rf_map.c revision 1.27 1 /* $NetBSD: rf_map.c,v 1.27 2003/12/30 22:11:14 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /**************************************************************************
30 *
31 * map.c -- main code for mapping RAID addresses to physical disk addresses
32 *
33 **************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.27 2003/12/30 22:11:14 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_threadstuff.h"
41 #include "rf_raid.h"
42 #include "rf_general.h"
43 #include "rf_map.h"
44 #include "rf_shutdown.h"
45
46 static void rf_FreePDAList(RF_PhysDiskAddr_t *pda_list);
47 static void rf_FreeASMList(RF_AccessStripeMap_t *asm_list);
48
49 /***************************************************************************
50 *
51 * MapAccess -- main 1st order mapping routine. Maps an access in the
52 * RAID address space to the corresponding set of physical disk
53 * addresses. The result is returned as a list of AccessStripeMap
54 * structures, one per stripe accessed. Each ASM structure contains a
55 * pointer to a list of PhysDiskAddr structures, which describe the
56 * physical locations touched by the user access. Note that this
57 * routine returns only static mapping information, i.e. the list of
58 * physical addresses returned does not necessarily identify the set
59 * of physical locations that will actually be read or written. The
60 * routine also maps the parity. The physical disk location returned
61 * always indicates the entire parity unit, even when only a subset of
62 * it is being accessed. This is because an access that is not stripe
63 * unit aligned but that spans a stripe unit boundary may require
64 * access two distinct portions of the parity unit, and we can't yet
65 * tell which portion(s) we'll actually need. We leave it up to the
66 * algorithm selection code to decide what subset of the parity unit
67 * to access. Note that addresses in the RAID address space must
68 * always be maintained as longs, instead of ints.
69 *
70 * This routine returns NULL if numBlocks is 0
71 *
72 * raidAddress - starting address in RAID address space
73 * numBlocks - number of blocks in RAID address space to access
74 * buffer - buffer to supply/recieve data
75 * remap - 1 => remap address to spare space
76 ***************************************************************************/
77
78 RF_AccessStripeMapHeader_t *
79 rf_MapAccess(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddress,
80 RF_SectorCount_t numBlocks, caddr_t buffer, int remap)
81 {
82 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
83 RF_AccessStripeMapHeader_t *asm_hdr = NULL;
84 RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
85 int faultsTolerated = layoutPtr->map->faultsTolerated;
86 /* we'll change raidAddress along the way */
87 RF_RaidAddr_t startAddress = raidAddress;
88 RF_RaidAddr_t endAddress = raidAddress + numBlocks;
89 RF_RaidDisk_t *disks = raidPtr->Disks;
90
91 RF_PhysDiskAddr_t *pda_p, *pda_q;
92 RF_StripeCount_t numStripes = 0;
93 RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress,
94 nextStripeUnitAddress;
95 RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
96 RF_StripeCount_t totStripes;
97 RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
98 RF_AccessStripeMap_t *asmList, *t_asm;
99 RF_PhysDiskAddr_t *pdaList, *t_pda;
100
101 /* allocate all the ASMs and PDAs up front */
102 lastRaidAddr = raidAddress + numBlocks - 1;
103 stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
104 lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
105 totStripes = lastSID - stripeID + 1;
106 SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
107 lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
108
109 asmList = rf_AllocASMList(totStripes);
110
111 /* may also need pda(s) per stripe for parity */
112 pdaList = rf_AllocPDAList(lastSUID - SUID + 1 +
113 faultsTolerated * totStripes);
114
115
116 if (raidAddress + numBlocks > raidPtr->totalSectors) {
117 RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
118 (int) raidAddress);
119 return (NULL);
120 }
121 #if RF_DEBUG_MAP
122 if (rf_mapDebug)
123 rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
124 #endif
125 for (; raidAddress < endAddress;) {
126 /* make the next stripe structure */
127 RF_ASSERT(asmList);
128 t_asm = asmList;
129 asmList = asmList->next;
130 memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
131 if (!asm_p)
132 asm_list = asm_p = t_asm;
133 else {
134 asm_p->next = t_asm;
135 asm_p = asm_p->next;
136 }
137 numStripes++;
138
139 /* map SUs from current location to the end of the stripe */
