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
224 &(pda_q->col), &(pda_q->startSector), remap);
225 pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
226 /* raidAddr may be needed to find unit to redirect to */
227 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
228 pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
229 /* failure mode stuff */
230 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
231 rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
232 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
233 rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
234 break;
235 }
236 }
237 RF_ASSERT(asmList == NULL && pdaList == NULL);
238 /* make the header structure */
239 asm_hdr = rf_AllocAccessStripeMapHeader();
240 RF_ASSERT(numStripes == totStripes);
241 asm_hdr->numStripes = numStripes;
242 asm_hdr->stripeMap = asm_list;
243
244 #if RF_DEBUG_MAP
245 if (rf_mapDebug)
246 rf_PrintAccessStripeMap(asm_hdr);
247 #endif
248 return (asm_hdr);
249 }
250
251 /***************************************************************************
252 * This routine walks through an ASM list and marks the PDAs that have
253 * failed. It's called only when a disk failure causes an in-flight
254 * DAG to fail. The parity may consist of two components, but we want
255 * to use only one failedPDA pointer. Thus we set failedPDA to point
256 * to the first parity component, and rely on the rest of the code to
257 * do the right thing with this.
258 ***************************************************************************/
259
260 void
261 rf_MarkFailuresInASMList(raidPtr, asm_h)
262 RF_Raid_t *raidPtr;
263 RF_AccessStripeMapHeader_t *asm_h;
264 {
265 RF_RaidDisk_t *disks = raidPtr->Disks;
266 RF_AccessStripeMap_t *asmap;
267 RF_PhysDiskAddr_t *pda;
268
269 for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
270 asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0;
271 asmap->numFailedPDAs = 0;
272 memset((char *) asmap->failedPDAs, 0,
273 RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
274 for (pda = asmap->physInfo; pda; pda = pda->next) {
275 if (RF_DEAD_DISK(disks[pda->col].status)) {
276 asmap->numDataFailed++;
277 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
278 asmap->numFailedPDAs++;
279 }
280 }
281 pda = asmap->parityInfo;
282 if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
283 asmap->numParityFailed++;
284 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
285 asmap->numFailedPDAs++;
286 }
287 pda = asmap->qInfo;
288 if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
289 asmap->numQFailed++;
290 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
291 asmap->numFailedPDAs++;
292 }
293 }
294 }
295
296 /***************************************************************************
297 *
298 * routines to allocate and free list elements. All allocation
299 * routines zero the structure before returning it.
300 *
301 * FreePhysDiskAddr is static. It should never be called directly,
302 * because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
303 * list.
304 *
305 ***************************************************************************/
306
307 static RF_FreeList_t *rf_asmhdr_freelist;
308 #define RF_MAX_FREE_ASMHDR 128
309 #define RF_ASMHDR_INC 16
310 #define RF_ASMHDR_INITIAL 32
311
312 static RF_FreeList_t *rf_asm_freelist;
313 #define RF_MAX_FREE_ASM 192
314 #define RF_ASM_INC 24
315 #define RF_ASM_INITIAL 64
316
317 static RF_FreeList_t *rf_pda_freelist;
318 #define RF_MAX_FREE_PDA 192
319 #define RF_PDA_INC 24
320 #define RF_PDA_INITIAL 64
321
322 /* called at shutdown time. So far, all that is necessary is to release all the free lists */
323 static void rf_ShutdownMapModule(void *);
324 static void
