rf_map.c revision 1.31 1 /* $NetBSD: rf_map.c,v 1.31 2004/03/07 02:59:25 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /**************************************************************************
30 *
31 * map.c -- main code for mapping RAID addresses to physical disk addresses
32 *
33 **************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.31 2004/03/07 02:59:25 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_threadstuff.h"
41 #include "rf_raid.h"
42 #include "rf_general.h"
43 #include "rf_map.h"
44 #include "rf_shutdown.h"
45
46 static void rf_FreePDAList(RF_PhysDiskAddr_t *pda_list);
47 static void rf_FreeASMList(RF_AccessStripeMap_t *asm_list);
48
49 /***************************************************************************
50 *
51 * MapAccess -- main 1st order mapping routine. Maps an access in the
52 * RAID address space to the corresponding set of physical disk
53 * addresses. The result is returned as a list of AccessStripeMap
54 * structures, one per stripe accessed. Each ASM structure contains a
55 * pointer to a list of PhysDiskAddr structures, which describe the
56 * physical locations touched by the user access. Note that this
57 * routine returns only static mapping information, i.e. the list of
58 * physical addresses returned does not necessarily identify the set
59 * of physical locations that will actually be read or written. The
60 * routine also maps the parity. The physical disk location returned
61 * always indicates the entire parity unit, even when only a subset of
62 * it is being accessed. This is because an access that is not stripe
63 * unit aligned but that spans a stripe unit boundary may require
64 * access two distinct portions of the parity unit, and we can't yet
65 * tell which portion(s) we'll actually need. We leave it up to the
66 * algorithm selection code to decide what subset of the parity unit
67 * to access. Note that addresses in the RAID address space must
68 * always be maintained as longs, instead of ints.
69 *
70 * This routine returns NULL if numBlocks is 0
71 *
72 * raidAddress - starting address in RAID address space
73 * numBlocks - number of blocks in RAID address space to access
74 * buffer - buffer to supply/recieve data
75 * remap - 1 => remap address to spare space
76 ***************************************************************************/
77
78 RF_AccessStripeMapHeader_t *
79 rf_MapAccess(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddress,
80 RF_SectorCount_t numBlocks, caddr_t buffer, int remap)
81 {
82 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
83 RF_AccessStripeMapHeader_t *asm_hdr = NULL;
84 RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
85 int faultsTolerated = layoutPtr->map->faultsTolerated;
86 /* we'll change raidAddress along the way */
87 RF_RaidAddr_t startAddress = raidAddress;
88 RF_RaidAddr_t endAddress = raidAddress + numBlocks;
89 RF_RaidDisk_t *disks = raidPtr->Disks;
90 RF_PhysDiskAddr_t *pda_p;
91 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
92 RF_PhysDiskAddr_t *pda_q;
93 #endif
94 RF_StripeCount_t numStripes = 0;
95 RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress,
96 nextStripeUnitAddress;
97 RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
98 RF_StripeCount_t totStripes;
99 RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
100 RF_AccessStripeMap_t *asmList, *t_asm;
101 RF_PhysDiskAddr_t *pdaList, *t_pda;
102
103 /* allocate all the ASMs and PDAs up front */
104 lastRaidAddr = raidAddress + numBlocks - 1;
105 stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
106 lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
107 totStripes = lastSID - stripeID + 1;
108 SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
109 lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
110
111 asmList = rf_AllocASMList(totStripes);
112
113 /* may also need pda(s) per stripe for parity */
114 pdaList = rf_AllocPDAList(lastSUID - SUID + 1 +
115 faultsTolerated * totStripes);
116
117
118 if (raidAddress + numBlocks > raidPtr->totalSectors) {
119 RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
120 (int) raidAddress);
121 return (NULL);
122 }
123 #if RF_DEBUG_MAP
124 if (rf_mapDebug)
125 rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
126 #endif
127 for (; raidAddress < endAddress;) {
128 /* make the next stripe structure */
129 RF_ASSERT(asmList);
130 t_asm = asmList;
131 asmList = asmList->next;
132 memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
133 if (!asm_p)
134 asm_list = asm_p = t_asm;
135 else {
136 asm_p->next = t_asm;
137 asm_p = asm_p->next;
138 }
139 numStripes++;
140
141 /* map SUs from current location to the end of the stripe */
