rf_map.c revision 1.35 1 /* $NetBSD: rf_map.c,v 1.35 2004/03/19 02:57:34 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /**************************************************************************
30 *
31 * map.c -- main code for mapping RAID addresses to physical disk addresses
32 *
33 **************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.35 2004/03/19 02:57:34 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_threadstuff.h"
41 #include "rf_raid.h"
42 #include "rf_general.h"
43 #include "rf_map.h"
44 #include "rf_shutdown.h"
45
46 static void rf_FreePDAList(RF_PhysDiskAddr_t *pda_list);
47 static void rf_FreeASMList(RF_AccessStripeMap_t *asm_list);
48
49 /***************************************************************************
50 *
51 * MapAccess -- main 1st order mapping routine. Maps an access in the
52 * RAID address space to the corresponding set of physical disk
53 * addresses. The result is returned as a list of AccessStripeMap
54 * structures, one per stripe accessed. Each ASM structure contains a
55 * pointer to a list of PhysDiskAddr structures, which describe the
56 * physical locations touched by the user access. Note that this
57 * routine returns only static mapping information, i.e. the list of
58 * physical addresses returned does not necessarily identify the set
59 * of physical locations that will actually be read or written. The
60 * routine also maps the parity. The physical disk location returned
61 * always indicates the entire parity unit, even when only a subset of
62 * it is being accessed. This is because an access that is not stripe
63 * unit aligned but that spans a stripe unit boundary may require
64 * access two distinct portions of the parity unit, and we can't yet
65 * tell which portion(s) we'll actually need. We leave it up to the
66 * algorithm selection code to decide what subset of the parity unit
67 * to access. Note that addresses in the RAID address space must
68 * always be maintained as longs, instead of ints.
69 *
70 * This routine returns NULL if numBlocks is 0
71 *
72 * raidAddress - starting address in RAID address space
73 * numBlocks - number of blocks in RAID address space to access
74 * buffer - buffer to supply/recieve data
75 * remap - 1 => remap address to spare space
76 ***************************************************************************/
77
78 RF_AccessStripeMapHeader_t *
79 rf_MapAccess(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddress,
80 RF_SectorCount_t numBlocks, caddr_t buffer, int remap)
81 {
82 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
83 RF_AccessStripeMapHeader_t *asm_hdr = NULL;
84 RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
85 int faultsTolerated = layoutPtr->map->faultsTolerated;
86 /* we'll change raidAddress along the way */
87 RF_RaidAddr_t startAddress = raidAddress;
88 RF_RaidAddr_t endAddress = raidAddress + numBlocks;
89 RF_RaidDisk_t *disks = raidPtr->Disks;
90 RF_PhysDiskAddr_t *pda_p;
91 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
92 RF_PhysDiskAddr_t *pda_q;
93 #endif
94 RF_StripeCount_t numStripes = 0;
95 RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress,
96 nextStripeUnitAddress;
97 RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
98 RF_StripeCount_t totStripes;
99 RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
100 RF_AccessStripeMap_t *asmList, *t_asm;
101 RF_PhysDiskAddr_t *pdaList, *t_pda;
102
103 /* allocate all the ASMs and PDAs up front */
104 lastRaidAddr = raidAddress + numBlocks - 1;
105 stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
106 lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
107 totStripes = lastSID - stripeID + 1;
108 SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
109 lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
110
111 asmList = rf_AllocASMList(totStripes);
112
113 /* may also need pda(s) per stripe for parity */
114 pdaList = rf_AllocPDAList(lastSUID - SUID + 1 +
115 faultsTolerated * totStripes);
116
117
118 if (raidAddress + numBlocks > raidPtr->totalSectors) {
119 RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
120 (int) raidAddress);
121 return (NULL);
122 }
123 #if RF_DEBUG_MAP
124 if (rf_mapDebug)
125 rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
126 #endif
127 for (; raidAddress < endAddress;) {
128 /* make the next stripe structure */
129 RF_ASSERT(asmList);
130 t_asm = asmList;
131 asmList = asmList->next;
132 memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
133 if (!asm_p)
134 asm_list = asm_p = t_asm;
135 else {
136 asm_p->next = t_asm;
137 asm_p = asm_p->next;
138 }
139 numStripes++;
140
141 /* map SUs from current location to the end of the stripe */
