rf_map.c revision 1.24 1 /* $NetBSD: rf_map.c,v 1.24 2003/12/29 03:33:48 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /**************************************************************************
30 *
31 * map.c -- main code for mapping RAID addresses to physical disk addresses
32 *
33 **************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.24 2003/12/29 03:33:48 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_threadstuff.h"
41 #include "rf_raid.h"
42 #include "rf_general.h"
43 #include "rf_map.h"
44 #include "rf_shutdown.h"
45
46 static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count);
47 static void
48 rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end,
49 int count);
50
51 /***************************************************************************
52 *
53 * MapAccess -- main 1st order mapping routine. Maps an access in the
54 * RAID address space to the corresponding set of physical disk
55 * addresses. The result is returned as a list of AccessStripeMap
56 * structures, one per stripe accessed. Each ASM structure contains a
57 * pointer to a list of PhysDiskAddr structures, which describe the
58 * physical locations touched by the user access. Note that this routine
59 * returns only static mapping information, i.e. the list of physical
60 * addresses returned does not necessarily identify the set of physical
61 * locations that will actually be read or written. The routine also
62 * maps the parity. The physical disk location returned always indicates
63 * the entire parity unit, even when only a subset of it is being
64 * accessed. This is because an access that is not stripe unit aligned
65 * but that spans a stripe unit boundary may require access two distinct
66 * portions of the parity unit, and we can't yet tell which portion(s)
67 * we'll actually need. We leave it up to the algorithm selection code
68 * to decide what subset of the parity unit to access. Note that
69 * addresses in the RAID address space must always be maintained as
70 * longs, instead of ints.
71 *
72 * This routine returns NULL if numBlocks is 0
73 *
74 ***************************************************************************/
75
76 RF_AccessStripeMapHeader_t *
77 rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap)
78 RF_Raid_t *raidPtr;
79 RF_RaidAddr_t raidAddress; /* starting address in RAID address
80 * space */
81 RF_SectorCount_t numBlocks; /* number of blocks in RAID address
82 * space to access */
83 caddr_t buffer; /* buffer to supply/receive data */
84 int remap; /* 1 => remap addresses to spare space */
85 {
86 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
87 RF_AccessStripeMapHeader_t *asm_hdr = NULL;
88 RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
89 int faultsTolerated = layoutPtr->map->faultsTolerated;
90 RF_RaidAddr_t startAddress = raidAddress; /* we'll change
91 * raidAddress along the
92 * way */
93 RF_RaidAddr_t endAddress = raidAddress + numBlocks;
94 RF_RaidDisk_t *disks = raidPtr->Disks;
95
96 RF_PhysDiskAddr_t *pda_p, *pda_q;
97 RF_StripeCount_t numStripes = 0;
98 RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress;
99 RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
100 RF_StripeCount_t totStripes;
101 RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
102 RF_AccessStripeMap_t *asmList, *t_asm;
103 RF_PhysDiskAddr_t *pdaList, *t_pda;
104
105 /* allocate all the ASMs and PDAs up front */
106 lastRaidAddr = raidAddress + numBlocks - 1;
107 stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
108 lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
109 totStripes = lastSID - stripeID + 1;
110 SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
111 lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
112
113 asmList = rf_AllocASMList(totStripes);
114 pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes); /* may also need pda(s)
115 * per stripe for parity */
116
117 if (raidAddress + numBlocks > raidPtr->totalSectors) {
118 RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
119 (int) raidAddress);
120 return (NULL);
121 }
122 #if RF_DEBUG_MAP
123 if (rf_mapDebug)
124 rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
125 #endif
126 for (; raidAddress < endAddress;) {
127 /* make the next stripe structure */
128 RF_ASSERT(asmList);
129 t_asm = asmList;
130 asmList = asmList->next;
131 memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
132 if (!asm_p)
133 asm_list = asm_p = t_asm;
134 else {
135 asm_p->next = t_asm;
136 asm_p = asm_p->next;
137 }
138 numStripes++;
139
