Home | History | Annotate | Line # | Download | only in raidframe
rf_map.c revision 1.31
      1 /*	$NetBSD: rf_map.c,v 1.31 2004/03/07 02:59:25 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /**************************************************************************
     30  *
     31  * map.c -- main code for mapping RAID addresses to physical disk addresses
     32  *
     33  **************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.31 2004/03/07 02:59:25 oster Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_threadstuff.h"
     41 #include "rf_raid.h"
     42 #include "rf_general.h"
     43 #include "rf_map.h"
     44 #include "rf_shutdown.h"
     45 
     46 static void rf_FreePDAList(RF_PhysDiskAddr_t *pda_list);
     47 static void rf_FreeASMList(RF_AccessStripeMap_t *asm_list);
     48 
     49 /***************************************************************************
     50  *
     51  * MapAccess -- main 1st order mapping routine.  Maps an access in the
     52  * RAID address space to the corresponding set of physical disk
     53  * addresses.  The result is returned as a list of AccessStripeMap
     54  * structures, one per stripe accessed.  Each ASM structure contains a
     55  * pointer to a list of PhysDiskAddr structures, which describe the
     56  * physical locations touched by the user access.  Note that this
     57  * routine returns only static mapping information, i.e. the list of
     58  * physical addresses returned does not necessarily identify the set
     59  * of physical locations that will actually be read or written.  The
     60  * routine also maps the parity.  The physical disk location returned
     61  * always indicates the entire parity unit, even when only a subset of
     62  * it is being accessed.  This is because an access that is not stripe
     63  * unit aligned but that spans a stripe unit boundary may require
     64  * access two distinct portions of the parity unit, and we can't yet
     65  * tell which portion(s) we'll actually need.  We leave it up to the
     66  * algorithm selection code to decide what subset of the parity unit
     67  * to access.  Note that addresses in the RAID address space must
     68  * always be maintained as longs, instead of ints.
     69  *
     70  * This routine returns NULL if numBlocks is 0
     71  *
     72  * raidAddress - starting address in RAID address space
     73  * numBlocks   - number of blocks in RAID address space to access
     74  * buffer      - buffer to supply/recieve data
     75  * remap       - 1 => remap address to spare space
     76  ***************************************************************************/
     77 
     78 RF_AccessStripeMapHeader_t *
     79 rf_MapAccess(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddress,
     80 	     RF_SectorCount_t numBlocks, caddr_t buffer, int remap)
     81 {
     82 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
     83 	RF_AccessStripeMapHeader_t *asm_hdr = NULL;
     84 	RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
     85 	int     faultsTolerated = layoutPtr->map->faultsTolerated;
     86 	/* we'll change raidAddress along the way */
     87 	RF_RaidAddr_t startAddress = raidAddress;
     88 	RF_RaidAddr_t endAddress = raidAddress + numBlocks;
     89 	RF_RaidDisk_t *disks = raidPtr->Disks;
     90 	RF_PhysDiskAddr_t *pda_p;
     91 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
     92 	RF_PhysDiskAddr_t *pda_q;
     93 #endif
     94 	RF_StripeCount_t numStripes = 0;
     95 	RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress,
     96 		nextStripeUnitAddress;
     97 	RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
     98 	RF_StripeCount_t totStripes;
     99 	RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
    100 	RF_AccessStripeMap_t *asmList, *t_asm;
    101 	RF_PhysDiskAddr_t *pdaList, *t_pda;
    102 
    103 	/* allocate all the ASMs and PDAs up front */
    104 	lastRaidAddr = raidAddress + numBlocks - 1;
    105 	stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
    106 	lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
    107 	totStripes = lastSID - stripeID + 1;
    108 	SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