142 asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
143 raidAddress) */ stripeID++;
144 stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
145 stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
146 asm_p->raidAddress = raidAddress;
147 asm_p->endRaidAddress = stripeEndAddress;
148
149 /* map each stripe unit in the stripe */
150 pda_p = NULL;
151
152 /* Raid addr of start of portion of access that is
153 within this stripe */
154 startAddrWithinStripe = raidAddress;
155
156 for (; raidAddress < stripeEndAddress;) {
157 RF_ASSERT(pdaList);
158 t_pda = pdaList;
159 pdaList = pdaList->next;
160 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
161 if (!pda_p)
162 asm_p->physInfo = pda_p = t_pda;
163 else {
164 pda_p->next = t_pda;
165 pda_p = pda_p->next;
166 }
167
168 pda_p->type = RF_PDA_TYPE_DATA;
169 (layoutPtr->map->MapSector) (raidPtr, raidAddress,
170 &(pda_p->col),
171 &(pda_p->startSector),
172 remap);
173
174 /* mark any failures we find. failedPDA is
175 * don't-care if there is more than one
176 * failure */
177
178 /* the RAID address corresponding to this
179 physical diskaddress */
180 pda_p->raidAddress = raidAddress;
181 nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
182 pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
183 RF_ASSERT(pda_p->numSector != 0);
184 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
185 pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
186 asm_p->totalSectorsAccessed += pda_p->numSector;
187 asm_p->numStripeUnitsAccessed++;
188
189 raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
190 }
191
192 /* Map the parity. At this stage, the startSector and
193 * numSector fields for the parity unit are always set
194 * to indicate the entire parity unit. We may modify
195 * this after mapping the data portion. */
196 switch (faultsTolerated) {
197 case 0:
198 break;
199 case 1: /* single fault tolerant */
200 RF_ASSERT(pdaList);
201 t_pda = pdaList;
202 pdaList = pdaList->next;
203 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
204 pda_p = asm_p->parityInfo = t_pda;
205 pda_p->type = RF_PDA_TYPE_PARITY;
206 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
207 &(pda_p->col), &(pda_p->startSector), remap);
208 pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
209 /* raidAddr may be needed to find unit to redirect to */
210 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
211 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
212 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
213
214 break;
215 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
216 case 2: /* two fault tolerant */
217 RF_ASSERT(pdaList && pdaList->next);
218 t_pda = pdaList;
219 pdaList = pdaList->next;
220 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
221 pda_p = asm_p->parityInfo = t_pda;
222 pda_p->type = RF_PDA_TYPE_PARITY;
223 t_pda = pdaList;
224 pdaList = pdaList->next;
225 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
226 pda_q = asm_p->qInfo = t_pda;
227 pda_q->type = RF_PDA_TYPE_Q;
228 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
229 &(pda_p->col), &(pda_p->startSector), remap);
230 (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
231 &(pda_q->col), &(pda_q->startSector), remap);
232 pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
233 /* raidAddr may be needed to find unit to redirect to */
234 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
235 pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
236 /* failure mode stuff */
237 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
238 rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
239 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
240 rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
241 break;
242 #endif
243 }
244 }
245 RF_ASSERT(asmList == NULL && pdaList == NULL);
246 /* make the header structure */
247 asm_hdr = rf_AllocAccessStripeMapHeader();
248 RF_ASSERT(numStripes == totStripes);
249 asm_hdr->numStripes = numStripes;
250 asm_hdr->stripeMap = asm_list;
251
252 #if RF_DEBUG_MAP
253 if (rf_mapDebug)
254 rf_PrintAccessStripeMap(asm_hdr);
255 #endif
256 return (asm_hdr);
257 }
258
259 /***************************************************************************
260 * This routine walks through an ASM list and marks the PDAs that have
261 * failed. It's called only when a disk failure causes an in-flight
262 * DAG to fail. The parity may consist of two components, but we want
263 * to use only one failedPDA pointer. Thus we set failedPDA to point
264 * to the first parity component, and rely on the rest of the code to
265 * do the right thing with this.