140 /* map SUs from current location to the end of the stripe */
141 asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
142 raidAddress) */ stripeID++;
143 stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
144 stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
145 asm_p->raidAddress = raidAddress;
146 asm_p->endRaidAddress = stripeEndAddress;
147
148 /* map each stripe unit in the stripe */
149 pda_p = NULL;
150 startAddrWithinStripe = raidAddress; /* Raid addr of start of
151 * portion of access
152 * that is within this
153 * stripe */
154 for (; raidAddress < stripeEndAddress;) {
155 RF_ASSERT(pdaList);
156 t_pda = pdaList;
157 pdaList = pdaList->next;
158 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
159 if (!pda_p)
160 asm_p->physInfo = pda_p = t_pda;
161 else {
162 pda_p->next = t_pda;
163 pda_p = pda_p->next;
164 }
165
166 pda_p->type = RF_PDA_TYPE_DATA;
167 (layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->col), &(pda_p->startSector), remap);
168
169 /* mark any failures we find. failedPDA is don't-care
170 * if there is more than one failure */
171 pda_p->raidAddress = raidAddress; /* the RAID address
172 * corresponding to this
173 * physical disk address */
174 nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
175 pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
176 RF_ASSERT(pda_p->numSector != 0);
177 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
178 pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
179 asm_p->totalSectorsAccessed += pda_p->numSector;
180 asm_p->numStripeUnitsAccessed++;
181
182 raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
183 }
184
185 /* Map the parity. At this stage, the startSector and
186 * numSector fields for the parity unit are always set to
187 * indicate the entire parity unit. We may modify this after
188 * mapping the data portion. */
189 switch (faultsTolerated) {
190 case 0:
191 break;
192 case 1: /* single fault tolerant */
193 RF_ASSERT(pdaList);
194 t_pda = pdaList;
195 pdaList = pdaList->next;
196 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
197 pda_p = asm_p->parityInfo = t_pda;
198 pda_p->type = RF_PDA_TYPE_PARITY;
199 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
200 &(pda_p->col), &(pda_p->startSector), remap);
201 pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
202 /* raidAddr may be needed to find unit to redirect to */
203 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
204 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
205 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
206
207 break;
208 case 2: /* two fault tolerant */
209 RF_ASSERT(pdaList && pdaList->next);
210 t_pda = pdaList;
211 pdaList = pdaList->next;
212 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
213 pda_p = asm_p->parityInfo = t_pda;
214 pda_p->type = RF_PDA_TYPE_PARITY;
215 t_pda = pdaList;
216 pdaList = pdaList->next;
217 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
218 pda_q = asm_p->qInfo = t_pda;
219 pda_q->type = RF_PDA_TYPE_Q;
220 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
221 &(pda_p->col), &(pda_p->startSector), remap);
222 (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
223 &(pda_q->col), &(pda_q->startSector), remap);
224 pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
225 /* raidAddr may be needed to find unit to redirect to */
226 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
227 pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
228 /* failure mode stuff */
229 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
230 rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
231 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
232 rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
233 break;
234 }
235 }
236 RF_ASSERT(asmList == NULL && pdaList == NULL);
237 /* make the header structure */
238 asm_hdr = rf_AllocAccessStripeMapHeader();
239 RF_ASSERT(numStripes == totStripes);
240 asm_hdr->numStripes = numStripes;
241 asm_hdr->stripeMap = asm_list;
242
243 #if RF_DEBUG_MAP
244 if (rf_mapDebug)
245 rf_PrintAccessStripeMap(asm_hdr);
246 #endif
247 return (asm_hdr);
248 }
249
250 /***************************************************************************
251 * This routine walks through an ASM list and marks the PDAs that have
252 * failed. It's called only when a disk failure causes an in-flight
253 * DAG to fail. The parity may consist of two components, but we want
254 * to use only one failedPDA pointer. Thus we set failedPDA to point
255 * to the first parity component, and rely on the rest of the code to
256 * do the right thing with this.