    109 	lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
    110 
    111 	asmList = rf_AllocASMList(totStripes);
    112 
    113 	/* may also need pda(s) per stripe for parity */
    114 	pdaList = rf_AllocPDAList(lastSUID - SUID + 1 +
    115 				  faultsTolerated * totStripes);
    116 
    117 
    118 	if (raidAddress + numBlocks > raidPtr->totalSectors) {
    119 		RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
    120 		    (int) raidAddress);
    121 		return (NULL);
    122 	}
    123 #if RF_DEBUG_MAP
    124 	if (rf_mapDebug)
    125 		rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
    126 #endif
    127 	for (; raidAddress < endAddress;) {
    128 		/* make the next stripe structure */
    129 		RF_ASSERT(asmList);
    130 		t_asm = asmList;
    131 		asmList = asmList->next;
    132 		memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
    133 		if (!asm_p)
    134 			asm_list = asm_p = t_asm;
    135 		else {
    136 			asm_p->next = t_asm;
    137 			asm_p = asm_p->next;
    138 		}
    139 		numStripes++;
    140 
    141 		/* map SUs from current location to the end of the stripe */
    142 		asm_p->stripeID =	/* rf_RaidAddressToStripeID(layoutPtr,
    143 		        raidAddress) */ stripeID++;
    144 		stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
    145 		stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
    146 		asm_p->raidAddress = raidAddress;
    147 		asm_p->endRaidAddress = stripeEndAddress;
    148 
    149 		/* map each stripe unit in the stripe */
    150 		pda_p = NULL;
    151 
    152 		/* Raid addr of start of portion of access that is
    153                    within this stripe */
    154 		startAddrWithinStripe = raidAddress;
    155 
    156 		for (; raidAddress < stripeEndAddress;) {
    157 			RF_ASSERT(pdaList);
    158 			t_pda = pdaList;
    159 			pdaList = pdaList->next;
    160 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    161 			if (!pda_p)
    162 				asm_p->physInfo = pda_p = t_pda;
    163 			else {
    164 				pda_p->next = t_pda;
    165 				pda_p = pda_p->next;
    166 			}
    167 
    168 			pda_p->type = RF_PDA_TYPE_DATA;
    169 			(layoutPtr->map->MapSector) (raidPtr, raidAddress,
    170 						     &(pda_p->col),
    171 						     &(pda_p->startSector),
    172 						     remap);
    173 
    174 			/* mark any failures we find.  failedPDA is
    175 			 * don't-care if there is more than one
    176 			 * failure */
    177 
    178 			/* the RAID address corresponding to this
    179                            physical diskaddress */
    180 			pda_p->raidAddress = raidAddress;
    181 			nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
    182 			pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
    183 			RF_ASSERT(pda_p->numSector != 0);
    184 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
    185 			pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
    186 			asm_p->totalSectorsAccessed += pda_p->numSector;
    187 			asm_p->numStripeUnitsAccessed++;
    188 
    189 			raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
    190 		}
    191 
    192 		/* Map the parity. At this stage, the startSector and
    193 		 * numSector fields for the parity unit are always set
    194 		 * to indicate the entire parity unit. We may modify
    195 		 * this after mapping the data portion. */
    196 		switch (faultsTolerated) {
    197 		case 0:
    198 			break;
    199 		case 1:	/* single fault tolerant */
    200 			RF_ASSERT(pdaList);
    201 			t_pda = pdaList;
    202 			pdaList = pdaList->next;
    203 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    204 			pda_p = asm_p->parityInfo = t_pda;
    205 			pda_p->type = RF_PDA_TYPE_PARITY;
    206 			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    207 			    &(pda_p->col), &(pda_p->startSector), remap);
    208 			pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
    209 			/* raidAddr may be needed to find unit to redirect to */
    210 			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    211 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
    212 			rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    213 
    214 			break;
