rf_map.c revision 1.5.2.7 1 /* $NetBSD: rf_map.c,v 1.5.2.7 2002/08/13 02:19:53 nathanw Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /**************************************************************************
30 *
31 * map.c -- main code for mapping RAID addresses to physical disk addresses
32 *
33 **************************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.5.2.7 2002/08/13 02:19:53 nathanw Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_threadstuff.h"
41 #include "rf_raid.h"
42 #include "rf_general.h"
43 #include "rf_map.h"
44 #include "rf_freelist.h"
45 #include "rf_shutdown.h"
46
47 static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count);
48 static void
49 rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end,
50 int count);
51
52 /*****************************************************************************************
53 *
54 * MapAccess -- main 1st order mapping routine.
55 *
56 * Maps an access in the RAID address space to the corresponding set of physical disk
57 * addresses. The result is returned as a list of AccessStripeMap structures, one per
58 * stripe accessed. Each ASM structure contains a pointer to a list of PhysDiskAddr
59 * structures, which describe the physical locations touched by the user access. Note
60 * that this routine returns only static mapping information, i.e. the list of physical
61 * addresses returned does not necessarily identify the set of physical locations that
62 * will actually be read or written.
63 *
64 * The routine also maps the parity. The physical disk location returned always
65 * indicates the entire parity unit, even when only a subset of it is being accessed.
66 * This is because an access that is not stripe unit aligned but that spans a stripe
67 * unit boundary may require access two distinct portions of the parity unit, and we
68 * can't yet tell which portion(s) we'll actually need. We leave it up to the algorithm
69 * selection code to decide what subset of the parity unit to access.
70 *
71 * Note that addresses in the RAID address space must always be maintained as
72 * longs, instead of ints.
73 *
74 * This routine returns NULL if numBlocks is 0
75 *
76 ****************************************************************************************/
77
78 RF_AccessStripeMapHeader_t *
79 rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap)
80 RF_Raid_t *raidPtr;
81 RF_RaidAddr_t raidAddress; /* starting address in RAID address
82 * space */
83 RF_SectorCount_t numBlocks; /* number of blocks in RAID address
84 * space to access */
85 caddr_t buffer; /* buffer to supply/receive data */
86 int remap; /* 1 => remap addresses to spare space */
87 {
88 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
89 RF_AccessStripeMapHeader_t *asm_hdr = NULL;
90 RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
91 int faultsTolerated = layoutPtr->map->faultsTolerated;
92 RF_RaidAddr_t startAddress = raidAddress; /* we'll change
93 * raidAddress along the
94 * way */
95 RF_RaidAddr_t endAddress = raidAddress + numBlocks;
96 RF_RaidDisk_t **disks = raidPtr->Disks;
97
98 RF_PhysDiskAddr_t *pda_p, *pda_q;
99 RF_StripeCount_t numStripes = 0;
100 RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress;
101 RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
102 RF_StripeCount_t totStripes;
103 RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
104 RF_AccessStripeMap_t *asmList, *t_asm;
105 RF_PhysDiskAddr_t *pdaList, *t_pda;
106
107 /* allocate all the ASMs and PDAs up front */
108 lastRaidAddr = raidAddress + numBlocks - 1;
109 stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
110 lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
111 totStripes = lastSID - stripeID + 1;
112 SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
113 lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
114
115 asmList = rf_AllocASMList(totStripes);
116 pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes); /* may also need pda(s)
117 * per stripe for parity */
118
119 if (raidAddress + numBlocks > raidPtr->totalSectors) {
120 RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
121 (int) raidAddress);
122 return (NULL);
123 }
124 if (rf_mapDebug)
125 rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
126 for (; raidAddress < endAddress;) {
127 /* make the next stripe structure */
128 RF_ASSERT(asmList);
129 t_asm = asmList;
130 asmList = asmList->next;
131 memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
132 if (!asm_p)
133 asm_list = asm_p = t_asm;
134 else {
135 asm_p->next = t_asm;
136 asm_p = asm_p->next;
137 }
138 numStripes++;
139
140 /* map SUs from current location to the end of the stripe */
141 asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
142 raidAddress) */ stripeID++;
143 stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
144 stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
145 asm_p->raidAddress = raidAddress;
146 asm_p->endRaidAddress = stripeEndAddress;
147
148 /* map each stripe unit in the stripe */
149 pda_p = NULL;
150 startAddrWithinStripe = raidAddress; /* Raid addr of start of
151 * portion of access
152 * that is within this
153 * stripe */
154 for (; raidAddress < stripeEndAddress;) {
155 RF_ASSERT(pdaList);
156 t_pda = pdaList;
157 pdaList = pdaList->next;
158 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
159 if (!pda_p)
160 asm_p->physInfo = pda_p = t_pda;