142 asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
143 raidAddress) */ stripeID++;
144 stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
145 stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
146 asm_p->raidAddress = raidAddress;
147 asm_p->endRaidAddress = stripeEndAddress;
148
149 /* map each stripe unit in the stripe */
150 pda_p = NULL;
151
152 /* Raid addr of start of portion of access that is
153 within this stripe */
154 startAddrWithinStripe = raidAddress;
155
156 for (; raidAddress < stripeEndAddress;) {
157 RF_ASSERT(pdaList);
158 t_pda = pdaList;
159 pdaList = pdaList->next;
160 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
161 if (!pda_p)
162 asm_p->physInfo = pda_p = t_pda;
163 else {
164 pda_p->next = t_pda;
165 pda_p = pda_p->next;
166 }
167
168 pda_p->type = RF_PDA_TYPE_DATA;
169 (layoutPtr->map->MapSector) (raidPtr, raidAddress,
170 &(pda_p->col),
171 &(pda_p->startSector),
172 remap);
173
174 /* mark any failures we find. failedPDA is
175 * don't-care if there is more than one
176 * failure */
177
178 /* the RAID address corresponding to this
179 physical diskaddress */
180 pda_p->raidAddress = raidAddress;
181 nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
182 pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
183 RF_ASSERT(pda_p->numSector != 0);
184 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
185 pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
186 asm_p->totalSectorsAccessed += pda_p->numSector;
187 asm_p->numStripeUnitsAccessed++;
188
189 raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
190 }
191
192 /* Map the parity. At this stage, the startSector and
193 * numSector fields for the parity unit are always set
194 * to indicate the entire parity unit. We may modify
195 * this after mapping the data portion. */
196 switch (faultsTolerated) {
197 case 0:
198 break;
199 case 1: /* single fault tolerant */
200 RF_ASSERT(pdaList);
201 t_pda = pdaList;
202 pdaList = pdaList->next;
203 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
204 pda_p = asm_p->parityInfo = t_pda;
205 pda_p->type = RF_PDA_TYPE_PARITY;
206 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
207 &(pda_p->col), &(pda_p->startSector), remap);
208 pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
209 /* raidAddr may be needed to find unit to redirect to */
210 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
211 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
212 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
213
214 break;
215 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
216 case 2: /* two fault tolerant */
217 RF_ASSERT(pdaList && pdaList->next);
218 t_pda = pdaList;
219 pdaList = pdaList->next;
220 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
221 pda_p = asm_p->parityInfo = t_pda;
222 pda_p->type = RF_PDA_TYPE_PARITY;
223 t_pda = pdaList;
224 pdaList = pdaList->next;
225 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
226 pda_q = asm_p->qInfo = t_pda;
227 pda_q->type = RF_PDA_TYPE_Q;
228 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
229 &(pda_p->col), &(pda_p->startSector), remap);
230 (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
231 &(pda_q->col), &(pda_q->startSector), remap);
232 pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
233 /* raidAddr may be needed to find unit to redirect to */
234 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
235 pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
236 /* failure mode stuff */
237 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
238 rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
239 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
240 rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
241 break;
242 #endif
243 }
244 }
245 RF_ASSERT(asmList == NULL && pdaList == NULL);
246 /* make the header structure */
247 asm_hdr = rf_AllocAccessStripeMapHeader();
248 RF_ASSERT(numStripes == totStripes);
249 asm_hdr->numStripes = numStripes;
250 asm_hdr->stripeMap = asm_list;
251
252 #if RF_DEBUG_MAP
253 if (rf_mapDebug)
254 rf_PrintAccessStripeMap(asm_hdr);
255 #endif
256 return (asm_hdr);
257 }
258
259 /***************************************************************************
260 * This routine walks through an ASM list and marks the PDAs that have
261 * failed. It's called only when a disk failure causes an in-flight
262 * DAG to fail. The parity may consist of two components, but we want
263 * to use only one failedPDA pointer. Thus we set failedPDA to point
264 * to the first parity component, and rely on the rest of the code to
265 * do the right thing with this.
