rf_map.c revision 1.3 1 /* $NetBSD: rf_map.c,v 1.3 1999/02/05 00:06:12 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /**************************************************************************
30 *
31 * map.c -- main code for mapping RAID addresses to physical disk addresses
32 *
33 **************************************************************************/
34
35 #include "rf_types.h"
36 #include "rf_threadstuff.h"
37 #include "rf_raid.h"
38 #include "rf_general.h"
39 #include "rf_map.h"
40 #include "rf_freelist.h"
41 #include "rf_shutdown.h"
42 #include "rf_sys.h"
43
44 static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count);
45 static void
46 rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end,
47 int count);
48
49 /*****************************************************************************************
50 *
51 * MapAccess -- main 1st order mapping routine.
52 *
53 * Maps an access in the RAID address space to the corresponding set of physical disk
54 * addresses. The result is returned as a list of AccessStripeMap structures, one per
55 * stripe accessed. Each ASM structure contains a pointer to a list of PhysDiskAddr
56 * structures, which describe the physical locations touched by the user access. Note
57 * that this routine returns only static mapping information, i.e. the list of physical
58 * addresses returned does not necessarily identify the set of physical locations that
59 * will actually be read or written.
60 *
61 * The routine also maps the parity. The physical disk location returned always
62 * indicates the entire parity unit, even when only a subset of it is being accessed.
63 * This is because an access that is not stripe unit aligned but that spans a stripe
64 * unit boundary may require access two distinct portions of the parity unit, and we
65 * can't yet tell which portion(s) we'll actually need. We leave it up to the algorithm
66 * selection code to decide what subset of the parity unit to access.
67 *
68 * Note that addresses in the RAID address space must always be maintained as
69 * longs, instead of ints.
70 *
71 * This routine returns NULL if numBlocks is 0
72 *
73 ****************************************************************************************/
74
75 RF_AccessStripeMapHeader_t *
76 rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap)
77 RF_Raid_t *raidPtr;
78 RF_RaidAddr_t raidAddress; /* starting address in RAID address
79 * space */
80 RF_SectorCount_t numBlocks; /* number of blocks in RAID address
81 * space to access */
82 caddr_t buffer; /* buffer to supply/receive data */
83 int remap; /* 1 => remap addresses to spare space */
84 {
85 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
86 RF_AccessStripeMapHeader_t *asm_hdr = NULL;
87 RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
88 int faultsTolerated = layoutPtr->map->faultsTolerated;
89 RF_RaidAddr_t startAddress = raidAddress; /* we'll change
90 * raidAddress along the
91 * way */
92 RF_RaidAddr_t endAddress = raidAddress + numBlocks;
93 RF_RaidDisk_t **disks = raidPtr->Disks;
94
95 RF_PhysDiskAddr_t *pda_p, *pda_q;
96 RF_StripeCount_t numStripes = 0;
97 RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress;
98 RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
99 RF_StripeCount_t totStripes;
100 RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
101 RF_AccessStripeMap_t *asmList, *t_asm;
102 RF_PhysDiskAddr_t *pdaList, *t_pda;
103
104 /* allocate all the ASMs and PDAs up front */
105 lastRaidAddr = raidAddress + numBlocks - 1;
106 stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
107 lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
108 totStripes = lastSID - stripeID + 1;
109 SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
110 lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
111
112 asmList = rf_AllocASMList(totStripes);
113 pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes); /* may also need pda(s)
114 * per stripe for parity */
115
116 if (raidAddress + numBlocks > raidPtr->totalSectors) {
117 RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
118 (int) raidAddress);
119 return (NULL);
120 }
121 if (rf_mapDebug)
122 rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
123 for (; raidAddress < endAddress;) {
124 /* make the next stripe structure */
125 RF_ASSERT(asmList);
126 t_asm = asmList;
127 asmList = asmList->next;
128 bzero((char *) t_asm, sizeof(RF_AccessStripeMap_t));
129 if (!asm_p)
130 asm_list = asm_p = t_asm;
131 else {
132 asm_p->next = t_asm;
133 asm_p = asm_p->next;
134 }
135 numStripes++;
136
137 /* map SUs from current location to the end of the stripe */