325 rf_ShutdownMapModule(ignored)
326 void *ignored;
327 {
328 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
329 RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
330 RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *));
331 }
332
333 int
334 rf_ConfigureMapModule(listp)
335 RF_ShutdownList_t **listp;
336 {
337 int rc;
338
339 RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR,
340 RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t));
341 if (rf_asmhdr_freelist == NULL) {
342 return (ENOMEM);
343 }
344 RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM,
345 RF_ASM_INC, sizeof(RF_AccessStripeMap_t));
346 if (rf_asm_freelist == NULL) {
347 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
348 return (ENOMEM);
349 }
350 RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA,
351 RF_PDA_INC, sizeof(RF_PhysDiskAddr_t));
352 if (rf_pda_freelist == NULL) {
353 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
354 RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *));
355 return (ENOMEM);
356 }
357 rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
358 if (rc) {
359 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
360 rf_ShutdownMapModule(NULL);
361 return (rc);
362 }
363 RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next,
364 (RF_AccessStripeMapHeader_t *));
365 RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next,
366 (RF_AccessStripeMap_t *));
367 RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next,
368 (RF_PhysDiskAddr_t *));
369
370 return (0);
371 }
372
373 RF_AccessStripeMapHeader_t *
374 rf_AllocAccessStripeMapHeader()
375 {
376 RF_AccessStripeMapHeader_t *p;
377
378 RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *));
379 memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
380
381 return (p);
382 }
383
384
385 void
386 rf_FreeAccessStripeMapHeader(p)
387 RF_AccessStripeMapHeader_t *p;
388 {
389 RF_FREELIST_FREE(rf_asmhdr_freelist, p, next);
390 }
391
392 RF_PhysDiskAddr_t *
393 rf_AllocPhysDiskAddr()
394 {
395 RF_PhysDiskAddr_t *p;
396
397 RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *));
398 memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
399
400 return (p);
401 }
402 /* allocates a list of PDAs, locking the free list only once
403 * when we have to call calloc, we do it one component at a time to simplify
404 * the process of freeing the list at program shutdown. This should not be
405 * much of a performance hit, because it should be very infrequently executed.
406 */
407 RF_PhysDiskAddr_t *
408 rf_AllocPDAList(count)
409 int count;
410 {
411 RF_PhysDiskAddr_t *p = NULL;
412
413 RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count);
414 return (p);
415 }
416
417 #if RF_INCLUDE_PARITYLOGGING > 0
418 void
419 rf_FreePhysDiskAddr(p)
420 RF_PhysDiskAddr_t *p;
421 {
422 RF_FREELIST_FREE(rf_pda_freelist, p, next);
423 }
424 #endif
425
426 static void
427 rf_FreePDAList(l_start, l_end, count)
428 RF_PhysDiskAddr_t *l_start, *l_end; /* pointers to start and end
429 * of list */
430 int count; /* number of elements in list */
431 {
432 RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count);
433 }
434
435 /* this is essentially identical to AllocPDAList. I should combine the two.
436 * when we have to call calloc, we do it one component at a time to simplify
437 * the process of freeing the list at program shutdown. This should not be
438 * much of a performance hit, because it should be very infrequently executed.
439 */
440 RF_AccessStripeMap_t *
441 rf_AllocASMList(count)
442 int count;
443 {
444 RF_AccessStripeMap_t *p = NULL;
445
446 RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count);
447 return (p);
448 }
449
450 static void
451 rf_FreeASMList(l_start, l_end, count)