140 asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
141 raidAddress) */ stripeID++;
142 stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
143 stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
144 asm_p->raidAddress = raidAddress;
145 asm_p->endRaidAddress = stripeEndAddress;
146
147 /* map each stripe unit in the stripe */
148 pda_p = NULL;
149
150 /* Raid addr of start of portion of access that is
151 within this stripe */
152 startAddrWithinStripe = raidAddress;
153
154 for (; raidAddress < stripeEndAddress;) {
155 RF_ASSERT(pdaList);
156 t_pda = pdaList;
157 pdaList = pdaList->next;
158 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
159 if (!pda_p)
160 asm_p->physInfo = pda_p = t_pda;
161 else {
162 pda_p->next = t_pda;
163 pda_p = pda_p->next;
164 }
165
166 pda_p->type = RF_PDA_TYPE_DATA;
167 (layoutPtr->map->MapSector) (raidPtr, raidAddress,
168 &(pda_p->col),
169 &(pda_p->startSector),
170 remap);
171
172 /* mark any failures we find. failedPDA is
173 * don't-care if there is more than one
174 * failure */
175
176 /* the RAID address corresponding to this
177 physical diskaddress */
178 pda_p->raidAddress = raidAddress;
179 nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
180 pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
181 RF_ASSERT(pda_p->numSector != 0);
182 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
183 pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
184 asm_p->totalSectorsAccessed += pda_p->numSector;
185 asm_p->numStripeUnitsAccessed++;
186
187 raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
188 }
189
190 /* Map the parity. At this stage, the startSector and
191 * numSector fields for the parity unit are always set
192 * to indicate the entire parity unit. We may modify
193 * this after mapping the data portion. */
194 switch (faultsTolerated) {
195 case 0:
196 break;
197 case 1: /* single fault tolerant */
198 RF_ASSERT(pdaList);
199 t_pda = pdaList;
200 pdaList = pdaList->next;
201 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
202 pda_p = asm_p->parityInfo = t_pda;
203 pda_p->type = RF_PDA_TYPE_PARITY;
204 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
205 &(pda_p->col), &(pda_p->startSector), remap);
206 pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
207 /* raidAddr may be needed to find unit to redirect to */
208 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
209 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
210 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
211
212 break;
213 case 2: /* two fault tolerant */
214 RF_ASSERT(pdaList && pdaList->next);
215 t_pda = pdaList;
216 pdaList = pdaList->next;
217 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
218 pda_p = asm_p->parityInfo = t_pda;
219 pda_p->type = RF_PDA_TYPE_PARITY;
220 t_pda = pdaList;
221 pdaList = pdaList->next;
222 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
223 pda_q = asm_p->qInfo = t_pda;
224 pda_q->type = RF_PDA_TYPE_Q;
225 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
226 &(pda_p->col), &(pda_p->startSector), remap);
227 (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
228 &(pda_q->col), &(pda_q->startSector), remap);
229 pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
230 /* raidAddr may be needed to find unit to redirect to */
231 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
232 pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
233 /* failure mode stuff */
234 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
235 rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
236 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
237 rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
238 break;
239 }
240 }
241 RF_ASSERT(asmList == NULL && pdaList == NULL);
242 /* make the header structure */
243 asm_hdr = rf_AllocAccessStripeMapHeader();
244 RF_ASSERT(numStripes == totStripes);
245 asm_hdr->numStripes = numStripes;
246 asm_hdr->stripeMap = asm_list;
247
248 #if RF_DEBUG_MAP
249 if (rf_mapDebug)
250 rf_PrintAccessStripeMap(asm_hdr);
251 #endif
252 return (asm_hdr);
253 }
254
255 /***************************************************************************
256 * This routine walks through an ASM list and marks the PDAs that have
257 * failed. It's called only when a disk failure causes an in-flight
258 * DAG to fail. The parity may consist of two components, but we want
259 * to use only one failedPDA pointer. Thus we set failedPDA to point
260 * to the first parity component, and rely on the rest of the code to
261 * do the right thing with this.