266 ***************************************************************************/
267
268 void
269 rf_MarkFailuresInASMList(RF_Raid_t *raidPtr,
270 RF_AccessStripeMapHeader_t *asm_h)
271 {
272 RF_RaidDisk_t *disks = raidPtr->Disks;
273 RF_AccessStripeMap_t *asmap;
274 RF_PhysDiskAddr_t *pda;
275
276 for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
277 asmap->numDataFailed = 0;
278 asmap->numParityFailed = 0;
279 asmap->numQFailed = 0;
280 asmap->numFailedPDAs = 0;
281 memset((char *) asmap->failedPDAs, 0,
282 RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
283 for (pda = asmap->physInfo; pda; pda = pda->next) {
284 if (RF_DEAD_DISK(disks[pda->col].status)) {
285 asmap->numDataFailed++;
286 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
287 asmap->numFailedPDAs++;
288 }
289 }
290 pda = asmap->parityInfo;
291 if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
292 asmap->numParityFailed++;
293 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
294 asmap->numFailedPDAs++;
295 }
296 pda = asmap->qInfo;
297 if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
298 asmap->numQFailed++;
299 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
300 asmap->numFailedPDAs++;
301 }
302 }
303 }
304
305 /***************************************************************************
306 *
307 * routines to allocate and free list elements. All allocation
308 * routines zero the structure before returning it.
309 *
310 * FreePhysDiskAddr is static. It should never be called directly,
311 * because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
312 * list.
313 *
314 ***************************************************************************/
315
316 #define RF_MAX_FREE_ASMHDR 128
317 #define RF_MIN_FREE_ASMHDR 32
318
319 #define RF_MAX_FREE_ASM 192
320 #define RF_MIN_FREE_ASM 64
321
322 #define RF_MAX_FREE_PDA 192
323 #define RF_MIN_FREE_PDA 64
324
325 #define RF_MAX_FREE_ASMHLE 64
326 #define RF_MIN_FREE_ASMHLE 16
327
328 #define RF_MAX_FREE_FSS 128
329 #define RF_MIN_FREE_FSS 32
330
331 #define RF_MAX_FREE_VFPLE 128
332 #define RF_MIN_FREE_VFPLE 32
333
334
335 /* called at shutdown time. So far, all that is necessary is to
336 release all the free lists */
337 static void rf_ShutdownMapModule(void *);
338 static void
339 rf_ShutdownMapModule(void *ignored)
340 {
341 pool_destroy(&rf_pools.asm_hdr);
342 pool_destroy(&rf_pools.asmap);
343 pool_destroy(&rf_pools.pda);
344 }
345
346 int
347 rf_ConfigureMapModule(RF_ShutdownList_t **listp)
348 {
349
350 rf_pool_init(&rf_pools.asm_hdr, sizeof(RF_AccessStripeMapHeader_t),
351 "rf_asmhdr_pl", RF_MIN_FREE_ASMHDR, RF_MAX_FREE_ASMHDR);
352 rf_pool_init(&rf_pools.asmap, sizeof(RF_AccessStripeMap_t),
353 "rf_asm_pl", RF_MIN_FREE_ASM, RF_MAX_FREE_ASM);
354 rf_pool_init(&rf_pools.asmhle, sizeof(RF_ASMHeaderListElem_t),
355 "rf_asmhle_pl", RF_MIN_FREE_ASMHLE, RF_MAX_FREE_ASMHLE);
356 rf_pool_init(&rf_pools.pda, sizeof(RF_PhysDiskAddr_t),
357 "rf_pda_pl", RF_MIN_FREE_PDA, RF_MAX_FREE_PDA);
358 rf_pool_init(&rf_pools.fss, sizeof(RF_FailedStripe_t),
359 "rf_fss_pl", RF_MIN_FREE_FSS, RF_MAX_FREE_FSS);
360 rf_pool_init(&rf_pools.vfple, sizeof(RF_VoidFunctionPointerListElem_t),
361 "rf_vfple_pl", RF_MIN_FREE_VFPLE, RF_MAX_FREE_VFPLE);
362 rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
363
364 return (0);
365 }
366
367 RF_AccessStripeMapHeader_t *
368 rf_AllocAccessStripeMapHeader()
369 {
370 RF_AccessStripeMapHeader_t *p;
371
372 p = pool_get(&rf_pools.asm_hdr, PR_WAITOK);