452 RF_AccessStripeMap_t *l_start, *l_end;
453 int count;
454 {
455 RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count);
456 }
457
458 void
459 rf_FreeAccessStripeMap(hdr)
460 RF_AccessStripeMapHeader_t *hdr;
461 {
462 RF_AccessStripeMap_t *p, *pt = NULL;
463 RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
464 int count = 0, t, asm_count = 0;
465
466 for (p = hdr->stripeMap; p; p = p->next) {
467
468 /* link the 3 pda lists into the accumulating pda list */
469
470 if (!pdaList)
471 pdaList = p->qInfo;
472 else
473 pdaEnd->next = p->qInfo;
474 for (trailer = NULL, pdp = p->qInfo; pdp;) {
475 trailer = pdp;
476 pdp = pdp->next;
477 count++;
478 }
479 if (trailer)
480 pdaEnd = trailer;
481
482 if (!pdaList)
483 pdaList = p->parityInfo;
484 else
485 pdaEnd->next = p->parityInfo;
486 for (trailer = NULL, pdp = p->parityInfo; pdp;) {
487 trailer = pdp;
488 pdp = pdp->next;
489 count++;
490 }
491 if (trailer)
492 pdaEnd = trailer;
493
494 if (!pdaList)
495 pdaList = p->physInfo;
496 else
497 pdaEnd->next = p->physInfo;
498 for (trailer = NULL, pdp = p->physInfo; pdp;) {
499 trailer = pdp;
500 pdp = pdp->next;
501 count++;
502 }
503 if (trailer)
504 pdaEnd = trailer;
505
506 pt = p;
507 asm_count++;
508 }
509
510 /* debug only */
511 for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
512 t++;
513 RF_ASSERT(t == count);
514
515 if (pdaList)
516 rf_FreePDAList(pdaList, pdaEnd, count);
517 rf_FreeASMList(hdr->stripeMap, pt, asm_count);
518 rf_FreeAccessStripeMapHeader(hdr);
519 }
520 /* We can't use the large write optimization if there are any failures
521 * in the stripe. In the declustered layout, there is no way to
522 * immediately determine what disks constitute a stripe, so we
523 * actually have to hunt through the stripe looking for failures. The
524 * reason we map the parity instead of just using asm->parityInfo->col
525 * is because the latter may have been already redirected to a spare
526 * drive, which would mess up the computation of the stripe offset.
527 *
528 * ASSUMES AT MOST ONE FAILURE IN THE STRIPE. */
529 int
530 rf_CheckStripeForFailures(raidPtr, asmap)
531 RF_Raid_t *raidPtr;
532 RF_AccessStripeMap_t *asmap;
533 {
534 RF_RowCol_t tcol, pcol, *diskids, i;
535 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
536 RF_StripeCount_t stripeOffset;
537 int numFailures;
538 RF_RaidAddr_t sosAddr;
539 RF_SectorNum_t diskOffset, poffset;
540
541 /* quick out in the fault-free case. */
542 RF_LOCK_MUTEX(raidPtr->mutex);
543 numFailures = raidPtr->numFailures;
544 RF_UNLOCK_MUTEX(raidPtr->mutex);
545 if (numFailures == 0)
546 return (0);
547
548 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
549 (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
550 (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &pcol, &poffset, 0); /* get pcol */
551
552 /* this need not be true if we've redirected the access to a spare in
553 * another row RF_ASSERT(row == testrow); */
554 stripeOffset = 0;
555 for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
556 if (diskids[i] != pcol) {
557 if (RF_DEAD_DISK(raidPtr->Disks[diskids[i]].status)) {
558 if (raidPtr->status != rf_rs_reconstructing)
559 return (1);
560 RF_ASSERT(raidPtr->reconControl->fcol == diskids[i]);
561 layoutPtr->map->MapSector(raidPtr,
562 sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
563 &tcol, &diskOffset, 0);
564 RF_ASSERT(tcol == diskids[i]);
565 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, diskOffset))
566 return (1);
567 asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
568 return (0);
569 }
570 stripeOffset++;
571 }
572 }
573 return (0);
574 }
575 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
576 /*
577 return the number of failed data units in the stripe.