262 ***************************************************************************/
263
264 void
265 rf_MarkFailuresInASMList(RF_Raid_t *raidPtr,
266 RF_AccessStripeMapHeader_t *asm_h)
267 {
268 RF_RaidDisk_t *disks = raidPtr->Disks;
269 RF_AccessStripeMap_t *asmap;
270 RF_PhysDiskAddr_t *pda;
271
272 for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
273 asmap->numDataFailed = 0;
274 asmap->numParityFailed = 0;
275 asmap->numQFailed = 0;
276 asmap->numFailedPDAs = 0;
277 memset((char *) asmap->failedPDAs, 0,
278 RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
279 for (pda = asmap->physInfo; pda; pda = pda->next) {
280 if (RF_DEAD_DISK(disks[pda->col].status)) {
281 asmap->numDataFailed++;
282 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
283 asmap->numFailedPDAs++;
284 }
285 }
286 pda = asmap->parityInfo;
287 if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
288 asmap->numParityFailed++;
289 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
290 asmap->numFailedPDAs++;
291 }
292 pda = asmap->qInfo;
293 if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
294 asmap->numQFailed++;
295 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
296 asmap->numFailedPDAs++;
297 }
298 }
299 }
300
301 /***************************************************************************
302 *
303 * routines to allocate and free list elements. All allocation
304 * routines zero the structure before returning it.
305 *
306 * FreePhysDiskAddr is static. It should never be called directly,
307 * because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
308 * list.
309 *
310 ***************************************************************************/
311
312 static struct pool rf_asmhdr_pool;
313 #define RF_MAX_FREE_ASMHDR 128
314 #define RF_ASMHDR_INC 16
315 #define RF_ASMHDR_INITIAL 32
316
317 static struct pool rf_asm_pool;
318 #define RF_MAX_FREE_ASM 192
319 #define RF_ASM_INC 24
320 #define RF_ASM_INITIAL 64
321
322 static struct pool rf_pda_pool; /* may need to be visible for
323 rf_dagdegrd.c and rf_dagdegwr.c,
324 if they can be convinced to free
325 the space easily */
326 #define RF_MAX_FREE_PDA 192
327 #define RF_PDA_INC 24
328 #define RF_PDA_INITIAL 64
329
330 /* called at shutdown time. So far, all that is necessary is to
331 release all the free lists */
332 static void rf_ShutdownMapModule(void *);
333 static void
334 rf_ShutdownMapModule(void *ignored)
335 {
336 pool_destroy(&rf_asmhdr_pool);
337 pool_destroy(&rf_asm_pool);
338 pool_destroy(&rf_pda_pool);
339 }
340
341 int
342 rf_ConfigureMapModule(RF_ShutdownList_t **listp)
343 {
344 int rc;
345
346 pool_init(&rf_asmhdr_pool, sizeof(RF_AccessStripeMapHeader_t),
347 0, 0, 0, "rf_asmhdr_pl", NULL);
348 pool_sethiwat(&rf_asmhdr_pool, RF_MAX_FREE_ASMHDR);
349 pool_prime(&rf_asmhdr_pool, RF_ASMHDR_INITIAL);
350
351 pool_init(&rf_asm_pool, sizeof(RF_AccessStripeMap_t),
352 0, 0, 0, "rf_asm_pl", NULL);
353 pool_sethiwat(&rf_asm_pool, RF_MAX_FREE_ASM);
354 pool_prime(&rf_asm_pool, RF_ASM_INITIAL);
355
356 pool_init(&rf_pda_pool, sizeof(RF_PhysDiskAddr_t),
357 0, 0, 0, "rf_pda_pl", NULL);
358 pool_sethiwat(&rf_pda_pool, RF_MAX_FREE_PDA);