373 memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
374
375 return (p);
376 }
377
378 void
379 rf_FreeAccessStripeMapHeader(RF_AccessStripeMapHeader_t *p)
380 {
381 pool_put(&rf_pools.asm_hdr, p);
382 }
383
384
385 RF_VoidFunctionPointerListElem_t *
386 rf_AllocVFPListElem()
387 {
388 RF_VoidFunctionPointerListElem_t *p;
389
390 p = pool_get(&rf_pools.vfple, PR_WAITOK);
391 memset((char *) p, 0, sizeof(RF_VoidFunctionPointerListElem_t));
392
393 return (p);
394 }
395
396 void
397 rf_FreeVFPListElem(RF_VoidFunctionPointerListElem_t *p)
398 {
399
400 pool_put(&rf_pools.vfple, p);
401 }
402
403 RF_ASMHeaderListElem_t *
404 rf_AllocASMHeaderListElem()
405 {
406 RF_ASMHeaderListElem_t *p;
407
408 p = pool_get(&rf_pools.asmhle, PR_WAITOK);
409 memset((char *) p, 0, sizeof(RF_ASMHeaderListElem_t));
410
411 return (p);
412 }
413
414 void
415 rf_FreeASMHeaderListElem(RF_ASMHeaderListElem_t *p)
416 {
417
418 pool_put(&rf_pools.asmhle, p);
419 }
420
421 RF_FailedStripe_t *
422 rf_AllocFailedStripeStruct()
423 {
424 RF_FailedStripe_t *p;
425
426 p = pool_get(&rf_pools.fss, PR_WAITOK);
427 memset((char *) p, 0, sizeof(RF_FailedStripe_t));
428
429 return (p);
430 }
431
432 void
433 rf_FreeFailedStripeStruct(RF_FailedStripe_t *p)
434 {
435 pool_put(&rf_pools.fss, p);
436 }
437
438
439
440
441
442 RF_PhysDiskAddr_t *
443 rf_AllocPhysDiskAddr()
444 {
445 RF_PhysDiskAddr_t *p;
446
447 p = pool_get(&rf_pools.pda, PR_WAITOK);
448 memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
449
450 return (p);
451 }
452 /* allocates a list of PDAs, locking the free list only once when we
453 * have to call calloc, we do it one component at a time to simplify
454 * the process of freeing the list at program shutdown. This should
455 * not be much of a performance hit, because it should be very
456 * infrequently executed. */
457 RF_PhysDiskAddr_t *
458 rf_AllocPDAList(int count)
459 {
460 RF_PhysDiskAddr_t *p, *prev;
461 int i;
462
463 p = NULL;
464 prev = NULL;
465 for (i = 0; i < count; i++) {
466 p = pool_get(&rf_pools.pda, PR_WAITOK);
467 p->next = prev;
468 prev = p;
469 }
470
471 return (p);
472 }
473
474 #if RF_INCLUDE_PARITYLOGGING > 0
475 void
476 rf_FreePhysDiskAddr(RF_PhysDiskAddr_t *p)
477 {
478 pool_put(&rf_pools.pda, p);
479 }
480 #endif
481
482 static void
483 rf_FreePDAList(RF_PhysDiskAddr_t *pda_list)
484 {
485 RF_PhysDiskAddr_t *p, *tmp;
486
487 p=pda_list;
488 while (p) {
489 tmp = p->next;
490 pool_put(&rf_pools.pda, p);
491 p = tmp;
492 }
493 }
494
495 /* this is essentially identical to AllocPDAList. I should combine
496 * the two. when we have to call calloc, we do it one component at a
497 * time to simplify the process of freeing the list at program
498 * shutdown. This should not be much of a performance hit, because it
499 * should be very infrequently executed. */
500 RF_AccessStripeMap_t *
501 rf_AllocASMList(int count)
502 {
503 RF_AccessStripeMap_t *p, *prev;
504 int i;
505
506 p = NULL;
507 prev = NULL;
508 for (i = 0; i < count; i++) {
509 p = pool_get(&rf_pools.asmap, PR_WAITOK);
510 p->next = prev;
511 prev = p;
512 }
513 return (p);
514 }
515
516 static void
517 rf_FreeASMList(RF_AccessStripeMap_t *asm_list)
518 {
519 RF_AccessStripeMap_t *p, *tmp;
520
521 p=asm_list;
522 while (p) {
523 tmp = p->next;
524 pool_put(&rf_pools.asmap, p);
525 p = tmp;
526 }
527 }
528
529 void
530 rf_FreeAccessStripeMap(RF_AccessStripeMapHeader_t *hdr)
531 {
532 RF_AccessStripeMap_t *p;