    215 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    216 		case 2:	/* two fault tolerant */
    217 			RF_ASSERT(pdaList && pdaList->next);
    218 			t_pda = pdaList;
    219 			pdaList = pdaList->next;
    220 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    221 			pda_p = asm_p->parityInfo = t_pda;
    222 			pda_p->type = RF_PDA_TYPE_PARITY;
    223 			t_pda = pdaList;
    224 			pdaList = pdaList->next;
    225 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    226 			pda_q = asm_p->qInfo = t_pda;
    227 			pda_q->type = RF_PDA_TYPE_Q;
    228 			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    229 			    &(pda_p->col), &(pda_p->startSector), remap);
    230 			(layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    231 			    &(pda_q->col), &(pda_q->startSector), remap);
    232 			pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
    233 			/* raidAddr may be needed to find unit to redirect to */
    234 			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    235 			pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    236 			/* failure mode stuff */
    237 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
    238 			rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
    239 			rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    240 			rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    241 			break;
    242 #endif
    243 		}
    244 	}
    245 	RF_ASSERT(asmList == NULL && pdaList == NULL);
    246 	/* make the header structure */
    247 	asm_hdr = rf_AllocAccessStripeMapHeader();
    248 	RF_ASSERT(numStripes == totStripes);
    249 	asm_hdr->numStripes = numStripes;
    250 	asm_hdr->stripeMap = asm_list;
    251 
    252 #if RF_DEBUG_MAP
    253 	if (rf_mapDebug)
    254 		rf_PrintAccessStripeMap(asm_hdr);
    255 #endif
    256 	return (asm_hdr);
    257 }
    258 
    259 /***************************************************************************
    260  * This routine walks through an ASM list and marks the PDAs that have
    261  * failed.  It's called only when a disk failure causes an in-flight
    262  * DAG to fail.  The parity may consist of two components, but we want
    263  * to use only one failedPDA pointer.  Thus we set failedPDA to point
    264  * to the first parity component, and rely on the rest of the code to
    265  * do the right thing with this.
    266  ***************************************************************************/
    267 
    268 void
    269 rf_MarkFailuresInASMList(RF_Raid_t *raidPtr,
    270 			 RF_AccessStripeMapHeader_t *asm_h)
    271 {
    272 	RF_RaidDisk_t *disks = raidPtr->Disks;
    273 	RF_AccessStripeMap_t *asmap;
    274 	RF_PhysDiskAddr_t *pda;
    275 
    276 	for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
    277 		asmap->numDataFailed = 0;
    278 		asmap->numParityFailed = 0;
    279 		asmap->numQFailed = 0;
    280 		asmap->numFailedPDAs = 0;
    281 		memset((char *) asmap->failedPDAs, 0,
    282 		    RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
    283 		for (pda = asmap->physInfo; pda; pda = pda->next) {
    284 			if (RF_DEAD_DISK(disks[pda->col].status)) {
    285 				asmap->numDataFailed++;
    286 				asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    287 				asmap->numFailedPDAs++;
    288 			}
    289 		}
    290 		pda = asmap->parityInfo;
    291 		if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
    292 			asmap->numParityFailed++;
    293 			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    294 			asmap->numFailedPDAs++;
    295 		}
    296 		pda = asmap->qInfo;
    297 		if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
    298 			asmap->numQFailed++;
    299 			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    300 			asmap->numFailedPDAs++;
    301 		}
    302 	}
    303 }
    304 
    305 /***************************************************************************
    306  *
    307  * routines to allocate and free list elements.  All allocation
    308  * routines zero the structure before returning it.
    309  *
    310  * FreePhysDiskAddr is static.  It should never be called directly,
    311  * because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
    312  * list.