359 pool_prime(&rf_pda_pool, RF_PDA_INITIAL);
360
361 rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
362 if (rc) {
363 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
364 rf_ShutdownMapModule(NULL);
365 return (rc);
366 }
367 return (0);
368 }
369
370 RF_AccessStripeMapHeader_t *
371 rf_AllocAccessStripeMapHeader()
372 {
373 RF_AccessStripeMapHeader_t *p;
374
375 p = pool_get(&rf_asmhdr_pool, PR_WAITOK);
376 memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
377
378 return (p);
379 }
380
381 void
382 rf_FreeAccessStripeMapHeader(RF_AccessStripeMapHeader_t *p)
383 {
384 pool_put(&rf_asmhdr_pool, p);
385 }
386
387 RF_PhysDiskAddr_t *
388 rf_AllocPhysDiskAddr()
389 {
390 RF_PhysDiskAddr_t *p;
391
392 p = pool_get(&rf_pda_pool, PR_WAITOK);
393 memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
394
395 return (p);
396 }
397 /* allocates a list of PDAs, locking the free list only once when we
398 * have to call calloc, we do it one component at a time to simplify
399 * the process of freeing the list at program shutdown. This should
400 * not be much of a performance hit, because it should be very
401 * infrequently executed. */
402 RF_PhysDiskAddr_t *
403 rf_AllocPDAList(int count)
404 {
405 RF_PhysDiskAddr_t *p, *prev;
406 int i;
407
408 p = NULL;
409 prev = NULL;
410 for (i = 0; i < count; i++) {
411 p = pool_get(&rf_pda_pool, PR_WAITOK);
412 p->next = prev;
413 prev = p;
414 }
415
416 return (p);
417 }
418
419 #if RF_INCLUDE_PARITYLOGGING > 0
420 void
421 rf_FreePhysDiskAddr(RF_PhysDiskAddr_t *p)
422 {
423 pool_put(&rf_pda_pool, p);
424 }
425 #endif
426
427 static void
428 rf_FreePDAList(RF_PhysDiskAddr_t *pda_list)
429 {
430 RF_PhysDiskAddr_t *p, *tmp;
431
432 p=pda_list;
433 while (p) {
434 tmp = p->next;
435 pool_put(&rf_pda_pool, p);
436 p = tmp;
437 }
438 }
439
440 /* this is essentially identical to AllocPDAList. I should combine
441 * the two. when we have to call calloc, we do it one component at a
442 * time to simplify the process of freeing the list at program
443 * shutdown. This should not be much of a performance hit, because it
444 * should be very infrequently executed. */
445 RF_AccessStripeMap_t *
446 rf_AllocASMList(int count)
447 {
448 RF_AccessStripeMap_t *p, *prev;
449 int i;
450
451 p = NULL;
452 prev = NULL;
453 for (i = 0; i < count; i++) {
454 p = pool_get(&rf_asm_pool, PR_WAITOK);
455 p->next = prev;
456 prev = p;
457 }
458 return (p);
459 }
460
461 static void
462 rf_FreeASMList(RF_AccessStripeMap_t *asm_list)
463 {
464 RF_AccessStripeMap_t *p, *tmp;
465
466 p=asm_list;
467 while (p) {
468 tmp = p->next;
469 pool_put(&rf_asm_pool, p);
470 p = tmp;
471 }
472 }
473
474 void
475 rf_FreeAccessStripeMap(RF_AccessStripeMapHeader_t *hdr)
476 {
477 RF_AccessStripeMap_t *p, *pt = NULL;
478 RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
479 int count = 0, t, asm_count = 0;
480
481 for (p = hdr->stripeMap; p; p = p->next) {
482
483 /* link the 3 pda lists into the accumulating pda list */
484
485 if (!pdaList)
486 pdaList = p->qInfo;
487 else
488 pdaEnd->next = p->qInfo;
489 for (trailer = NULL, pdp = p->qInfo; pdp;) {