138 asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
139 raidAddress) */ stripeID++;
140 stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
141 stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
142 asm_p->raidAddress = raidAddress;
143 asm_p->endRaidAddress = stripeEndAddress;
144
145 /* map each stripe unit in the stripe */
146 pda_p = NULL;
147 startAddrWithinStripe = raidAddress; /* Raid addr of start of
148 * portion of access
149 * that is within this
150 * stripe */
151 for (; raidAddress < stripeEndAddress;) {
152 RF_ASSERT(pdaList);
153 t_pda = pdaList;
154 pdaList = pdaList->next;
155 bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t));
156 if (!pda_p)
157 asm_p->physInfo = pda_p = t_pda;
158 else {
159 pda_p->next = t_pda;
160 pda_p = pda_p->next;
161 }
162
163 pda_p->type = RF_PDA_TYPE_DATA;
164 (layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
165
166 /* mark any failures we find. failedPDA is don't-care
167 * if there is more than one failure */
168 pda_p->raidAddress = raidAddress; /* the RAID address
169 * corresponding to this
170 * physical disk address */
171 nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
172 pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
173 RF_ASSERT(pda_p->numSector != 0);
174 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
175 pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
176 asm_p->totalSectorsAccessed += pda_p->numSector;
177 asm_p->numStripeUnitsAccessed++;
178 asm_p->origRow = pda_p->row; /* redundant but
179 * harmless to do this
180 * in every loop
181 * iteration */
182
183 raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
184 }
185
186 /* Map the parity. At this stage, the startSector and
187 * numSector fields for the parity unit are always set to
188 * indicate the entire parity unit. We may modify this after
189 * mapping the data portion. */
190 switch (faultsTolerated) {
191 case 0:
192 break;
193 case 1: /* single fault tolerant */
194 RF_ASSERT(pdaList);
195 t_pda = pdaList;
196 pdaList = pdaList->next;
197 bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t));
198 pda_p = asm_p->parityInfo = t_pda;
199 pda_p->type = RF_PDA_TYPE_PARITY;
200 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
201 &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
202 pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
203 /* raidAddr may be needed to find unit to redirect to */
204 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
205 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
206 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
207
208 break;
209 case 2: /* two fault tolerant */
210 RF_ASSERT(pdaList && pdaList->next);
211 t_pda = pdaList;
212 pdaList = pdaList->next;
213 bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t));
214 pda_p = asm_p->parityInfo = t_pda;
215 pda_p->type = RF_PDA_TYPE_PARITY;
216 t_pda = pdaList;
217 pdaList = pdaList->next;
218 bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t));
219 pda_q = asm_p->qInfo = t_pda;
220 pda_q->type = RF_PDA_TYPE_Q;
221 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
222 &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
223 (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
224 &(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap);
225 pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
226 /* raidAddr may be needed to find unit to redirect to */
227 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
228 pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
229 /* failure mode stuff */
230 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
231 rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
232 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
233 rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
234 break;
235 }
236 }
237 RF_ASSERT(asmList == NULL && pdaList == NULL);
238 /* make the header structure */
239 asm_hdr = rf_AllocAccessStripeMapHeader();
240 RF_ASSERT(numStripes == totStripes);
241 asm_hdr->numStripes = numStripes;
242 asm_hdr->stripeMap = asm_list;
243
244 if (rf_mapDebug)
245 rf_PrintAccessStripeMap(asm_hdr);
246 return (asm_hdr);
247 }
248 /*****************************************************************************************
249 * This routine walks through an ASM list and marks the PDAs that have failed.
250 * It's called only when a disk failure causes an in-flight DAG to fail.
251 * The parity may consist of two components, but we want to use only one failedPDA
252 * pointer. Thus we set failedPDA to point to the first parity component, and rely
253 * on the rest of the code to do the right thing with this.