    313  *
    314  ***************************************************************************/
    315 
    316 static struct pool rf_asmhdr_pool;
    317 #define RF_MAX_FREE_ASMHDR 128
    318 #define RF_MIN_FREE_ASMHDR  32
    319 
    320 static struct pool rf_asm_pool;
    321 #define RF_MAX_FREE_ASM 192
    322 #define RF_MIN_FREE_ASM  64
    323 
    324 static struct pool rf_pda_pool;   /* may need to be visible for
    325 				     rf_dagdegrd.c and rf_dagdegwr.c,
    326 				     if they can be convinced to free
    327 				     the space easily */
    328 #define RF_MAX_FREE_PDA 192
    329 #define RF_MIN_FREE_PDA  64
    330 
    331 /* called at shutdown time.  So far, all that is necessary is to
    332    release all the free lists */
    333 static void rf_ShutdownMapModule(void *);
    334 static void
    335 rf_ShutdownMapModule(void *ignored)
    336 {
    337 	pool_destroy(&rf_asmhdr_pool);
    338 	pool_destroy(&rf_asm_pool);
    339 	pool_destroy(&rf_pda_pool);
    340 }
    341 
    342 int
    343 rf_ConfigureMapModule(RF_ShutdownList_t **listp)
    344 {
    345 
    346 	pool_init(&rf_asmhdr_pool, sizeof(RF_AccessStripeMapHeader_t),
    347 		  0, 0, 0, "rf_asmhdr_pl", NULL);
    348 	pool_sethiwat(&rf_asmhdr_pool, RF_MAX_FREE_ASMHDR);
    349 	pool_prime(&rf_asmhdr_pool, RF_MIN_FREE_ASMHDR);
    350 	pool_setlowat(&rf_asmhdr_pool, RF_MIN_FREE_ASMHDR);
    351 
    352 	pool_init(&rf_asm_pool, sizeof(RF_AccessStripeMap_t),
    353 		  0, 0, 0, "rf_asm_pl", NULL);
    354 	pool_sethiwat(&rf_asm_pool, RF_MAX_FREE_ASM);
    355 	pool_prime(&rf_asm_pool, RF_MIN_FREE_ASM);
    356 	pool_setlowat(&rf_asm_pool, RF_MIN_FREE_ASM);
    357 
    358 	pool_init(&rf_pda_pool, sizeof(RF_PhysDiskAddr_t),
    359 		  0, 0, 0, "rf_pda_pl", NULL);
    360 	pool_sethiwat(&rf_pda_pool, RF_MAX_FREE_PDA);
    361 	pool_prime(&rf_pda_pool, RF_MIN_FREE_PDA);
    362 	pool_setlowat(&rf_pda_pool, RF_MIN_FREE_PDA);
    363 
    364 	rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
    365 
    366 	return (0);
    367 }
    368 
    369 RF_AccessStripeMapHeader_t *
    370 rf_AllocAccessStripeMapHeader()
    371 {
    372 	RF_AccessStripeMapHeader_t *p;
    373 
    374 	p = pool_get(&rf_asmhdr_pool, PR_WAITOK);
    375 	memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
    376 
    377 	return (p);
    378 }
    379 
    380 void
    381 rf_FreeAccessStripeMapHeader(RF_AccessStripeMapHeader_t *p)
    382 {
    383 	pool_put(&rf_asmhdr_pool, p);
    384 }
    385 
    386 RF_PhysDiskAddr_t *
    387 rf_AllocPhysDiskAddr()
    388 {
    389 	RF_PhysDiskAddr_t *p;
    390 
    391 	p = pool_get(&rf_pda_pool, PR_WAITOK);
    392 	memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
    393 
    394 	return (p);
    395 }
    396 /* allocates a list of PDAs, locking the free list only once when we
    397  * have to call calloc, we do it one component at a time to simplify
    398  * the process of freeing the list at program shutdown.  This should
    399  * not be much of a performance hit, because it should be very
    400  * infrequently executed.  */
    401 RF_PhysDiskAddr_t *
    402 rf_AllocPDAList(int count)
    403 {
    404 	RF_PhysDiskAddr_t *p, *prev;
    405 	int i;
    406 
    407 	p = NULL;
    408 	prev = NULL;
    409 	for (i = 0; i < count; i++) {
    410 		p = pool_get(&rf_pda_pool, PR_WAITOK);
    411 		p->next = prev;
    412 		prev = p;
    413 	}
    414 
    415 	return (p);
    416 }
    417 
    418 #if RF_INCLUDE_PARITYLOGGING > 0
    419 void
    420 rf_FreePhysDiskAddr(RF_PhysDiskAddr_t *p)