490 trailer = pdp;
491 pdp = pdp->next;
492 count++;
493 }
494 if (trailer)
495 pdaEnd = trailer;
496
497 if (!pdaList)
498 pdaList = p->parityInfo;
499 else
500 pdaEnd->next = p->parityInfo;
501 for (trailer = NULL, pdp = p->parityInfo; pdp;) {
502 trailer = pdp;
503 pdp = pdp->next;
504 count++;
505 }
506 if (trailer)
507 pdaEnd = trailer;
508
509 if (!pdaList)
510 pdaList = p->physInfo;
511 else
512 pdaEnd->next = p->physInfo;
513 for (trailer = NULL, pdp = p->physInfo; pdp;) {
514 trailer = pdp;
515 pdp = pdp->next;
516 count++;
517 }
518 if (trailer)
519 pdaEnd = trailer;
520
521 pt = p;
522 asm_count++;
523 }
524
525 /* debug only */
526 for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
527 t++;
528 RF_ASSERT(t == count);
529
530 if (pdaList)
531 rf_FreePDAList(pdaList);
532 rf_FreeASMList(hdr->stripeMap);
533 rf_FreeAccessStripeMapHeader(hdr);
534 }
535 /* We can't use the large write optimization if there are any failures
536 * in the stripe. In the declustered layout, there is no way to
537 * immediately determine what disks constitute a stripe, so we
538 * actually have to hunt through the stripe looking for failures. The
539 * reason we map the parity instead of just using asm->parityInfo->col
540 * is because the latter may have been already redirected to a spare
541 * drive, which would mess up the computation of the stripe offset.
542 *
543 * ASSUMES AT MOST ONE FAILURE IN THE STRIPE. */
544 int
545 rf_CheckStripeForFailures(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
546 {
547 RF_RowCol_t tcol, pcol, *diskids, i;
548 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
549 RF_StripeCount_t stripeOffset;
550 int numFailures;
551 RF_RaidAddr_t sosAddr;
552 RF_SectorNum_t diskOffset, poffset;
553
554 /* quick out in the fault-free case. */
555 RF_LOCK_MUTEX(raidPtr->mutex);
556 numFailures = raidPtr->numFailures;
557 RF_UNLOCK_MUTEX(raidPtr->mutex);
558 if (numFailures == 0)
559 return (0);
560
561 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
562 asmap->raidAddress);
563 (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress,
564 &diskids);
565 (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress,
566 &pcol, &poffset, 0); /* get pcol */
567
568 /* this need not be true if we've redirected the access to a
569 * spare in another row RF_ASSERT(row == testrow); */
570 stripeOffset = 0;
571 for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
572 if (diskids[i] != pcol) {
573 if (RF_DEAD_DISK(raidPtr->Disks[diskids[i]].status)) {
574 if (raidPtr->status != rf_rs_reconstructing)
575 return (1);
576 RF_ASSERT(raidPtr->reconControl->fcol == diskids[i]);
577 layoutPtr->map->MapSector(raidPtr,
578 sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
579 &tcol, &diskOffset, 0);
580 RF_ASSERT(tcol == diskids[i]);
581 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, diskOffset))
582 return (1);
583 asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
584 return (0);
585 }
586 stripeOffset++;
587 }
588 }
589 return (0);
590 }
591 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
592 /*
593 return the number of failed data units in the stripe.