254 ****************************************************************************************/
255
256 void
257 rf_MarkFailuresInASMList(raidPtr, asm_h)
258 RF_Raid_t *raidPtr;
259 RF_AccessStripeMapHeader_t *asm_h;
260 {
261 RF_RaidDisk_t **disks = raidPtr->Disks;
262 RF_AccessStripeMap_t *asmap;
263 RF_PhysDiskAddr_t *pda;
264
265 for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
266 asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0;
267 asmap->numFailedPDAs = 0;
268 bzero((char *) asmap->failedPDAs,
269 RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
270 for (pda = asmap->physInfo; pda; pda = pda->next) {
271 if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
272 printf("DEAD DISK BOGUSLY DETECTED!!\n");
273 asmap->numDataFailed++;
274 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
275 asmap->numFailedPDAs++;
276 }
277 }
278 pda = asmap->parityInfo;
279 if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
280 asmap->numParityFailed++;
281 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
282 asmap->numFailedPDAs++;
283 }
284 pda = asmap->qInfo;
285 if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
286 asmap->numQFailed++;
287 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
288 asmap->numFailedPDAs++;
289 }
290 }
291 }
292 /*****************************************************************************************
293 *
294 * DuplicateASM -- duplicates an ASM and returns the new one
295 *
296 ****************************************************************************************/
297 RF_AccessStripeMap_t *
298 rf_DuplicateASM(asmap)
299 RF_AccessStripeMap_t *asmap;
300 {
301 RF_AccessStripeMap_t *new_asm;
302 RF_PhysDiskAddr_t *pda, *new_pda, *t_pda;
303
304 new_pda = NULL;
305 new_asm = rf_AllocAccessStripeMapComponent();
306 bcopy((char *) asmap, (char *) new_asm, sizeof(RF_AccessStripeMap_t));
307 new_asm->numFailedPDAs = 0; /* ??? */
308 new_asm->failedPDAs[0] = NULL;
309 new_asm->physInfo = NULL;
310 new_asm->parityInfo = NULL;
311 new_asm->next = NULL;
312
313 for (pda = asmap->physInfo; pda; pda = pda->next) { /* copy the physInfo
314 * list */
315 t_pda = rf_AllocPhysDiskAddr();
316 bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t));
317 t_pda->next = NULL;
318 if (!new_asm->physInfo) {
319 new_asm->physInfo = t_pda;
320 new_pda = t_pda;
321 } else {
322 new_pda->next = t_pda;
323 new_pda = new_pda->next;
324 }
325 if (pda == asmap->failedPDAs[0])
326 new_asm->failedPDAs[0] = t_pda;
327 }
328 for (pda = asmap->parityInfo; pda; pda = pda->next) { /* copy the parityInfo
329 * list */
330 t_pda = rf_AllocPhysDiskAddr();
331 bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t));
332 t_pda->next = NULL;
333 if (!new_asm->parityInfo) {
334 new_asm->parityInfo = t_pda;
335 new_pda = t_pda;
336 } else {
337 new_pda->next = t_pda;
338 new_pda = new_pda->next;
339 }
340 if (pda == asmap->failedPDAs[0])
341 new_asm->failedPDAs[0] = t_pda;
342 }
343 return (new_asm);
344 }
345 /*****************************************************************************************
346 *
347 * DuplicatePDA -- duplicates a PDA and returns the new one
348 *
349 ****************************************************************************************/
350 RF_PhysDiskAddr_t *
351 rf_DuplicatePDA(pda)
352 RF_PhysDiskAddr_t *pda;
353 {
354 RF_PhysDiskAddr_t *new;
355
356 new = rf_AllocPhysDiskAddr();
357 bcopy((char *) pda, (char *) new, sizeof(RF_PhysDiskAddr_t));
358 return (new);
359 }
360 /*****************************************************************************************
361 *
362 * routines to allocate and free list elements. All allocation routines zero the
363 * structure before returning it.
364 *
365 * FreePhysDiskAddr is static. It should never be called directly, because
366 * FreeAccessStripeMap takes care of freeing the PhysDiskAddr list.