533 RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
534 int count = 0, t, asm_count = 0;
535
536 for (p = hdr->stripeMap; p; p = p->next) {
537
538 /* link the 3 pda lists into the accumulating pda list */
539
540 if (!pdaList)
541 pdaList = p->qInfo;
542 else
543 pdaEnd->next = p->qInfo;
544 for (trailer = NULL, pdp = p->qInfo; pdp;) {
545 trailer = pdp;
546 pdp = pdp->next;
547 count++;
548 }
549 if (trailer)
550 pdaEnd = trailer;
551
552 if (!pdaList)
553 pdaList = p->parityInfo;
554 else
555 pdaEnd->next = p->parityInfo;
556 for (trailer = NULL, pdp = p->parityInfo; pdp;) {
557 trailer = pdp;
558 pdp = pdp->next;
559 count++;
560 }
561 if (trailer)
562 pdaEnd = trailer;
563
564 if (!pdaList)
565 pdaList = p->physInfo;
566 else
567 pdaEnd->next = p->physInfo;
568 for (trailer = NULL, pdp = p->physInfo; pdp;) {
569 trailer = pdp;
570 pdp = pdp->next;
571 count++;
572 }
573 if (trailer)
574 pdaEnd = trailer;
575
576 asm_count++;
577 }
578
579 /* debug only */
580 for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
581 t++;
582 RF_ASSERT(t == count);
583
584 if (pdaList)
585 rf_FreePDAList(pdaList);
586 rf_FreeASMList(hdr->stripeMap);
587 rf_FreeAccessStripeMapHeader(hdr);
588 }
589 /* We can't use the large write optimization if there are any failures
590 * in the stripe. In the declustered layout, there is no way to
591 * immediately determine what disks constitute a stripe, so we
592 * actually have to hunt through the stripe looking for failures. The
593 * reason we map the parity instead of just using asm->parityInfo->col
594 * is because the latter may have been already redirected to a spare
595 * drive, which would mess up the computation of the stripe offset.
596 *
597 * ASSUMES AT MOST ONE FAILURE IN THE STRIPE. */
598 int
599 rf_CheckStripeForFailures(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
600 {
601 RF_RowCol_t tcol, pcol, *diskids, i;
602 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
603 RF_StripeCount_t stripeOffset;
604 int numFailures;
605 RF_RaidAddr_t sosAddr;
606 RF_SectorNum_t diskOffset, poffset;
607
608 /* quick out in the fault-free case. */
609 RF_LOCK_MUTEX(raidPtr->mutex);
610 numFailures = raidPtr->numFailures;
611 RF_UNLOCK_MUTEX(raidPtr->mutex);
612 if (numFailures == 0)
613 return (0);
614
615 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
616 asmap->raidAddress);
617 (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress,
618 &diskids);
619 (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress,
620 &pcol, &poffset, 0); /* get pcol */
621
622 /* this need not be true if we've redirected the access to a
623 * spare in another row RF_ASSERT(row == testrow); */
624 stripeOffset = 0;
625 for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
626 if (diskids[i] != pcol) {
627 if (RF_DEAD_DISK(raidPtr->Disks[diskids[i]].status)) {
628 if (raidPtr->status != rf_rs_reconstructing)
629 return (1);
630 RF_ASSERT(raidPtr->reconControl->fcol == diskids[i]);
631 layoutPtr->map->MapSector(raidPtr,
632 sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
633 &tcol, &diskOffset, 0);
634 RF_ASSERT(tcol == diskids[i]);
635 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, diskOffset))
636 return (1);
637 asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
638 return (0);
639 }
640 stripeOffset++;
641 }
642 }
643 return (0);
644 }
645 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
646 /*
647 return the number of failed data units in the stripe.