594 */
595
596 int
597 rf_NumFailedDataUnitsInStripe(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
598 {
599 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
600 RF_RowCol_t tcol, i;
601 RF_SectorNum_t diskOffset;
602 RF_RaidAddr_t sosAddr;
603 int numFailures;
604
605 /* quick out in the fault-free case. */
606 RF_LOCK_MUTEX(raidPtr->mutex);
607 numFailures = raidPtr->numFailures;
608 RF_UNLOCK_MUTEX(raidPtr->mutex);
609 if (numFailures == 0)
610 return (0);
611 numFailures = 0;
612
613 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
614 asmap->raidAddress);
615 for (i = 0; i < layoutPtr->numDataCol; i++) {
616 (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
617 &trow, &tcol, &diskOffset, 0);
618 if (RF_DEAD_DISK(raidPtr->Disks[tcol].status))
619 numFailures++;
620 }
621
622 return numFailures;
623 }
624 #endif
625
626 /****************************************************************************
627 *
628 * debug routines
629 *
630 ***************************************************************************/
631 #if RF_DEBUG_MAP
632 void
633 rf_PrintAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h)
634 {
635 rf_PrintFullAccessStripeMap(asm_h, 0);
636 }
637 #endif
638
639 /* prbuf - flag to print buffer pointers */
640 void
641 rf_PrintFullAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h, int prbuf)
642 {
643 int i;
644 RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
645 RF_PhysDiskAddr_t *p;
646 printf("%d stripes total\n", (int) asm_h->numStripes);
647 for (; asmap; asmap = asmap->next) {
648 /* printf("Num failures: %d\n",asmap->numDataFailed); */
649 /* printf("Num sectors:
650 * %d\n",(int)asmap->totalSectorsAccessed); */
651 printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
652 (int) asmap->stripeID,
653 (int) asmap->totalSectorsAccessed,
654 (int) asmap->numDataFailed,
655 (int) asmap->numParityFailed);
656 if (asmap->parityInfo) {
657 printf("Parity [c%d s%d-%d", asmap->parityInfo->col,
658 (int) asmap->parityInfo->startSector,
659 (int) (asmap->parityInfo->startSector +
660 asmap->parityInfo->numSector - 1));
661 if (prbuf)
662 printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
663 if (asmap->parityInfo->next) {
664 printf(", c%d s%d-%d", asmap->parityInfo->next->col,
665 (int) asmap->parityInfo->next->startSector,
666 (int) (asmap->parityInfo->next->startSector +
667 asmap->parityInfo->next->numSector - 1));
668 if (prbuf)
669 printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
670 RF_ASSERT(asmap->parityInfo->next->next == NULL);
671 }
672 printf("]\n\t");
673 }
674 for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
675 printf("SU c%d s%d-%d ", p->col, (int) p->startSector,
676 (int) (p->startSector + p->numSector - 1));
677 if (prbuf)
678 printf("b0x%lx ", (unsigned long) p->bufPtr);
679 if (i && !(i & 1))
680 printf("\n\t");
681 }
682 printf("\n");
683 p = asm_h->stripeMap->failedPDAs[0];
684 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
685 printf("[multiple failures]\n");
686 else
687 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
688 printf("\t[Failed PDA: c%d s%d-%d]\n", p->col,
689 (int) p->startSector, (int) (p->startSector + p->numSector - 1));
690 }
691 }
692
693 #if RF_MAP_DEBUG
694 void
695 rf_PrintRaidAddressInfo(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
696 RF_SectorCount_t numBlocks)
697 {
698 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
699 RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
700
701 printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
702 for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
703 printf("%d (0x%x), ", (int) ra, (int) ra);
704 }
705 printf("\n");
706 printf("Offset into stripe unit: %d (0x%x)\n",
707 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
708 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
709 }
710 #endif
711 /* given a parity descriptor and the starting address within a stripe,
712 * range restrict the parity descriptor to touch only the correct
713 * stuff. */
714 void
715 rf_ASMParityAdjust(RF_PhysDiskAddr_t *toAdjust,
716 RF_StripeNum_t startAddrWithinStripe,
717 RF_SectorNum_t endAddress,
718 RF_RaidLayout_t *layoutPtr,
719 RF_AccessStripeMap_t *asm_p)
720 {
721 RF_PhysDiskAddr_t *new_pda;
722
723 /* when we're accessing only a portion of one stripe unit, we
724 * want the parity descriptor to identify only the chunk of
725 * parity associated with the data. When the access spans
726 * exactly one stripe unit boundary and is less than a stripe
727 * unit in size, it uses two disjoint regions of the parity
728 * unit. When an access spans more than one stripe unit
729 * boundary, it uses all of the parity unit.