266 ***************************************************************************/
267
268 void
269 rf_MarkFailuresInASMList(RF_Raid_t *raidPtr,
270 RF_AccessStripeMapHeader_t *asm_h)
271 {
272 RF_RaidDisk_t *disks = raidPtr->Disks;
273 RF_AccessStripeMap_t *asmap;
274 RF_PhysDiskAddr_t *pda;
275
276 for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
277 asmap->numDataFailed = 0;
278 asmap->numParityFailed = 0;
279 asmap->numQFailed = 0;
280 asmap->numFailedPDAs = 0;
281 memset((char *) asmap->failedPDAs, 0,
282 RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
283 for (pda = asmap->physInfo; pda; pda = pda->next) {
284 if (RF_DEAD_DISK(disks[pda->col].status)) {
285 asmap->numDataFailed++;
286 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
287 asmap->numFailedPDAs++;
288 }
289 }
290 pda = asmap->parityInfo;
291 if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
292 asmap->numParityFailed++;
293 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
294 asmap->numFailedPDAs++;
295 }
296 pda = asmap->qInfo;
297 if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
298 asmap->numQFailed++;
299 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
300 asmap->numFailedPDAs++;
301 }
302 }
303 }
304
305 /***************************************************************************
306 *
307 * routines to allocate and free list elements. All allocation
308 * routines zero the structure before returning it.
309 *
310 * FreePhysDiskAddr is static. It should never be called directly,
311 * because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
312 * list.
313 *
314 ***************************************************************************/
315
316 static struct pool rf_asmhdr_pool;
317 #define RF_MAX_FREE_ASMHDR 128
318 #define RF_MIN_FREE_ASMHDR 32
319
320 static struct pool rf_asm_pool;
321 #define RF_MAX_FREE_ASM 192
322 #define RF_MIN_FREE_ASM 64
323
324 static struct pool rf_pda_pool; /* may need to be visible for
325 rf_dagdegrd.c and rf_dagdegwr.c,
326 if they can be convinced to free
327 the space easily */
328 #define RF_MAX_FREE_PDA 192
329 #define RF_MIN_FREE_PDA 64
330
331 /* called at shutdown time. So far, all that is necessary is to
332 release all the free lists */
333 static void rf_ShutdownMapModule(void *);
334 static void
335 rf_ShutdownMapModule(void *ignored)
336 {
337 pool_destroy(&rf_asmhdr_pool);
338 pool_destroy(&rf_asm_pool);
339 pool_destroy(&rf_pda_pool);
340 }
341
342 int
343 rf_ConfigureMapModule(RF_ShutdownList_t **listp)
344 {
345
346 pool_init(&rf_asmhdr_pool, sizeof(RF_AccessStripeMapHeader_t),
347 0, 0, 0, "rf_asmhdr_pl", NULL);
348 pool_sethiwat(&rf_asmhdr_pool, RF_MAX_FREE_ASMHDR);
349 pool_prime(&rf_asmhdr_pool, RF_MIN_FREE_ASMHDR);
350 pool_setlowat(&rf_asmhdr_pool, RF_MIN_FREE_ASMHDR);
351
352 pool_init(&rf_asm_pool, sizeof(RF_AccessStripeMap_t),
353 0, 0, 0, "rf_asm_pl", NULL);
354 pool_sethiwat(&rf_asm_pool, RF_MAX_FREE_ASM);
355 pool_prime(&rf_asm_pool, RF_MIN_FREE_ASM);
356 pool_setlowat(&rf_asm_pool, RF_MIN_FREE_ASM);
357
358 pool_init(&rf_pda_pool, sizeof(RF_PhysDiskAddr_t),
359 0, 0, 0, "rf_pda_pl", NULL);