648 */
649
650 int
651 rf_NumFailedDataUnitsInStripe(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
652 {
653 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
654 RF_RowCol_t tcol, i;
655 RF_SectorNum_t diskOffset;
656 RF_RaidAddr_t sosAddr;
657 int numFailures;
658
659 /* quick out in the fault-free case. */
660 RF_LOCK_MUTEX(raidPtr->mutex);
661 numFailures = raidPtr->numFailures;
662 RF_UNLOCK_MUTEX(raidPtr->mutex);
663 if (numFailures == 0)
664 return (0);
665 numFailures = 0;
666
667 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
668 asmap->raidAddress);
669 for (i = 0; i < layoutPtr->numDataCol; i++) {
670 (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
671 &trow, &tcol, &diskOffset, 0);
672 if (RF_DEAD_DISK(raidPtr->Disks[tcol].status))
673 numFailures++;
674 }
675
676 return numFailures;
677 }
678 #endif
679
680 /****************************************************************************
681 *
682 * debug routines
683 *
684 ***************************************************************************/
685 #if RF_DEBUG_MAP
686 void
687 rf_PrintAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h)
688 {
689 rf_PrintFullAccessStripeMap(asm_h, 0);
690 }
691 #endif
692
693 /* prbuf - flag to print buffer pointers */
694 void
695 rf_PrintFullAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h, int prbuf)
696 {
697 int i;
698 RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
699 RF_PhysDiskAddr_t *p;
700 printf("%d stripes total\n", (int) asm_h->numStripes);
701 for (; asmap; asmap = asmap->next) {
702 /* printf("Num failures: %d\n",asmap->numDataFailed); */
703 /* printf("Num sectors:
704 * %d\n",(int)asmap->totalSectorsAccessed); */
705 printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
706 (int) asmap->stripeID,
707 (int) asmap->totalSectorsAccessed,
708 (int) asmap->numDataFailed,
709 (int) asmap->numParityFailed);
710 if (asmap->parityInfo) {
711 printf("Parity [c%d s%d-%d", asmap->parityInfo->col,
712 (int) asmap->parityInfo->startSector,
713 (int) (asmap->parityInfo->startSector +
714 asmap->parityInfo->numSector - 1));
715 if (prbuf)
716 printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
717 if (asmap->parityInfo->next) {
718 printf(", c%d s%d-%d", asmap->parityInfo->next->col,
719 (int) asmap->parityInfo->next->startSector,
720 (int) (asmap->parityInfo->next->startSector +
721 asmap->parityInfo->next->numSector - 1));
722 if (prbuf)
723 printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
724 RF_ASSERT(asmap->parityInfo->next->next == NULL);
725 }
726 printf("]\n\t");
727 }
728 for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
729 printf("SU c%d s%d-%d ", p->col, (int) p->startSector,
730 (int) (p->startSector + p->numSector - 1));
731 if (prbuf)
732 printf("b0x%lx ", (unsigned long) p->bufPtr);
733 if (i && !(i & 1))
734 printf("\n\t");
735 }
736 printf("\n");
737 p = asm_h->stripeMap->failedPDAs[0];
738 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
739 printf("[multiple failures]\n");
740 else
741 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
742 printf("\t[Failed PDA: c%d s%d-%d]\n", p->col,
743 (int) p->startSector, (int) (p->startSector + p->numSector - 1));
744 }
745 }
746
747 #if RF_MAP_DEBUG
748 void
749 rf_PrintRaidAddressInfo(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
750 RF_SectorCount_t numBlocks)
751 {
752 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
753 RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
754
755 printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
756 for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
757 printf("%d (0x%x), ", (int) ra, (int) ra);
758 }
759 printf("\n");
760 printf("Offset into stripe unit: %d (0x%x)\n",
761 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
762 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
763 }
764 #endif
765 /* given a parity descriptor and the starting address within a stripe,
766 * range restrict the parity descriptor to touch only the correct
767 * stuff. */
768 void
769 rf_ASMParityAdjust(RF_PhysDiskAddr_t *toAdjust,
770 RF_StripeNum_t startAddrWithinStripe,
771 RF_SectorNum_t endAddress,
772 RF_RaidLayout_t *layoutPtr,
773 RF_AccessStripeMap_t *asm_p)
774 {
775 RF_PhysDiskAddr_t *new_pda;
776
777 /* when we're accessing only a portion of one stripe unit, we
778 * want the parity descriptor to identify only the chunk of
779 * parity associated with the data. When the access spans
780 * exactly one stripe unit boundary and is less than a stripe
781 * unit in size, it uses two disjoint regions of the parity
782 * unit. When an access spans more than one stripe unit
783 * boundary, it uses all of the parity unit.