730 *
731 * To better handle the case where stripe units are small, we
732 * may eventually want to change the 2nd case so that if the
733 * SU size is below some threshold, we just read/write the
734 * whole thing instead of breaking it up into two accesses. */
735 if (asm_p->numStripeUnitsAccessed == 1) {
736 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
737 toAdjust->startSector += x;
738 toAdjust->raidAddress += x;
739 toAdjust->numSector = asm_p->physInfo->numSector;
740 RF_ASSERT(toAdjust->numSector != 0);
741 } else
742 if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
743 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
744
745 /* create a second pda and copy the parity map info
746 * into it */
747 RF_ASSERT(toAdjust->next == NULL);
748 new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
749 *new_pda = *toAdjust; /* structure assignment */
750 new_pda->next = NULL;
751
752 /* adjust the start sector & number of blocks for the
753 * first parity pda */
754 toAdjust->startSector += x;
755 toAdjust->raidAddress += x;
756 toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
757 RF_ASSERT(toAdjust->numSector != 0);
758
759 /* adjust the second pda */
760 new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
761 /* new_pda->raidAddress =
762 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
763 * toAdjust->raidAddress); */
764 RF_ASSERT(new_pda->numSector != 0);
765 }
766 }
767
768 /* Check if a disk has been spared or failed. If spared, redirect the
769 * I/O. If it has been failed, record it in the asm pointer. Fourth
770 * arg is whether data or parity. */
771 void
772 rf_ASMCheckStatus(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda_p,
773 RF_AccessStripeMap_t *asm_p, RF_RaidDisk_t *disks,
774 int parity)
775 {
776 RF_DiskStatus_t dstatus;
777 RF_RowCol_t fcol;
778
779 dstatus = disks[pda_p->col].status;
780
781 if (dstatus == rf_ds_spared) {
782 /* if the disk has been spared, redirect access to the spare */
783 fcol = pda_p->col;
784 pda_p->col = disks[fcol].spareCol;
785 } else
786 if (dstatus == rf_ds_dist_spared) {
787 /* ditto if disk has been spared to dist spare space */
788 #if RF_DEBUG_MAP
789 RF_RowCol_t oc = pda_p->col;
790 RF_SectorNum_t oo = pda_p->startSector;
791 #endif
792 if (pda_p->type == RF_PDA_TYPE_DATA)
793 raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
794 else
795 raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
796
797 #if RF_DEBUG_MAP
798 if (rf_mapDebug) {
799 printf("Redirected c %d o %d -> c %d o %d\n", oc, (int) oo,
800 pda_p->col, (int) pda_p->startSector);
801 }
802 #endif
803 } else
804 if (RF_DEAD_DISK(dstatus)) {
805 /* if the disk is inaccessible, mark the
806 * failure */
807 if (parity)
808 asm_p->numParityFailed++;
809 else {
810 asm_p->numDataFailed++;
811 }
812 asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
813 asm_p->numFailedPDAs++;
814 #if 0
815 switch (asm_p->numParityFailed + asm_p->numDataFailed) {
816 case 1:
817 asm_p->failedPDAs[0] = pda_p;
818 break;
819 case 2:
820 asm_p->failedPDAs[1] = pda_p;
821 default:
822 break;
823 }
824 #endif
825 }
826 /* the redirected access should never span a stripe unit boundary */
827 RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
828 rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
829 RF_ASSERT(pda_p->col != -1);
830 }
831