578 */
579
580 int
581 rf_NumFailedDataUnitsInStripe(raidPtr, asmap)
582 RF_Raid_t *raidPtr;
583 RF_AccessStripeMap_t *asmap;
584 {
585 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
586 RF_RowCol_t tcol, i;
587 RF_SectorNum_t diskOffset;
588 RF_RaidAddr_t sosAddr;
589 int numFailures;
590
591 /* quick out in the fault-free case. */
592 RF_LOCK_MUTEX(raidPtr->mutex);
593 numFailures = raidPtr->numFailures;
594 RF_UNLOCK_MUTEX(raidPtr->mutex);
595 if (numFailures == 0)
596 return (0);
597 numFailures = 0;
598
599 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
600 for (i = 0; i < layoutPtr->numDataCol; i++) {
601 (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
602 &trow, &tcol, &diskOffset, 0);
603 if (RF_DEAD_DISK(raidPtr->Disks[tcol].status))
604 numFailures++;
605 }
606
607 return numFailures;
608 }
609 #endif
610
611 /*****************************************************************************************
612 *
613 * debug routines
614 *
615 ****************************************************************************************/
616 #if RF_DEBUG_MAP
617 void
618 rf_PrintAccessStripeMap(asm_h)
619 RF_AccessStripeMapHeader_t *asm_h;
620 {
621 rf_PrintFullAccessStripeMap(asm_h, 0);
622 }
623 #endif
624
625 void
626 rf_PrintFullAccessStripeMap(asm_h, prbuf)
627 RF_AccessStripeMapHeader_t *asm_h;
628 int prbuf; /* flag to print buffer pointers */
629 {
630 int i;
631 RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
632 RF_PhysDiskAddr_t *p;
633 printf("%d stripes total\n", (int) asm_h->numStripes);
634 for (; asmap; asmap = asmap->next) {
635 /* printf("Num failures: %d\n",asmap->numDataFailed); */
636 /* printf("Num sectors:
637 * %d\n",(int)asmap->totalSectorsAccessed); */
638 printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
639 (int) asmap->stripeID,
640 (int) asmap->totalSectorsAccessed,
641 (int) asmap->numDataFailed,
642 (int) asmap->numParityFailed);
643 if (asmap->parityInfo) {
644 printf("Parity [c%d s%d-%d", asmap->parityInfo->col,
645 (int) asmap->parityInfo->startSector,
646 (int) (asmap->parityInfo->startSector +
647 asmap->parityInfo->numSector - 1));
648 if (prbuf)
649 printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
650 if (asmap->parityInfo->next) {
651 printf(", c%d s%d-%d", asmap->parityInfo->next->col,
652 (int) asmap->parityInfo->next->startSector,
653 (int) (asmap->parityInfo->next->startSector +
654 asmap->parityInfo->next->numSector - 1));
655 if (prbuf)
656 printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
657 RF_ASSERT(asmap->parityInfo->next->next == NULL);
658 }
659 printf("]\n\t");
660 }
661 for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
662 printf("SU c%d s%d-%d ", p->col, (int) p->startSector,
663 (int) (p->startSector + p->numSector - 1));
664 if (prbuf)
665 printf("b0x%lx ", (unsigned long) p->bufPtr);
666 if (i && !(i & 1))
667 printf("\n\t");
668 }
669 printf("\n");
670 p = asm_h->stripeMap->failedPDAs[0];
671 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
672 printf("[multiple failures]\n");
673 else
674 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
675 printf("\t[Failed PDA: c%d s%d-%d]\n", p->col,
676 (int) p->startSector, (int) (p->startSector + p->numSector - 1));
677 }
678 }
679
680 #if RF_MAP_DEBUG
681 void
682 rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks)
683 RF_Raid_t *raidPtr;
684 RF_RaidAddr_t raidAddr;
685 RF_SectorCount_t numBlocks;
686 {
687 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
688 RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
689
690 printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
691 for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
692 printf("%d (0x%x), ", (int) ra, (int) ra);
693 }
694 printf("\n");
695 printf("Offset into stripe unit: %d (0x%x)\n",
696 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
697 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
698 }
699 #endif
700 /*
701 given a parity descriptor and the starting address within a stripe,
702 range restrict the parity descriptor to touch only the correct stuff.