367 *
368 ****************************************************************************************/
369
370 static RF_FreeList_t *rf_asmhdr_freelist;
371 #define RF_MAX_FREE_ASMHDR 128
372 #define RF_ASMHDR_INC 16
373 #define RF_ASMHDR_INITIAL 32
374
375 static RF_FreeList_t *rf_asm_freelist;
376 #define RF_MAX_FREE_ASM 192
377 #define RF_ASM_INC 24
378 #define RF_ASM_INITIAL 64
379
380 static RF_FreeList_t *rf_pda_freelist;
381 #define RF_MAX_FREE_PDA 192
382 #define RF_PDA_INC 24
383 #define RF_PDA_INITIAL 64
384
385 /* called at shutdown time. So far, all that is necessary is to release all the free lists */
386 static void rf_ShutdownMapModule(void *);
387 static void
388 rf_ShutdownMapModule(ignored)
389 void *ignored;
390 {
391 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
392 RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
393 RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *));
394 }
395
396 int
397 rf_ConfigureMapModule(listp)
398 RF_ShutdownList_t **listp;
399 {
400 int rc;
401
402 RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR,
403 RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t));
404 if (rf_asmhdr_freelist == NULL) {
405 return (ENOMEM);
406 }
407 RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM,
408 RF_ASM_INC, sizeof(RF_AccessStripeMap_t));
409 if (rf_asm_freelist == NULL) {
410 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
411 return (ENOMEM);
412 }
413 RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA,
414 RF_PDA_INC, sizeof(RF_PhysDiskAddr_t));
415 if (rf_pda_freelist == NULL) {
416 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
417 RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
418 return (ENOMEM);
419 }
420 rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
421 if (rc) {
422 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__,
423 __LINE__, rc);
424 rf_ShutdownMapModule(NULL);
425 return (rc);
426 }
427 RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next,
428 (RF_AccessStripeMapHeader_t *));
429 RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next,
430 (RF_AccessStripeMap_t *));
431 RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next,
432 (RF_PhysDiskAddr_t *));
433
434 return (0);
435 }
436
437 RF_AccessStripeMapHeader_t *
438 rf_AllocAccessStripeMapHeader()
439 {
440 RF_AccessStripeMapHeader_t *p;
441
442 RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *));
443 bzero((char *) p, sizeof(RF_AccessStripeMapHeader_t));
444
445 return (p);
446 }
447
448
449 void
450 rf_FreeAccessStripeMapHeader(p)
451 RF_AccessStripeMapHeader_t *p;
452 {
453 RF_FREELIST_FREE(rf_asmhdr_freelist, p, next);
454 }
455
456 RF_PhysDiskAddr_t *
457 rf_AllocPhysDiskAddr()
458 {
459 RF_PhysDiskAddr_t *p;
460
461 RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *));
462 bzero((char *) p, sizeof(RF_PhysDiskAddr_t));
463
464 return (p);
465 }
466 /* allocates a list of PDAs, locking the free list only once
467 * when we have to call calloc, we do it one component at a time to simplify
468 * the process of freeing the list at program shutdown. This should not be
469 * much of a performance hit, because it should be very infrequently executed.
470 */
471 RF_PhysDiskAddr_t *
472 rf_AllocPDAList(count)
473 int count;
474 {
475 RF_PhysDiskAddr_t *p = NULL;
476
477 RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count);
478 return (p);
479 }
480
481 void
482 rf_FreePhysDiskAddr(p)
483 RF_PhysDiskAddr_t *p;
484 {
485 RF_FREELIST_FREE(rf_pda_freelist, p, next);
486 }
487
488 static void
489 rf_FreePDAList(l_start, l_end, count)
490 RF_PhysDiskAddr_t *l_start, *l_end; /* pointers to start and end
491 * of list */
492 int count; /* number of elements in list */
493 {
494 RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count);
495 }
496
497 RF_AccessStripeMap_t *
498 rf_AllocAccessStripeMapComponent()
499 {
500 RF_AccessStripeMap_t *p;
501
502 RF_FREELIST_GET(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *));
503 bzero((char *) p, sizeof(RF_AccessStripeMap_t));
504
505 return (p);
506 }
507 /* this is essentially identical to AllocPDAList. I should combine the two.
508 * when we have to call calloc, we do it one component at a time to simplify
509 * the process of freeing the list at program shutdown. This should not be
510 * much of a performance hit, because it should be very infrequently executed.