257 ***************************************************************************/
258
259 void
260 rf_MarkFailuresInASMList(raidPtr, asm_h)
261 RF_Raid_t *raidPtr;
262 RF_AccessStripeMapHeader_t *asm_h;
263 {
264 RF_RaidDisk_t *disks = raidPtr->Disks;
265 RF_AccessStripeMap_t *asmap;
266 RF_PhysDiskAddr_t *pda;
267
268 for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
269 asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0;
270 asmap->numFailedPDAs = 0;
271 memset((char *) asmap->failedPDAs, 0,
272 RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
273 for (pda = asmap->physInfo; pda; pda = pda->next) {
274 if (RF_DEAD_DISK(disks[pda->col].status)) {
275 asmap->numDataFailed++;
276 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
277 asmap->numFailedPDAs++;
278 }
279 }
280 pda = asmap->parityInfo;
281 if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
282 asmap->numParityFailed++;
283 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
284 asmap->numFailedPDAs++;
285 }
286 pda = asmap->qInfo;
287 if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
288 asmap->numQFailed++;
289 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
290 asmap->numFailedPDAs++;
291 }
292 }
293 }
294
295 /***************************************************************************
296 *
297 * routines to allocate and free list elements. All allocation
298 * routines zero the structure before returning it.
299 *
300 * FreePhysDiskAddr is static. It should never be called directly,
301 * because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
302 * list.
303 *
304 ***************************************************************************/
305
306 static struct pool rf_asmhdr_pool;
307 #define RF_MAX_FREE_ASMHDR 128
308 #define RF_ASMHDR_INC 16
309 #define RF_ASMHDR_INITIAL 32
310
311 static struct pool rf_asm_pool;
312 #define RF_MAX_FREE_ASM 192
313 #define RF_ASM_INC 24
314 #define RF_ASM_INITIAL 64
315
316 static struct pool rf_pda_pool; /* may need to be visible for
317 rf_dagdegrd.c and rf_dagdegwr.c,
318 if they can be convinced to free
319 the space easily */
320 #define RF_MAX_FREE_PDA 192
321 #define RF_PDA_INC 24
322 #define RF_PDA_INITIAL 64
323
324 /* called at shutdown time. So far, all that is necessary is to release all the free lists */
325 static void rf_ShutdownMapModule(void *);
326 static void
327 rf_ShutdownMapModule(ignored)
328 void *ignored;
329 {
330 pool_destroy(&rf_asmhdr_pool);
331 pool_destroy(&rf_asm_pool);
332 pool_destroy(&rf_pda_pool);
333 }
334
335 int
336 rf_ConfigureMapModule(listp)
337 RF_ShutdownList_t **listp;
338 {
339 int rc;
340
341 pool_init(&rf_asmhdr_pool, sizeof(RF_AccessStripeMapHeader_t),
342 0, 0, 0, "rf_asmhdr_pl", NULL);
343 pool_sethiwat(&rf_asmhdr_pool, RF_MAX_FREE_ASMHDR);
344 pool_prime(&rf_asmhdr_pool, RF_ASMHDR_INITIAL);
345
346 pool_init(&rf_asm_pool, sizeof(RF_AccessStripeMap_t),
347 0, 0, 0, "rf_asm_pl", NULL);
348 pool_sethiwat(&rf_asm_pool, RF_MAX_FREE_ASM);
349 pool_prime(&rf_asm_pool, RF_ASM_INITIAL);
350
351 pool_init(&rf_pda_pool, sizeof(RF_PhysDiskAddr_t),
352 0, 0, 0, "rf_pda_pl", NULL);
353 pool_sethiwat(&rf_pda_pool, RF_MAX_FREE_PDA);
354 pool_prime(&rf_pda_pool, RF_PDA_INITIAL);
355
356 rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
357 if (rc) {
358 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
359 rf_ShutdownMapModule(NULL);
360 return (rc);
361 }
362 return (0);
363 }
364
365 RF_AccessStripeMapHeader_t *
366 rf_AllocAccessStripeMapHeader()
367 {
368 RF_AccessStripeMapHeader_t *p;
369
370 p = pool_get(&rf_asmhdr_pool, PR_WAITOK);
371 memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
372
373 return (p);
374 }
375
376 void
377 rf_FreeAccessStripeMapHeader(p)
378 RF_AccessStripeMapHeader_t *p;
379 {
380 pool_put(&rf_asmhdr_pool, p);
381 }
382
383 RF_PhysDiskAddr_t *
384 rf_AllocPhysDiskAddr()
385 {
386 RF_PhysDiskAddr_t *p;
387
388 p = pool_get(&rf_pda_pool, PR_WAITOK);
389 memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
390
391 return (p);
392 }
393 /* allocates a list of PDAs, locking the free list only once
394 * when we have to call calloc, we do it one component at a time to simplify
395 * the process of freeing the list at program shutdown. This should not be
396 * much of a performance hit, because it should be very infrequently executed.