    421 {
    422 	pool_put(&rf_pda_pool, p);
    423 }
    424 #endif
    425 
    426 static void
    427 rf_FreePDAList(RF_PhysDiskAddr_t *pda_list)
    428 {
    429 	RF_PhysDiskAddr_t *p, *tmp;
    430 
    431 	p=pda_list;
    432 	while (p) {
    433 		tmp = p->next;
    434 		pool_put(&rf_pda_pool, p);
    435 		p = tmp;
    436 	}
    437 }
    438 
    439 /* this is essentially identical to AllocPDAList.  I should combine
    440  * the two.  when we have to call calloc, we do it one component at a
    441  * time to simplify the process of freeing the list at program
    442  * shutdown.  This should not be much of a performance hit, because it
    443  * should be very infrequently executed.  */
    444 RF_AccessStripeMap_t *
    445 rf_AllocASMList(int count)
    446 {
    447 	RF_AccessStripeMap_t *p, *prev;
    448 	int i;
    449 
    450 	p = NULL;
    451 	prev = NULL;
    452 	for (i = 0; i < count; i++) {
    453 		p = pool_get(&rf_asm_pool, PR_WAITOK);
    454 		p->next = prev;
    455 		prev = p;
    456 	}
    457 	return (p);
    458 }
    459 
    460 static void
    461 rf_FreeASMList(RF_AccessStripeMap_t *asm_list)
    462 {
    463 	RF_AccessStripeMap_t *p, *tmp;
    464 
    465 	p=asm_list;
    466 	while (p) {
    467 		tmp = p->next;
    468 		pool_put(&rf_asm_pool, p);
    469 		p = tmp;
    470 	}
    471 }
    472 
    473 void
    474 rf_FreeAccessStripeMap(RF_AccessStripeMapHeader_t *hdr)
    475 {
    476 	RF_AccessStripeMap_t *p;
    477 	RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
    478 	int     count = 0, t, asm_count = 0;
    479 
    480 	for (p = hdr->stripeMap; p; p = p->next) {
    481 
    482 		/* link the 3 pda lists into the accumulating pda list */
    483 
    484 		if (!pdaList)
    485 			pdaList = p->qInfo;
    486 		else
    487 			pdaEnd->next = p->qInfo;
    488 		for (trailer = NULL, pdp = p->qInfo; pdp;) {
    489 			trailer = pdp;
    490 			pdp = pdp->next;
    491 			count++;
    492 		}
    493 		if (trailer)
    494 			pdaEnd = trailer;
    495 
    496 		if (!pdaList)
    497 			pdaList = p->parityInfo;
    498 		else
    499 			pdaEnd->next = p->parityInfo;
    500 		for (trailer = NULL, pdp = p->parityInfo; pdp;) {
    501 			trailer = pdp;
    502 			pdp = pdp->next;
    503 			count++;
    504 		}
    505 		if (trailer)
    506 			pdaEnd = trailer;
    507 
    508 		if (!pdaList)
    509 			pdaList = p->physInfo;
    510 		else
    511 			pdaEnd->next = p->physInfo;
    512 		for (trailer = NULL, pdp = p->physInfo; pdp;) {
    513 			trailer = pdp;
    514 			pdp = pdp->next;
    515 			count++;
    516 		}
    517 		if (trailer)
    518 			pdaEnd = trailer;
    519 
    520 		asm_count++;
    521 	}
    522 
    523 	/* debug only */
    524 	for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
    525 		t++;
    526 	RF_ASSERT(t == count);
    527 
    528 	if (pdaList)
    529 		rf_FreePDAList(pdaList);
    530 	rf_FreeASMList(hdr->stripeMap);
    531 	rf_FreeAccessStripeMapHeader(hdr);
    532 }
    533 /* We can't use the large write optimization if there are any failures
    534  * in the stripe.  In the declustered layout, there is no way to
    535  * immediately determine what disks constitute a stripe, so we
    536  * actually have to hunt through the stripe looking for failures.  The
    537  * reason we map the parity instead of just using asm->parityInfo->col
    538  * is because the latter may have been already redirected to a spare
    539  * drive, which would mess up the computation of the stripe offset.