511 */
512 RF_AccessStripeMap_t *
513 rf_AllocASMList(count)
514 int count;
515 {
516 RF_AccessStripeMap_t *p = NULL;
517
518 RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count);
519 return (p);
520 }
521
522 void
523 rf_FreeAccessStripeMapComponent(p)
524 RF_AccessStripeMap_t *p;
525 {
526 RF_FREELIST_FREE(rf_asm_freelist, p, next);
527 }
528
529 static void
530 rf_FreeASMList(l_start, l_end, count)
531 RF_AccessStripeMap_t *l_start, *l_end;
532 int count;
533 {
534 RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count);
535 }
536
537 void
538 rf_FreeAccessStripeMap(hdr)
539 RF_AccessStripeMapHeader_t *hdr;
540 {
541 RF_AccessStripeMap_t *p, *pt = NULL;
542 RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
543 int count = 0, t, asm_count = 0;
544
545 for (p = hdr->stripeMap; p; p = p->next) {
546
547 /* link the 3 pda lists into the accumulating pda list */
548
549 if (!pdaList)
550 pdaList = p->qInfo;
551 else
552 pdaEnd->next = p->qInfo;
553 for (trailer = NULL, pdp = p->qInfo; pdp;) {
554 trailer = pdp;
555 pdp = pdp->next;
556 count++;
557 }
558 if (trailer)
559 pdaEnd = trailer;
560
561 if (!pdaList)
562 pdaList = p->parityInfo;
563 else
564 pdaEnd->next = p->parityInfo;
565 for (trailer = NULL, pdp = p->parityInfo; pdp;) {
566 trailer = pdp;
567 pdp = pdp->next;
568 count++;
569 }
570 if (trailer)
571 pdaEnd = trailer;
572
573 if (!pdaList)
574 pdaList = p->physInfo;
575 else
576 pdaEnd->next = p->physInfo;
577 for (trailer = NULL, pdp = p->physInfo; pdp;) {
578 trailer = pdp;
579 pdp = pdp->next;
580 count++;
581 }
582 if (trailer)
583 pdaEnd = trailer;
584
585 pt = p;
586 asm_count++;
587 }
588
589 /* debug only */
590 for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
591 t++;
592 RF_ASSERT(t == count);
593
594 if (pdaList)
595 rf_FreePDAList(pdaList, pdaEnd, count);
596 rf_FreeASMList(hdr->stripeMap, pt, asm_count);
597 rf_FreeAccessStripeMapHeader(hdr);
598 }
599 /* We can't use the large write optimization if there are any failures in the stripe.
600 * In the declustered layout, there is no way to immediately determine what disks
601 * constitute a stripe, so we actually have to hunt through the stripe looking for failures.
602 * The reason we map the parity instead of just using asm->parityInfo->col is because
603 * the latter may have been already redirected to a spare drive, which would
604 * mess up the computation of the stripe offset.
605 *
606 * ASSUMES AT MOST ONE FAILURE IN THE STRIPE.
607 */
608 int
609 rf_CheckStripeForFailures(raidPtr, asmap)
610 RF_Raid_t *raidPtr;
611 RF_AccessStripeMap_t *asmap;
612 {
613 RF_RowCol_t trow, tcol, prow, pcol, *diskids, row, i;
614 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
615 RF_StripeCount_t stripeOffset;
616 int numFailures;
617 RF_RaidAddr_t sosAddr;
618 RF_SectorNum_t diskOffset, poffset;
619 RF_RowCol_t testrow;
620
621 /* quick out in the fault-free case. */
622 RF_LOCK_MUTEX(raidPtr->mutex);
623 numFailures = raidPtr->numFailures;
624 RF_UNLOCK_MUTEX(raidPtr->mutex);
625 if (numFailures == 0)
626 return (0);
627
628 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
629 row = asmap->physInfo->row;
630 (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow);
631 (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0); /* get pcol */
632
633 /* this need not be true if we've redirected the access to a spare in
634 * another row RF_ASSERT(row == testrow); */
635 stripeOffset = 0;
636 for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
637 if (diskids[i] != pcol) {
638 if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) {
639 if (raidPtr->status[testrow] != rf_rs_reconstructing)
640 return (1);
641 RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]);
642 layoutPtr->map->MapSector(raidPtr,
643 sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
644 &trow, &tcol, &diskOffset, 0);
645 RF_ASSERT((trow == testrow) && (tcol == diskids[i]));
646 if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset))
647 return (1);
648 asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
649 return (0);
650 }
651 stripeOffset++;
652 }
653 }
654 return (0);
655 }
656 /*
657 return the number of failed data units in the stripe.