397 */
398 RF_PhysDiskAddr_t *
399 rf_AllocPDAList(count)
400 int count;
401 {
402 RF_PhysDiskAddr_t *p, *prev;
403 int i;
404
405 p = NULL;
406 prev = NULL;
407 for (i = 0; i < count; i++) {
408 p = pool_get(&rf_pda_pool, PR_WAITOK);
409 p->next = prev;
410 prev = p;
411 }
412
413 return (p);
414 }
415
416 #if RF_INCLUDE_PARITYLOGGING > 0
417 void
418 rf_FreePhysDiskAddr(p)
419 RF_PhysDiskAddr_t *p;
420 {
421 pool_put(&rf_pda_pool, p);
422 }
423 #endif
424
425 static void
426 rf_FreePDAList(l_start, l_end, count)
427 RF_PhysDiskAddr_t *l_start, *l_end; /* pointers to start and end
428 * of list */
429 int count; /* number of elements in list */
430 {
431 RF_PhysDiskAddr_t *p, *tmp;
432
433 p=l_start;
434 while (p) {
435 tmp = p->next;
436 pool_put(&rf_pda_pool, p);
437 p = tmp;
438 }
439 }
440
441 /* this is essentially identical to AllocPDAList. I should combine the two.
442 * when we have to call calloc, we do it one component at a time to simplify
443 * the process of freeing the list at program shutdown. This should not be
444 * much of a performance hit, because it should be very infrequently executed.
445 */
446 RF_AccessStripeMap_t *
447 rf_AllocASMList(count)
448 int count;
449 {
450 RF_AccessStripeMap_t *p, *prev;
451 int i;
452
453 p = NULL;
454 prev = NULL;
455 for (i = 0; i < count; i++) {
456 p = pool_get(&rf_asm_pool, PR_WAITOK);
457 p->next = prev;
458 prev = p;
459 }
460 return (p);
461 }
462
463 static void
464 rf_FreeASMList(l_start, l_end, count)
465 RF_AccessStripeMap_t *l_start, *l_end;
466 int count;
467 {
468 RF_AccessStripeMap_t *p, *tmp;
469
470 p=l_start;
471 while (p) {
472 tmp = p->next;
473 pool_put(&rf_asm_pool, p);
474 p = tmp;
475 }
476 }
477
478 void
479 rf_FreeAccessStripeMap(hdr)
480 RF_AccessStripeMapHeader_t *hdr;
481 {
482 RF_AccessStripeMap_t *p, *pt = NULL;
483 RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
484 int count = 0, t, asm_count = 0;
485
486 for (p = hdr->stripeMap; p; p = p->next) {
487
488 /* link the 3 pda lists into the accumulating pda list */
489
490 if (!pdaList)
491 pdaList = p->qInfo;
492 else
493 pdaEnd->next = p->qInfo;
494 for (trailer = NULL, pdp = p->qInfo; pdp;) {
495 trailer = pdp;
496 pdp = pdp->next;
497 count++;
498 }
499 if (trailer)
500 pdaEnd = trailer;
501
502 if (!pdaList)
503 pdaList = p->parityInfo;
504 else
505 pdaEnd->next = p->parityInfo;
506 for (trailer = NULL, pdp = p->parityInfo; pdp;) {
507 trailer = pdp;
508 pdp = pdp->next;
509 count++;
510 }
511 if (trailer)
512 pdaEnd = trailer;
513
514 if (!pdaList)
515 pdaList = p->physInfo;
516 else
517 pdaEnd->next = p->physInfo;
518 for (trailer = NULL, pdp = p->physInfo; pdp;) {