360 pool_sethiwat(&rf_pda_pool, RF_MAX_FREE_PDA);
361 pool_prime(&rf_pda_pool, RF_MIN_FREE_PDA);
362 pool_setlowat(&rf_pda_pool, RF_MIN_FREE_PDA);
363
364 rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
365
366 return (0);
367 }
368
369 RF_AccessStripeMapHeader_t *
370 rf_AllocAccessStripeMapHeader()
371 {
372 RF_AccessStripeMapHeader_t *p;
373
374 p = pool_get(&rf_asmhdr_pool, PR_WAITOK);
375 memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
376
377 return (p);
378 }
379
380 void
381 rf_FreeAccessStripeMapHeader(RF_AccessStripeMapHeader_t *p)
382 {
383 pool_put(&rf_asmhdr_pool, p);
384 }
385
386 RF_PhysDiskAddr_t *
387 rf_AllocPhysDiskAddr()
388 {
389 RF_PhysDiskAddr_t *p;
390
391 p = pool_get(&rf_pda_pool, PR_WAITOK);
392 memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
393
394 return (p);
395 }
396 /* allocates a list of PDAs, locking the free list only once when we
397 * have to call calloc, we do it one component at a time to simplify
398 * the process of freeing the list at program shutdown. This should
399 * not be much of a performance hit, because it should be very
400 * infrequently executed. */
401 RF_PhysDiskAddr_t *
402 rf_AllocPDAList(int count)
403 {
404 RF_PhysDiskAddr_t *p, *prev;
405 int i;
406
407 p = NULL;
408 prev = NULL;
409 for (i = 0; i < count; i++) {
410 p = pool_get(&rf_pda_pool, PR_WAITOK);
411 p->next = prev;
412 prev = p;
413 }
414
415 return (p);
416 }
417
418 #if RF_INCLUDE_PARITYLOGGING > 0
419 void
420 rf_FreePhysDiskAddr(RF_PhysDiskAddr_t *p)
421 {
422 pool_put(&rf_pda_pool, p);
423 }
424 #endif
425
426 static void
427 rf_FreePDAList(RF_PhysDiskAddr_t *pda_list)
428 {
429 RF_PhysDiskAddr_t *p, *tmp;
430
431 p=pda_list;
432 while (p) {
433 tmp = p->next;
434 pool_put(&rf_pda_pool, p);
435 p = tmp;
436 }
437 }
438
439 /* this is essentially identical to AllocPDAList. I should combine
440 * the two. when we have to call calloc, we do it one component at a
441 * time to simplify the process of freeing the list at program
442 * shutdown. This should not be much of a performance hit, because it
443 * should be very infrequently executed. */
444 RF_AccessStripeMap_t *
445 rf_AllocASMList(int count)
446 {
447 RF_AccessStripeMap_t *p, *prev;
448 int i;
449
450 p = NULL;
451 prev = NULL;
452 for (i = 0; i < count; i++) {
453 p = pool_get(&rf_asm_pool, PR_WAITOK);
454 p->next = prev;
455 prev = p;
456 }
457 return (p);
458 }
459
460 static void
461 rf_FreeASMList(RF_AccessStripeMap_t *asm_list)
462 {
463 RF_AccessStripeMap_t *p, *tmp;
464
465 p=asm_list;
466 while (p) {
467 tmp = p->next;
468 pool_put(&rf_asm_pool, p);
469 p = tmp;
470 }
471 }
472
473 void
474 rf_FreeAccessStripeMap(RF_AccessStripeMapHeader_t *hdr)
475 {
476 RF_AccessStripeMap_t *p;
477 RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
478 int count = 0, t, asm_count = 0;
479
480 for (p = hdr->stripeMap; p; p = p->next) {
481
482 /* link the 3 pda lists into the accumulating pda list */
483
484 if (!pdaList)
485 pdaList = p->qInfo;
486 else
487 pdaEnd->next = p->qInfo;
488 for (trailer = NULL, pdp = p->qInfo; pdp;) {
489 trailer = pdp;