    540  *
    541  * ASSUMES AT MOST ONE FAILURE IN THE STRIPE.  */
    542 int
    543 rf_CheckStripeForFailures(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    544 {
    545 	RF_RowCol_t tcol, pcol, *diskids, i;
    546 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    547 	RF_StripeCount_t stripeOffset;
    548 	int     numFailures;
    549 	RF_RaidAddr_t sosAddr;
    550 	RF_SectorNum_t diskOffset, poffset;
    551 
    552 	/* quick out in the fault-free case.  */
    553 	RF_LOCK_MUTEX(raidPtr->mutex);
    554 	numFailures = raidPtr->numFailures;
    555 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    556 	if (numFailures == 0)
    557 		return (0);
    558 
    559 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
    560 						     asmap->raidAddress);
    561 	(layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress,
    562 					  &diskids);
    563 	(layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress,
    564 				     &pcol, &poffset, 0);	/* get pcol */
    565 
    566 	/* this need not be true if we've redirected the access to a
    567 	 * spare in another row RF_ASSERT(row == testrow); */
    568 	stripeOffset = 0;
    569 	for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
    570 		if (diskids[i] != pcol) {
    571 			if (RF_DEAD_DISK(raidPtr->Disks[diskids[i]].status)) {
    572 				if (raidPtr->status != rf_rs_reconstructing)
    573 					return (1);
    574 				RF_ASSERT(raidPtr->reconControl->fcol == diskids[i]);
    575 				layoutPtr->map->MapSector(raidPtr,
    576 				    sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
    577 				    &tcol, &diskOffset, 0);
    578 				RF_ASSERT(tcol == diskids[i]);
    579 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, diskOffset))
    580 					return (1);
    581 				asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
    582 				return (0);
    583 			}
    584 			stripeOffset++;
    585 		}
    586 	}
    587 	return (0);
    588 }
    589 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
    590 /*
    591    return the number of failed data units in the stripe.
    592 */
    593 
    594 int
    595 rf_NumFailedDataUnitsInStripe(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    596 {
    597 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    598 	RF_RowCol_t tcol, i;
    599 	RF_SectorNum_t diskOffset;
    600 	RF_RaidAddr_t sosAddr;
    601 	int     numFailures;
    602 
    603 	/* quick out in the fault-free case.  */
    604 	RF_LOCK_MUTEX(raidPtr->mutex);
    605 	numFailures = raidPtr->numFailures;
    606 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    607 	if (numFailures == 0)
    608 		return (0);
    609 	numFailures = 0;
    610 
    611 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
    612 						     asmap->raidAddress);
    613 	for (i = 0; i < layoutPtr->numDataCol; i++) {
    614 		(layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
    615 		    &trow, &tcol, &diskOffset, 0);
    616 		if (RF_DEAD_DISK(raidPtr->Disks[tcol].status))
    617 			numFailures++;
    618 	}
    619 
    620 	return numFailures;
    621 }
    622 #endif
    623 
    624 /****************************************************************************
    625  *
    626  * debug routines
    627  *
    628  ***************************************************************************/
    629 #if RF_DEBUG_MAP
    630 void
    631 rf_PrintAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h)
    632 {
    633 	rf_PrintFullAccessStripeMap(asm_h, 0);
    634 }
    635 #endif
    636 
    637 /* prbuf - flag to print buffer pointers */
    638 void
    639 rf_PrintFullAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h, int prbuf)
    640 {
    641 	int     i;
    642 	RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