703 */
704 void
705 rf_ASMParityAdjust(
706 RF_PhysDiskAddr_t * toAdjust,
707 RF_StripeNum_t startAddrWithinStripe,
708 RF_SectorNum_t endAddress,
709 RF_RaidLayout_t * layoutPtr,
710 RF_AccessStripeMap_t * asm_p)
711 {
712 RF_PhysDiskAddr_t *new_pda;
713
714 /* when we're accessing only a portion of one stripe unit, we want the
715 * parity descriptor to identify only the chunk of parity associated
716 * with the data. When the access spans exactly one stripe unit
717 * boundary and is less than a stripe unit in size, it uses two
718 * disjoint regions of the parity unit. When an access spans more
719 * than one stripe unit boundary, it uses all of the parity unit.
720 *
721 * To better handle the case where stripe units are small, we may
722 * eventually want to change the 2nd case so that if the SU size is
723 * below some threshold, we just read/write the whole thing instead of
724 * breaking it up into two accesses. */
725 if (asm_p->numStripeUnitsAccessed == 1) {
726 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
727 toAdjust->startSector += x;
728 toAdjust->raidAddress += x;
729 toAdjust->numSector = asm_p->physInfo->numSector;
730 RF_ASSERT(toAdjust->numSector != 0);
731 } else
732 if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
733 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
734
735 /* create a second pda and copy the parity map info
736 * into it */
737 RF_ASSERT(toAdjust->next == NULL);
738 new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
739 *new_pda = *toAdjust; /* structure assignment */
740 new_pda->next = NULL;
741
742 /* adjust the start sector & number of blocks for the
743 * first parity pda */
744 toAdjust->startSector += x;
745 toAdjust->raidAddress += x;
746 toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
747 RF_ASSERT(toAdjust->numSector != 0);
748
749 /* adjust the second pda */
750 new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
751 /* new_pda->raidAddress =
752 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
753 * toAdjust->raidAddress); */
754 RF_ASSERT(new_pda->numSector != 0);
755 }
756 }
757
758 /*
759 Check if a disk has been spared or failed. If spared,
760 redirect the I/O.
761 If it has been failed, record it in the asm pointer.
762 Fourth arg is whether data or parity.
763 */
764 void
765 rf_ASMCheckStatus(
766 RF_Raid_t * raidPtr,
767 RF_PhysDiskAddr_t * pda_p,
768 RF_AccessStripeMap_t * asm_p,
769 RF_RaidDisk_t * disks,
770 int parity)
771 {
772 RF_DiskStatus_t dstatus;
773 RF_RowCol_t fcol;
774
775 dstatus = disks[pda_p->col].status;
776
777 if (dstatus == rf_ds_spared) {
778 /* if the disk has been spared, redirect access to the spare */
779 fcol = pda_p->col;
780 pda_p->col = disks[fcol].spareCol;
781 } else
782 if (dstatus == rf_ds_dist_spared) {
783 /* ditto if disk has been spared to dist spare space */
784 #if RF_DEBUG_MAP
785 RF_RowCol_t oc = pda_p->col;
786 RF_SectorNum_t oo = pda_p->startSector;
787 #endif
788 if (pda_p->type == RF_PDA_TYPE_DATA)
789 raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
790 else
791 raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
792
793 #if RF_DEBUG_MAP
794 if (rf_mapDebug) {
795 printf("Redirected c %d o %d -> c %d o %d\n", oc, (int) oo,
796 pda_p->col, (int) pda_p->startSector);
797 }
798 #endif
799 } else
800 if (RF_DEAD_DISK(dstatus)) {
801 /* if the disk is inaccessible, mark the
802 * failure */
803 if (parity)
804 asm_p->numParityFailed++;
805 else {
806 asm_p->numDataFailed++;
807 }
808 asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
809 asm_p->numFailedPDAs++;
810 #if 0
811 switch (asm_p->numParityFailed + asm_p->numDataFailed) {
812 case 1:
813 asm_p->failedPDAs[0] = pda_p;
814 break;
815 case 2:
816 asm_p->failedPDAs[1] = pda_p;
817 default:
818 break;
819 }
820 #endif
821 }
822 /* the redirected access should never span a stripe unit boundary */
823 RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
824 rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
825 RF_ASSERT(pda_p->col != -1);
826 }
827