784 *
785 * To better handle the case where stripe units are small, we
786 * may eventually want to change the 2nd case so that if the
787 * SU size is below some threshold, we just read/write the
788 * whole thing instead of breaking it up into two accesses. */
789 if (asm_p->numStripeUnitsAccessed == 1) {
790 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
791 toAdjust->startSector += x;
792 toAdjust->raidAddress += x;
793 toAdjust->numSector = asm_p->physInfo->numSector;
794 RF_ASSERT(toAdjust->numSector != 0);
795 } else
796 if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
797 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
798
799 /* create a second pda and copy the parity map info
800 * into it */
801 RF_ASSERT(toAdjust->next == NULL);
802 /* the following will get freed in rf_FreeAccessStripeMap() via
803 rf_FreePDAList() */
804 new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
805 *new_pda = *toAdjust; /* structure assignment */
806 new_pda->next = NULL;
807
808 /* adjust the start sector & number of blocks for the
809 * first parity pda */
810 toAdjust->startSector += x;
811 toAdjust->raidAddress += x;
812 toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
813 RF_ASSERT(toAdjust->numSector != 0);
814
815 /* adjust the second pda */
816 new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
817 /* new_pda->raidAddress =
818 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
819 * toAdjust->raidAddress); */
820 RF_ASSERT(new_pda->numSector != 0);
821 }
822 }
823
824 /* Check if a disk has been spared or failed. If spared, redirect the
825 * I/O. If it has been failed, record it in the asm pointer. Fourth
826 * arg is whether data or parity. */
827 void
828 rf_ASMCheckStatus(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda_p,
829 RF_AccessStripeMap_t *asm_p, RF_RaidDisk_t *disks,
830 int parity)
831 {
832 RF_DiskStatus_t dstatus;
833 RF_RowCol_t fcol;
834
835 dstatus = disks[pda_p->col].status;
836
837 if (dstatus == rf_ds_spared) {
838 /* if the disk has been spared, redirect access to the spare */
839 fcol = pda_p->col;
840 pda_p->col = disks[fcol].spareCol;
841 } else
842 if (dstatus == rf_ds_dist_spared) {
843 /* ditto if disk has been spared to dist spare space */
844 #if RF_DEBUG_MAP
845 RF_RowCol_t oc = pda_p->col;
846 RF_SectorNum_t oo = pda_p->startSector;
847 #endif
848 if (pda_p->type == RF_PDA_TYPE_DATA)
849 raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
850 else
851 raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
852
853 #if RF_DEBUG_MAP
854 if (rf_mapDebug) {
855 printf("Redirected c %d o %d -> c %d o %d\n", oc, (int) oo,
856 pda_p->col, (int) pda_p->startSector);
857 }
858 #endif
859 } else
860 if (RF_DEAD_DISK(dstatus)) {
861 /* if the disk is inaccessible, mark the
862 * failure */
863 if (parity)
864 asm_p->numParityFailed++;
865 else {
866 asm_p->numDataFailed++;
867 }
868 asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
869 asm_p->numFailedPDAs++;
870 #if 0
871 switch (asm_p->numParityFailed + asm_p->numDataFailed) {
872 case 1:
873 asm_p->failedPDAs[0] = pda_p;
874 break;
875 case 2:
876 asm_p->failedPDAs[1] = pda_p;
877 default:
878 break;
879 }
880 #endif
881 }
882 /* the redirected access should never span a stripe unit boundary */
883 RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
884 rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
885 RF_ASSERT(pda_p->col != -1);
886 }
887