519 trailer = pdp;
520 pdp = pdp->next;
521 count++;
522 }
523 if (trailer)
524 pdaEnd = trailer;
525
526 pt = p;
527 asm_count++;
528 }
529
530 /* debug only */
531 for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
532 t++;
533 RF_ASSERT(t == count);
534
535 if (pdaList)
536 rf_FreePDAList(pdaList, pdaEnd, count);
537 rf_FreeASMList(hdr->stripeMap, pt, asm_count);
538 rf_FreeAccessStripeMapHeader(hdr);
539 }
540 /* We can't use the large write optimization if there are any failures
541 * in the stripe. In the declustered layout, there is no way to
542 * immediately determine what disks constitute a stripe, so we
543 * actually have to hunt through the stripe looking for failures. The
544 * reason we map the parity instead of just using asm->parityInfo->col
545 * is because the latter may have been already redirected to a spare
546 * drive, which would mess up the computation of the stripe offset.
547 *
548 * ASSUMES AT MOST ONE FAILURE IN THE STRIPE. */
549 int
550 rf_CheckStripeForFailures(raidPtr, asmap)
551 RF_Raid_t *raidPtr;
552 RF_AccessStripeMap_t *asmap;
553 {
554 RF_RowCol_t tcol, pcol, *diskids, i;
555 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
556 RF_StripeCount_t stripeOffset;
557 int numFailures;
558 RF_RaidAddr_t sosAddr;
559 RF_SectorNum_t diskOffset, poffset;
560
561 /* quick out in the fault-free case. */
562 RF_LOCK_MUTEX(raidPtr->mutex);
563 numFailures = raidPtr->numFailures;
564 RF_UNLOCK_MUTEX(raidPtr->mutex);
565 if (numFailures == 0)
566 return (0);
567
568 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
569 (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
570 (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &pcol, &poffset, 0); /* get pcol */
571
572 /* this need not be true if we've redirected the access to a spare in
573 * another row RF_ASSERT(row == testrow); */
574 stripeOffset = 0;
575 for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
576 if (diskids[i] != pcol) {
577 if (RF_DEAD_DISK(raidPtr->Disks[diskids[i]].status)) {
578 if (raidPtr->status != rf_rs_reconstructing)
579 return (1);
580 RF_ASSERT(raidPtr->reconControl->fcol == diskids[i]);
581 layoutPtr->map->MapSector(raidPtr,
582 sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
583 &tcol, &diskOffset, 0);
584 RF_ASSERT(tcol == diskids[i]);
585 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, diskOffset))
586 return (1);
587 asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
588 return (0);
589 }
590 stripeOffset++;
591 }
592 }
593 return (0);
594 }
595 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
596 /*
597 return the number of failed data units in the stripe.