490 pdp = pdp->next;
491 count++;
492 }
493 if (trailer)
494 pdaEnd = trailer;
495
496 if (!pdaList)
497 pdaList = p->parityInfo;
498 else
499 pdaEnd->next = p->parityInfo;
500 for (trailer = NULL, pdp = p->parityInfo; pdp;) {
501 trailer = pdp;
502 pdp = pdp->next;
503 count++;
504 }
505 if (trailer)
506 pdaEnd = trailer;
507
508 if (!pdaList)
509 pdaList = p->physInfo;
510 else
511 pdaEnd->next = p->physInfo;
512 for (trailer = NULL, pdp = p->physInfo; pdp;) {
513 trailer = pdp;
514 pdp = pdp->next;
515 count++;
516 }
517 if (trailer)
518 pdaEnd = trailer;
519
520 asm_count++;
521 }
522
523 /* debug only */
524 for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
525 t++;
526 RF_ASSERT(t == count);
527
528 if (pdaList)
529 rf_FreePDAList(pdaList);
530 rf_FreeASMList(hdr->stripeMap);
531 rf_FreeAccessStripeMapHeader(hdr);
532 }
533 /* We can't use the large write optimization if there are any failures
534 * in the stripe. In the declustered layout, there is no way to
535 * immediately determine what disks constitute a stripe, so we
536 * actually have to hunt through the stripe looking for failures. The
537 * reason we map the parity instead of just using asm->parityInfo->col
538 * is because the latter may have been already redirected to a spare
539 * drive, which would mess up the computation of the stripe offset.
540 *
541 * ASSUMES AT MOST ONE FAILURE IN THE STRIPE. */
542 int
543 rf_CheckStripeForFailures(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
544 {
545 RF_RowCol_t tcol, pcol, *diskids, i;
546 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
547 RF_StripeCount_t stripeOffset;
548 int numFailures;
549 RF_RaidAddr_t sosAddr;
550 RF_SectorNum_t diskOffset, poffset;
551
552 /* quick out in the fault-free case. */
553 RF_LOCK_MUTEX(raidPtr->mutex);
554 numFailures = raidPtr->numFailures;
555 RF_UNLOCK_MUTEX(raidPtr->mutex);
556 if (numFailures == 0)
557 return (0);
558
559 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
560 asmap->raidAddress);
561 (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress,
562 &diskids);
563 (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress,
564 &pcol, &poffset, 0); /* get pcol */
565
566 /* this need not be true if we've redirected the access to a
567 * spare in another row RF_ASSERT(row == testrow); */
568 stripeOffset = 0;
569 for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
570 if (diskids[i] != pcol) {
571 if (RF_DEAD_DISK(raidPtr->Disks[diskids[i]].status)) {
572 if (raidPtr->status != rf_rs_reconstructing)
573 return (1);
574 RF_ASSERT(raidPtr->reconControl->fcol == diskids[i]);
575 layoutPtr->map->MapSector(raidPtr,
576 sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
577 &tcol, &diskOffset, 0);
578 RF_ASSERT(tcol == diskids[i]);
579 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, diskOffset))
580 return (1);
581 asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
582 return (0);
583 }
584 stripeOffset++;
585 }
586 }
587 return (0);
588 }
589 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
590 /*
591 return the number of failed data units in the stripe.