    643 	RF_PhysDiskAddr_t *p;
    644 	printf("%d stripes total\n", (int) asm_h->numStripes);
    645 	for (; asmap; asmap = asmap->next) {
    646 		/* printf("Num failures: %d\n",asmap->numDataFailed); */
    647 		/* printf("Num sectors:
    648 		 * %d\n",(int)asmap->totalSectorsAccessed); */
    649 		printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
    650 		    (int) asmap->stripeID,
    651 		    (int) asmap->totalSectorsAccessed,
    652 		    (int) asmap->numDataFailed,
    653 		    (int) asmap->numParityFailed);
    654 		if (asmap->parityInfo) {
    655 			printf("Parity [c%d s%d-%d", asmap->parityInfo->col,
    656 			    (int) asmap->parityInfo->startSector,
    657 			    (int) (asmap->parityInfo->startSector +
    658 				asmap->parityInfo->numSector - 1));
    659 			if (prbuf)
    660 				printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
    661 			if (asmap->parityInfo->next) {
    662 				printf(", c%d s%d-%d", asmap->parityInfo->next->col,
    663 				    (int) asmap->parityInfo->next->startSector,
    664 				    (int) (asmap->parityInfo->next->startSector +
    665 					asmap->parityInfo->next->numSector - 1));
    666 				if (prbuf)
    667 					printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
    668 				RF_ASSERT(asmap->parityInfo->next->next == NULL);
    669 			}
    670 			printf("]\n\t");
    671 		}
    672 		for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
    673 			printf("SU c%d s%d-%d ", p->col, (int) p->startSector,
    674 			    (int) (p->startSector + p->numSector - 1));
    675 			if (prbuf)
    676 				printf("b0x%lx ", (unsigned long) p->bufPtr);
    677 			if (i && !(i & 1))
    678 				printf("\n\t");
    679 		}
    680 		printf("\n");
    681 		p = asm_h->stripeMap->failedPDAs[0];
    682 		if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
    683 			printf("[multiple failures]\n");
    684 		else
    685 			if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
    686 				printf("\t[Failed PDA: c%d s%d-%d]\n", p->col,
    687 				    (int) p->startSector, (int) (p->startSector + p->numSector - 1));
    688 	}
    689 }
    690 
    691 #if RF_MAP_DEBUG
    692 void
    693 rf_PrintRaidAddressInfo(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
    694 			RF_SectorCount_t numBlocks)
    695 {
    696 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    697 	RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
    698 
    699 	printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
    700 	for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
    701 		printf("%d (0x%x), ", (int) ra, (int) ra);
    702 	}
    703 	printf("\n");
    704 	printf("Offset into stripe unit: %d (0x%x)\n",
    705 	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
    706 	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
    707 }
    708 #endif
    709 /* given a parity descriptor and the starting address within a stripe,
    710  * range restrict the parity descriptor to touch only the correct
    711  * stuff.  */
    712 void
    713 rf_ASMParityAdjust(RF_PhysDiskAddr_t *toAdjust,
    714 		   RF_StripeNum_t startAddrWithinStripe,
    715 		   RF_SectorNum_t endAddress,
    716 		   RF_RaidLayout_t *layoutPtr,
    717 		   RF_AccessStripeMap_t *asm_p)
    718 {
    719 	RF_PhysDiskAddr_t *new_pda;
    720 
    721 	/* when we're accessing only a portion of one stripe unit, we
    722 	 * want the parity descriptor to identify only the chunk of
    723 	 * parity associated with the data.  When the access spans
    724 	 * exactly one stripe unit boundary and is less than a stripe
    725 	 * unit in size, it uses two disjoint regions of the parity
    726 	 * unit.  When an access spans more than one stripe unit
    727 	 * boundary, it uses all of the parity unit.