598 */
599
600 int
601 rf_NumFailedDataUnitsInStripe(raidPtr, asmap)
602 RF_Raid_t *raidPtr;
603 RF_AccessStripeMap_t *asmap;
604 {
605 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
606 RF_RowCol_t tcol, i;
607 RF_SectorNum_t diskOffset;
608 RF_RaidAddr_t sosAddr;
609 int numFailures;
610
611 /* quick out in the fault-free case. */
612 RF_LOCK_MUTEX(raidPtr->mutex);
613 numFailures = raidPtr->numFailures;
614 RF_UNLOCK_MUTEX(raidPtr->mutex);
615 if (numFailures == 0)
616 return (0);
617 numFailures = 0;
618
619 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
620 for (i = 0; i < layoutPtr->numDataCol; i++) {
621 (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
622 &trow, &tcol, &diskOffset, 0);
623 if (RF_DEAD_DISK(raidPtr->Disks[tcol].status))
624 numFailures++;
625 }
626
627 return numFailures;
628 }
629 #endif
630
631 /*****************************************************************************************
632 *
633 * debug routines
634 *
635 ****************************************************************************************/
636 #if RF_DEBUG_MAP
637 void
638 rf_PrintAccessStripeMap(asm_h)
639 RF_AccessStripeMapHeader_t *asm_h;
640 {
641 rf_PrintFullAccessStripeMap(asm_h, 0);
642 }
643 #endif
644
645 void
646 rf_PrintFullAccessStripeMap(asm_h, prbuf)
647 RF_AccessStripeMapHeader_t *asm_h;
648 int prbuf; /* flag to print buffer pointers */
649 {
650 int i;
651 RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
652 RF_PhysDiskAddr_t *p;
653 printf("%d stripes total\n", (int) asm_h->numStripes);
654 for (; asmap; asmap = asmap->next) {
655 /* printf("Num failures: %d\n",asmap->numDataFailed); */
656 /* printf("Num sectors:
657 * %d\n",(int)asmap->totalSectorsAccessed); */
658 printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
659 (int) asmap->stripeID,
660 (int) asmap->totalSectorsAccessed,
661 (int) asmap->numDataFailed,
662 (int) asmap->numParityFailed);
663 if (asmap->parityInfo) {
664 printf("Parity [c%d s%d-%d", asmap->parityInfo->col,
665 (int) asmap->parityInfo->startSector,
666 (int) (asmap->parityInfo->startSector +
667 asmap->parityInfo->numSector - 1));
668 if (prbuf)
669 printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
670 if (asmap->parityInfo->next) {
671 printf(", c%d s%d-%d", asmap->parityInfo->next->col,
672 (int) asmap->parityInfo->next->startSector,
673 (int) (asmap->parityInfo->next->startSector +
674 asmap->parityInfo->next->numSector - 1));
675 if (prbuf)
676 printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
677 RF_ASSERT(asmap->parityInfo->next->next == NULL);
678 }
679 printf("]\n\t");
680 }
681 for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
682 printf("SU c%d s%d-%d ", p->col, (int) p->startSector,
683 (int) (p->startSector + p->numSector - 1));
684 if (prbuf)
685 printf("b0x%lx ", (unsigned long) p->bufPtr);
686 if (i && !(i & 1))
687 printf("\n\t");
688 }
689 printf("\n");
690 p = asm_h->stripeMap->failedPDAs[0];
691 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
692 printf("[multiple failures]\n");
693 else
694 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
695 printf("\t[Failed PDA: c%d s%d-%d]\n", p->col,
696 (int) p->startSector, (int) (p->startSector + p->numSector - 1));
697 }
698 }
699
700 #if RF_MAP_DEBUG
701 void
702 rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks)
703 RF_Raid_t *raidPtr;
704 RF_RaidAddr_t raidAddr;
705 RF_SectorCount_t numBlocks;
706 {
707 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
708 RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
709
710 printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
711 for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
712 printf("%d (0x%x), ", (int) ra, (int) ra);
713 }
714 printf("\n");
715 printf("Offset into stripe unit: %d (0x%x)\n",
716 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
717 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
718 }
719 #endif
720 /*
721 given a parity descriptor and the starting address within a stripe,
722 range restrict the parity descriptor to touch only the correct stuff.