658 */
659
660 int
661 rf_NumFailedDataUnitsInStripe(raidPtr, asmap)
662 RF_Raid_t *raidPtr;
663 RF_AccessStripeMap_t *asmap;
664 {
665 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
666 RF_RowCol_t trow, tcol, row, i;
667 RF_SectorNum_t diskOffset;
668 RF_RaidAddr_t sosAddr;
669 int numFailures;
670
671 /* quick out in the fault-free case. */
672 RF_LOCK_MUTEX(raidPtr->mutex);
673 numFailures = raidPtr->numFailures;
674 RF_UNLOCK_MUTEX(raidPtr->mutex);
675 if (numFailures == 0)
676 return (0);
677 numFailures = 0;
678
679 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
680 row = asmap->physInfo->row;
681 for (i = 0; i < layoutPtr->numDataCol; i++) {
682 (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
683 &trow, &tcol, &diskOffset, 0);
684 if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status))
685 numFailures++;
686 }
687
688 return numFailures;
689 }
690
691
692 /*****************************************************************************************
693 *
694 * debug routines
695 *
696 ****************************************************************************************/
697
698 void
699 rf_PrintAccessStripeMap(asm_h)
700 RF_AccessStripeMapHeader_t *asm_h;
701 {
702 rf_PrintFullAccessStripeMap(asm_h, 0);
703 }
704
705 void
706 rf_PrintFullAccessStripeMap(asm_h, prbuf)
707 RF_AccessStripeMapHeader_t *asm_h;
708 int prbuf; /* flag to print buffer pointers */
709 {
710 int i;
711 RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
712 RF_PhysDiskAddr_t *p;
713 printf("%d stripes total\n", (int) asm_h->numStripes);
714 for (; asmap; asmap = asmap->next) {
715 /* printf("Num failures: %d\n",asmap->numDataFailed); */
716 /* printf("Num sectors:
717 * %d\n",(int)asmap->totalSectorsAccessed); */
718 printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
719 (int) asmap->stripeID,
720 (int) asmap->totalSectorsAccessed,
721 (int) asmap->numDataFailed,
722 (int) asmap->numParityFailed);
723 if (asmap->parityInfo) {
724 printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col,
725 (int) asmap->parityInfo->startSector,
726 (int) (asmap->parityInfo->startSector +
727 asmap->parityInfo->numSector - 1));
728 if (prbuf)
729 printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
730 if (asmap->parityInfo->next) {
731 printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row,
732 asmap->parityInfo->next->col,
733 (int) asmap->parityInfo->next->startSector,
734 (int) (asmap->parityInfo->next->startSector +
735 asmap->parityInfo->next->numSector - 1));
736 if (prbuf)
737 printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
738 RF_ASSERT(asmap->parityInfo->next->next == NULL);
739 }
740 printf("]\n\t");
741 }
742 for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
743 printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector,
744 (int) (p->startSector + p->numSector - 1));
745 if (prbuf)
746 printf("b0x%lx ", (unsigned long) p->bufPtr);
747 if (i && !(i & 1))
748 printf("\n\t");
749 }
750 printf("\n");
751 p = asm_h->stripeMap->failedPDAs[0];
752 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
753 printf("[multiple failures]\n");
754 else
755 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
756 printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col,
757 (int) p->startSector, (int) (p->startSector + p->numSector - 1));
758 }
759 }
760
761 void
762 rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks)
763 RF_Raid_t *raidPtr;
764 RF_RaidAddr_t raidAddr;
765 RF_SectorCount_t numBlocks;
766 {
767 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
768 RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
769
770 printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
771 for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
772 printf("%d (0x%x), ", (int) ra, (int) ra);
773 }
774 printf("\n");
775 printf("Offset into stripe unit: %d (0x%x)\n",
776 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
777 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
778 }
779 /*
780 given a parity descriptor and the starting address within a stripe,
781 range restrict the parity descriptor to touch only the correct stuff.