    728 	 *
    729 	 * To better handle the case where stripe units are small, we
    730 	 * may eventually want to change the 2nd case so that if the
    731 	 * SU size is below some threshold, we just read/write the
    732 	 * whole thing instead of breaking it up into two accesses. */
    733 	if (asm_p->numStripeUnitsAccessed == 1) {
    734 		int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
    735 		toAdjust->startSector += x;
    736 		toAdjust->raidAddress += x;
    737 		toAdjust->numSector = asm_p->physInfo->numSector;
    738 		RF_ASSERT(toAdjust->numSector != 0);
    739 	} else
    740 		if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
    741 			int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
    742 
    743 			/* create a second pda and copy the parity map info
    744 			 * into it */
    745 			RF_ASSERT(toAdjust->next == NULL);
    746 			new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
    747 			*new_pda = *toAdjust;	/* structure assignment */
    748 			new_pda->next = NULL;
    749 
    750 			/* adjust the start sector & number of blocks for the
    751 			 * first parity pda */
    752 			toAdjust->startSector += x;
    753 			toAdjust->raidAddress += x;
    754 			toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
    755 			RF_ASSERT(toAdjust->numSector != 0);
    756 
    757 			/* adjust the second pda */
    758 			new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
    759 			/* new_pda->raidAddress =
    760 			 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
    761 			 * toAdjust->raidAddress); */
    762 			RF_ASSERT(new_pda->numSector != 0);
    763 		}
    764 }
    765 
    766 /* Check if a disk has been spared or failed. If spared, redirect the
    767  * I/O.  If it has been failed, record it in the asm pointer.  Fourth
    768  * arg is whether data or parity.  */
    769 void
    770 rf_ASMCheckStatus(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda_p,
    771 		  RF_AccessStripeMap_t *asm_p, RF_RaidDisk_t *disks,
    772 		  int parity)
    773 {
    774 	RF_DiskStatus_t dstatus;
    775 	RF_RowCol_t fcol;
    776 
    777 	dstatus = disks[pda_p->col].status;
    778 
    779 	if (dstatus == rf_ds_spared) {
    780 		/* if the disk has been spared, redirect access to the spare */
    781 		fcol = pda_p->col;
    782 		pda_p->col = disks[fcol].spareCol;
    783 	} else
    784 		if (dstatus == rf_ds_dist_spared) {
    785 			/* ditto if disk has been spared to dist spare space */
    786 #if RF_DEBUG_MAP
    787 			RF_RowCol_t oc = pda_p->col;
    788 			RF_SectorNum_t oo = pda_p->startSector;
    789 #endif
    790 			if (pda_p->type == RF_PDA_TYPE_DATA)
    791 				raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
    792 			else
    793 				raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
    794 
    795 #if RF_DEBUG_MAP
    796 			if (rf_mapDebug) {
    797 				printf("Redirected c %d o %d -> c %d o %d\n", oc, (int) oo,
    798 				    pda_p->col, (int) pda_p->startSector);
    799 			}
    800 #endif
    801 		} else
    802 			if (RF_DEAD_DISK(dstatus)) {
    803 				/* if the disk is inaccessible, mark the
    804 				 * failure */
    805 				if (parity)
    806 					asm_p->numParityFailed++;
    807 				else {
    808 					asm_p->numDataFailed++;
    809 				}
    810 				asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
    811 				asm_p->numFailedPDAs++;
    812 #if 0
    813 				switch (asm_p->numParityFailed + asm_p->numDataFailed) {
    814 				case 1:
    815 					asm_p->failedPDAs[0] = pda_p;
    816 					break;
    817 				case 2:
    818 					asm_p->failedPDAs[1] = pda_p;
    819 				default:
    820 					break;
    821 				}
    822 #endif
    823 			}
    824 	/* the redirected access should never span a stripe unit boundary */
    825 	RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
    826 	    rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
    827 	RF_ASSERT(pda_p->col != -1);
    828 }
    829