723 */
724 void
725 rf_ASMParityAdjust(
726 RF_PhysDiskAddr_t * toAdjust,
727 RF_StripeNum_t startAddrWithinStripe,
728 RF_SectorNum_t endAddress,
729 RF_RaidLayout_t * layoutPtr,
730 RF_AccessStripeMap_t * asm_p)
731 {
732 RF_PhysDiskAddr_t *new_pda;
733
734 /* when we're accessing only a portion of one stripe unit, we want the
735 * parity descriptor to identify only the chunk of parity associated
736 * with the data. When the access spans exactly one stripe unit
737 * boundary and is less than a stripe unit in size, it uses two
738 * disjoint regions of the parity unit. When an access spans more
739 * than one stripe unit boundary, it uses all of the parity unit.
740 *
741 * To better handle the case where stripe units are small, we may
742 * eventually want to change the 2nd case so that if the SU size is
743 * below some threshold, we just read/write the whole thing instead of
744 * breaking it up into two accesses. */
745 if (asm_p->numStripeUnitsAccessed == 1) {
746 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
747 toAdjust->startSector += x;
748 toAdjust->raidAddress += x;
749 toAdjust->numSector = asm_p->physInfo->numSector;
750 RF_ASSERT(toAdjust->numSector != 0);
751 } else
752 if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
753 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
754
755 /* create a second pda and copy the parity map info
756 * into it */
757 RF_ASSERT(toAdjust->next == NULL);
758 new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
759 *new_pda = *toAdjust; /* structure assignment */
760 new_pda->next = NULL;
761
762 /* adjust the start sector & number of blocks for the
763 * first parity pda */
764 toAdjust->startSector += x;
765 toAdjust->raidAddress += x;
766 toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
767 RF_ASSERT(toAdjust->numSector != 0);
768
769 /* adjust the second pda */
770 new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
771 /* new_pda->raidAddress =
772 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
773 * toAdjust->raidAddress); */
774 RF_ASSERT(new_pda->numSector != 0);
775 }
776 }
777
778 /*
779 Check if a disk has been spared or failed. If spared,
780 redirect the I/O.
781 If it has been failed, record it in the asm pointer.
782 Fourth arg is whether data or parity.
783 */
784 void
785 rf_ASMCheckStatus(
786 RF_Raid_t * raidPtr,
787 RF_PhysDiskAddr_t * pda_p,
788 RF_AccessStripeMap_t * asm_p,
789 RF_RaidDisk_t * disks,
790 int parity)
791 {
792 RF_DiskStatus_t dstatus;
793 RF_RowCol_t fcol;
794
795 dstatus = disks[pda_p->col].status;
796
797 if (dstatus == rf_ds_spared) {
798 /* if the disk has been spared, redirect access to the spare */
799 fcol = pda_p->col;
800 pda_p->col = disks[fcol].spareCol;
801 } else
802 if (dstatus == rf_ds_dist_spared) {
803 /* ditto if disk has been spared to dist spare space */
804 #if RF_DEBUG_MAP
805 RF_RowCol_t oc = pda_p->col;
806 RF_SectorNum_t oo = pda_p->startSector;
807 #endif
808 if (pda_p->type == RF_PDA_TYPE_DATA)
809 raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
810 else
811 raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
812
813 #if RF_DEBUG_MAP
814 if (rf_mapDebug) {
815 printf("Redirected c %d o %d -> c %d o %d\n", oc, (int) oo,
816 pda_p->col, (int) pda_p->startSector);
817 }
818 #endif
819 } else
820 if (RF_DEAD_DISK(dstatus)) {
821 /* if the disk is inaccessible, mark the
822 * failure */
823 if (parity)
824 asm_p->numParityFailed++;
825 else {
826 asm_p->numDataFailed++;
827 }
828 asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
829 asm_p->numFailedPDAs++;
830 #if 0
831 switch (asm_p->numParityFailed + asm_p->numDataFailed) {
832 case 1:
833 asm_p->failedPDAs[0] = pda_p;
834 break;
835 case 2:
836 asm_p->failedPDAs[1] = pda_p;
837 default:
838 break;
839 }
840 #endif
841 }
842 /* the redirected access should never span a stripe unit boundary */
843 RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
844 rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
845 RF_ASSERT(pda_p->col != -1);
846 }
847