161 else {
162 pda_p->next = t_pda;
163 pda_p = pda_p->next;
164 }
165
166 pda_p->type = RF_PDA_TYPE_DATA;
167 (layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
168
169 /* mark any failures we find. failedPDA is don't-care
170 * if there is more than one failure */
171 pda_p->raidAddress = raidAddress; /* the RAID address
172 * corresponding to this
173 * physical disk address */
174 nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
175 pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
176 RF_ASSERT(pda_p->numSector != 0);
177 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
178 pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
179 asm_p->totalSectorsAccessed += pda_p->numSector;
180 asm_p->numStripeUnitsAccessed++;
181 asm_p->origRow = pda_p->row; /* redundant but
182 * harmless to do this
183 * in every loop
184 * iteration */
185
186 raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
187 }
188
189 /* Map the parity. At this stage, the startSector and
190 * numSector fields for the parity unit are always set to
191 * indicate the entire parity unit. We may modify this after
192 * mapping the data portion. */
193 switch (faultsTolerated) {
194 case 0:
195 break;
196 case 1: /* single fault tolerant */
197 RF_ASSERT(pdaList);
198 t_pda = pdaList;
199 pdaList = pdaList->next;
200 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
201 pda_p = asm_p->parityInfo = t_pda;
202 pda_p->type = RF_PDA_TYPE_PARITY;
203 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
204 &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
205 pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
206 /* raidAddr may be needed to find unit to redirect to */
207 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
208 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
209 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
210
211 break;
212 case 2: /* two fault tolerant */
213 RF_ASSERT(pdaList && pdaList->next);
214 t_pda = pdaList;
215 pdaList = pdaList->next;
216 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
217 pda_p = asm_p->parityInfo = t_pda;
218 pda_p->type = RF_PDA_TYPE_PARITY;
219 t_pda = pdaList;
220 pdaList = pdaList->next;
221 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
222 pda_q = asm_p->qInfo = t_pda;
223 pda_q->type = RF_PDA_TYPE_Q;
224 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
225 &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
226 (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
227 &(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap);
228 pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
229 /* raidAddr may be needed to find unit to redirect to */
230 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
231 pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
232 /* failure mode stuff */
233 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
234 rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
235 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
236 rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
237 break;
238 }
239 }
240 RF_ASSERT(asmList == NULL && pdaList == NULL);
241 /* make the header structure */
242 asm_hdr = rf_AllocAccessStripeMapHeader();
243 RF_ASSERT(numStripes == totStripes);
244 asm_hdr->numStripes = numStripes;
245 asm_hdr->stripeMap = asm_list;
246
247 if (rf_mapDebug)
248 rf_PrintAccessStripeMap(asm_hdr);
249 return (asm_hdr);
250 }
251 /*****************************************************************************************
252 * This routine walks through an ASM list and marks the PDAs that have failed.
253 * It's called only when a disk failure causes an in-flight DAG to fail.
254 * The parity may consist of two components, but we want to use only one failedPDA
255 * pointer. Thus we set failedPDA to point to the first parity component, and rely
256 * on the rest of the code to do the right thing with this.
257 ****************************************************************************************/
258
259 void
260 rf_MarkFailuresInASMList(raidPtr, asm_h)
261 RF_Raid_t *raidPtr;
262 RF_AccessStripeMapHeader_t *asm_h;
263 {
264 RF_RaidDisk_t **disks = raidPtr->Disks;
265 RF_AccessStripeMap_t *asmap;
266 RF_PhysDiskAddr_t *pda;
267
268 for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
269 asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0;
270 asmap->numFailedPDAs = 0;
271 memset((char *) asmap->failedPDAs, 0,
272 RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
273 for (pda = asmap->physInfo; pda; pda = pda->next) {
274 if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
275 asmap->numDataFailed++;
276 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
277 asmap->numFailedPDAs++;
278 }
279 }
280 pda = asmap->parityInfo;
281 if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
282 asmap->numParityFailed++;
283 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
284 asmap->numFailedPDAs++;
285 }
286 pda = asmap->qInfo;
287 if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
288 asmap->numQFailed++;
289 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
290 asmap->numFailedPDAs++;
291 }
292 }
293 }
294
295 /*****************************************************************************************
296 *
297 * routines to allocate and free list elements. All allocation routines zero the
298 * structure before returning it.