592 */
593
594 int
595 rf_NumFailedDataUnitsInStripe(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
596 {
597 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
598 RF_RowCol_t tcol, i;
599 RF_SectorNum_t diskOffset;
600 RF_RaidAddr_t sosAddr;
601 int numFailures;
602
603 /* quick out in the fault-free case. */
604 RF_LOCK_MUTEX(raidPtr->mutex);
605 numFailures = raidPtr->numFailures;
606 RF_UNLOCK_MUTEX(raidPtr->mutex);
607 if (numFailures == 0)
608 return (0);
609 numFailures = 0;
610
611 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
612 asmap->raidAddress);
613 for (i = 0; i < layoutPtr->numDataCol; i++) {
614 (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
615 &trow, &tcol, &diskOffset, 0);
616 if (RF_DEAD_DISK(raidPtr->Disks[tcol].status))
617 numFailures++;
618 }
619
620 return numFailures;
621 }
622 #endif
623
624 /****************************************************************************
625 *
626 * debug routines
627 *
628 ***************************************************************************/
629 #if RF_DEBUG_MAP
630 void
631 rf_PrintAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h)
632 {
633 rf_PrintFullAccessStripeMap(asm_h, 0);
634 }
635 #endif
636
637 /* prbuf - flag to print buffer pointers */
638 void
639 rf_PrintFullAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h, int prbuf)
640 {
641 int i;
642 RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
643 RF_PhysDiskAddr_t *p;
644 printf("%d stripes total\n", (int) asm_h->numStripes);
645 for (; asmap; asmap = asmap->next) {
646 /* printf("Num failures: %d\n",asmap->numDataFailed); */
647 /* printf("Num sectors:
648 * %d\n",(int)asmap->totalSectorsAccessed); */
649 printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
650 (int) asmap->stripeID,
651 (int) asmap->totalSectorsAccessed,
652 (int) asmap->numDataFailed,
653 (int) asmap->numParityFailed);
654 if (asmap->parityInfo) {
655 printf("Parity [c%d s%d-%d", asmap->parityInfo->col,
656 (int) asmap->parityInfo->startSector,
657 (int) (asmap->parityInfo->startSector +
658 asmap->parityInfo->numSector - 1));
659 if (prbuf)
660 printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
661 if (asmap->parityInfo->next) {
662 printf(", c%d s%d-%d", asmap->parityInfo->next->col,
663 (int) asmap->parityInfo->next->startSector,
664 (int) (asmap->parityInfo->next->startSector +
665 asmap->parityInfo->next->numSector - 1));
666 if (prbuf)
667 printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
668 RF_ASSERT(asmap->parityInfo->next->next == NULL);
669 }
670 printf("]\n\t");
671 }
672 for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
673 printf("SU c%d s%d-%d ", p->col, (int) p->startSector,
674 (int) (p->startSector + p->numSector - 1));
675 if (prbuf)
676 printf("b0x%lx ", (unsigned long) p->bufPtr);
677 if (i && !(i & 1))
678 printf("\n\t");
679 }
680 printf("\n");
681 p = asm_h->stripeMap->failedPDAs[0];
682 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
683 printf("[multiple failures]\n");
684 else
685 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
686 printf("\t[Failed PDA: c%d s%d-%d]\n", p->col,
687 (int) p->startSector, (int) (p->startSector + p->numSector - 1));
688 }
689 }
690
691 #if RF_MAP_DEBUG
692 void
693 rf_PrintRaidAddressInfo(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
694 RF_SectorCount_t numBlocks)
695 {
696 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
697 RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
698
699 printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
700 for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
701 printf("%d (0x%x), ", (int) ra, (int) ra);
702 }
703 printf("\n");
704 printf("Offset into stripe unit: %d (0x%x)\n",
705 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
706 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
707 }
708 #endif
709 /* given a parity descriptor and the starting address within a stripe,
710 * range restrict the parity descriptor to touch only the correct
711 * stuff. */
712 void
713 rf_ASMParityAdjust(RF_PhysDiskAddr_t *toAdjust,
714 RF_StripeNum_t startAddrWithinStripe,
715 RF_SectorNum_t endAddress,
716 RF_RaidLayout_t *layoutPtr,
717 RF_AccessStripeMap_t *asm_p)
718 {
719 RF_PhysDiskAddr_t *new_pda;
720
721 /* when we're accessing only a portion of one stripe unit, we
722 * want the parity descriptor to identify only the chunk of
723 * parity associated with the data. When the access spans
724 * exactly one stripe unit boundary and is less than a stripe
725 * unit in size, it uses two disjoint regions of the parity
726 * unit. When an access spans more than one stripe unit
727 * boundary, it uses all of the parity unit.