782 */
783 void
784 rf_ASMParityAdjust(
785 RF_PhysDiskAddr_t * toAdjust,
786 RF_StripeNum_t startAddrWithinStripe,
787 RF_SectorNum_t endAddress,
788 RF_RaidLayout_t * layoutPtr,
789 RF_AccessStripeMap_t * asm_p)
790 {
791 RF_PhysDiskAddr_t *new_pda;
792
793 /* when we're accessing only a portion of one stripe unit, we want the
794 * parity descriptor to identify only the chunk of parity associated
795 * with the data. When the access spans exactly one stripe unit
796 * boundary and is less than a stripe unit in size, it uses two
797 * disjoint regions of the parity unit. When an access spans more
798 * than one stripe unit boundary, it uses all of the parity unit.
799 *
800 * To better handle the case where stripe units are small, we may
801 * eventually want to change the 2nd case so that if the SU size is
802 * below some threshold, we just read/write the whole thing instead of
803 * breaking it up into two accesses. */
804 if (asm_p->numStripeUnitsAccessed == 1) {
805 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
806 toAdjust->startSector += x;
807 toAdjust->raidAddress += x;
808 toAdjust->numSector = asm_p->physInfo->numSector;
809 RF_ASSERT(toAdjust->numSector != 0);
810 } else
811 if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
812 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
813
814 /* create a second pda and copy the parity map info
815 * into it */
816 RF_ASSERT(toAdjust->next == NULL);
817 new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
818 *new_pda = *toAdjust; /* structure assignment */
819 new_pda->next = NULL;
820
821 /* adjust the start sector & number of blocks for the
822 * first parity pda */
823 toAdjust->startSector += x;
824 toAdjust->raidAddress += x;
825 toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
826 RF_ASSERT(toAdjust->numSector != 0);
827
828 /* adjust the second pda */
829 new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
830 /* new_pda->raidAddress =
831 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
832 * toAdjust->raidAddress); */
833 RF_ASSERT(new_pda->numSector != 0);
834 }
835 }
836 /*
837 Check if a disk has been spared or failed. If spared,
838 redirect the I/O.
839 If it has been failed, record it in the asm pointer.
840 Fourth arg is whether data or parity.
841 */
842 void
843 rf_ASMCheckStatus(
844 RF_Raid_t * raidPtr,
845 RF_PhysDiskAddr_t * pda_p,
846 RF_AccessStripeMap_t * asm_p,
847 RF_RaidDisk_t ** disks,
848 int parity)
849 {
850 RF_DiskStatus_t dstatus;
851 RF_RowCol_t frow, fcol;
852
853 dstatus = disks[pda_p->row][pda_p->col].status;
854
855 if (dstatus == rf_ds_spared) {
856 /* if the disk has been spared, redirect access to the spare */
857 frow = pda_p->row;
858 fcol = pda_p->col;
859 pda_p->row = disks[frow][fcol].spareRow;
860 pda_p->col = disks[frow][fcol].spareCol;
861 } else
862 if (dstatus == rf_ds_dist_spared) {
863 /* ditto if disk has been spared to dist spare space */
864 RF_RowCol_t or = pda_p->row, oc = pda_p->col;
865 RF_SectorNum_t oo = pda_p->startSector;
866
867 if (pda_p->type == RF_PDA_TYPE_DATA)
868 raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
869 else
870 raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
871
872 if (rf_mapDebug) {
873 printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo,
874 pda_p->row, pda_p->col, (int) pda_p->startSector);
875 }
876 } else
877 if (RF_DEAD_DISK(dstatus)) {
878 /* if the disk is inaccessible, mark the
879 * failure */
880 if (parity)
881 asm_p->numParityFailed++;
882 else {
883 asm_p->numDataFailed++;
884 #if 0
885 /* XXX Do we really want this spewing
886 * out on the console? GO */
887 printf("DATA_FAILED!\n");
888 #endif
889 }
890 asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
891 asm_p->numFailedPDAs++;
892 #if 0
893 switch (asm_p->numParityFailed + asm_p->numDataFailed) {
894 case 1:
895 asm_p->failedPDAs[0] = pda_p;
896 break;
897 case 2:
898 asm_p->failedPDAs[1] = pda_p;
899 default:
900 break;
901 }
902 #endif
903 }
904 /* the redirected access should never span a stripe unit boundary */
905 RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
906 rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
907 RF_ASSERT(pda_p->col != -1);
908 }
909