728 *
729 * To better handle the case where stripe units are small, we
730 * may eventually want to change the 2nd case so that if the
731 * SU size is below some threshold, we just read/write the
732 * whole thing instead of breaking it up into two accesses. */
733 if (asm_p->numStripeUnitsAccessed == 1) {
734 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
735 toAdjust->startSector += x;
736 toAdjust->raidAddress += x;
737 toAdjust->numSector = asm_p->physInfo->numSector;
738 RF_ASSERT(toAdjust->numSector != 0);
739 } else
740 if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
741 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
742
743 /* create a second pda and copy the parity map info
744 * into it */
745 RF_ASSERT(toAdjust->next == NULL);
746 new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
747 *new_pda = *toAdjust; /* structure assignment */
748 new_pda->next = NULL;
749
750 /* adjust the start sector & number of blocks for the
751 * first parity pda */
752 toAdjust->startSector += x;
753 toAdjust->raidAddress += x;
754 toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
755 RF_ASSERT(toAdjust->numSector != 0);
756
757 /* adjust the second pda */
758 new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
759 /* new_pda->raidAddress =
760 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
761 * toAdjust->raidAddress); */
762 RF_ASSERT(new_pda->numSector != 0);
763 }
764 }
765
766 /* Check if a disk has been spared or failed. If spared, redirect the
767 * I/O. If it has been failed, record it in the asm pointer. Fourth
768 * arg is whether data or parity. */
769 void
770 rf_ASMCheckStatus(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda_p,
771 RF_AccessStripeMap_t *asm_p, RF_RaidDisk_t *disks,
772 int parity)
773 {
774 RF_DiskStatus_t dstatus;
775 RF_RowCol_t fcol;
776
777 dstatus = disks[pda_p->col].status;
778
779 if (dstatus == rf_ds_spared) {
780 /* if the disk has been spared, redirect access to the spare */
781 fcol = pda_p->col;
782 pda_p->col = disks[fcol].spareCol;
783 } else
784 if (dstatus == rf_ds_dist_spared) {
785 /* ditto if disk has been spared to dist spare space */
786 #if RF_DEBUG_MAP
787 RF_RowCol_t oc = pda_p->col;
788 RF_SectorNum_t oo = pda_p->startSector;
789 #endif
790 if (pda_p->type == RF_PDA_TYPE_DATA)
791 raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
792 else
793 raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
794
795 #if RF_DEBUG_MAP
796 if (rf_mapDebug) {
797 printf("Redirected c %d o %d -> c %d o %d\n", oc, (int) oo,
798 pda_p->col, (int) pda_p->startSector);
799 }
800 #endif
801 } else
802 if (RF_DEAD_DISK(dstatus)) {
803 /* if the disk is inaccessible, mark the
804 * failure */
805 if (parity)
806 asm_p->numParityFailed++;
807 else {
808 asm_p->numDataFailed++;
809 }
810 asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
811 asm_p->numFailedPDAs++;
812 #if 0
813 switch (asm_p->numParityFailed + asm_p->numDataFailed) {
814 case 1:
815 asm_p->failedPDAs[0] = pda_p;
816 break;
817 case 2:
818 asm_p->failedPDAs[1] = pda_p;
819 default:
820 break;
821 }
822 #endif
823 }
824 /* the redirected access should never span a stripe unit boundary */
825 RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
826 rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
827 RF_ASSERT(pda_p->col != -1);
828 }
829