299 *
300 * FreePhysDiskAddr is static. It should never be called directly, because
301 * FreeAccessStripeMap takes care of freeing the PhysDiskAddr list.
302 *
303 ****************************************************************************************/
304
305 static RF_FreeList_t *rf_asmhdr_freelist;
306 #define RF_MAX_FREE_ASMHDR 128
307 #define RF_ASMHDR_INC 16
308 #define RF_ASMHDR_INITIAL 32
309
310 static RF_FreeList_t *rf_asm_freelist;
311 #define RF_MAX_FREE_ASM 192
312 #define RF_ASM_INC 24
313 #define RF_ASM_INITIAL 64
314
315 static RF_FreeList_t *rf_pda_freelist;
316 #define RF_MAX_FREE_PDA 192
317 #define RF_PDA_INC 24
318 #define RF_PDA_INITIAL 64
319
320 /* called at shutdown time. So far, all that is necessary is to release all the free lists */
321 static void rf_ShutdownMapModule(void *);
322 static void
323 rf_ShutdownMapModule(ignored)
324 void *ignored;
325 {
326 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
327 RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
328 RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *));
329 }
330
331 int
332 rf_ConfigureMapModule(listp)
333 RF_ShutdownList_t **listp;
334 {
335 int rc;
336
337 RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR,
338 RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t));
339 if (rf_asmhdr_freelist == NULL) {
340 return (ENOMEM);
341 }
342 RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM,
343 RF_ASM_INC, sizeof(RF_AccessStripeMap_t));
344 if (rf_asm_freelist == NULL) {
345 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
346 return (ENOMEM);
347 }
348 RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA,
349 RF_PDA_INC, sizeof(RF_PhysDiskAddr_t));
350 if (rf_pda_freelist == NULL) {
351 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
352 RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
353 return (ENOMEM);
354 }
355 rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
356 if (rc) {
357 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__,
358 __LINE__, rc);
359 rf_ShutdownMapModule(NULL);
360 return (rc);
361 }
362 RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next,
363 (RF_AccessStripeMapHeader_t *));
364 RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next,
365 (RF_AccessStripeMap_t *));
366 RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next,
367 (RF_PhysDiskAddr_t *));
368
369 return (0);
370 }
371
372 RF_AccessStripeMapHeader_t *
373 rf_AllocAccessStripeMapHeader()
374 {
375 RF_AccessStripeMapHeader_t *p;
376
377 RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *));
378 memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
379
380 return (p);
381 }
382
383
384 void
385 rf_FreeAccessStripeMapHeader(p)
386 RF_AccessStripeMapHeader_t *p;
387 {
388 RF_FREELIST_FREE(rf_asmhdr_freelist, p, next);
389 }
390
391 RF_PhysDiskAddr_t *
392 rf_AllocPhysDiskAddr()
393 {
394 RF_PhysDiskAddr_t *p;
395
396 RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *));
397 memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
398
399 return (p);
400 }
401 /* allocates a list of PDAs, locking the free list only once
402 * when we have to call calloc, we do it one component at a time to simplify
403 * the process of freeing the list at program shutdown. This should not be
404 * much of a performance hit, because it should be very infrequently executed.
405 */
406 RF_PhysDiskAddr_t *
407 rf_AllocPDAList(count)
408 int count;
409 {
410 RF_PhysDiskAddr_t *p = NULL;
411
412 RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count);
413 return (p);
414 }
415
416 void
417 rf_FreePhysDiskAddr(p)
418 RF_PhysDiskAddr_t *p;
419 {
420 RF_FREELIST_FREE(rf_pda_freelist, p, next);
421 }
422
423 static void
424 rf_FreePDAList(l_start, l_end, count)
425 RF_PhysDiskAddr_t *l_start, *l_end; /* pointers to start and end
426 * of list */
427 int count; /* number of elements in list */
428 {
429 RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count);
430 }
431
432 RF_AccessStripeMap_t *
433 rf_AllocAccessStripeMapComponent()
434 {
435 RF_AccessStripeMap_t *p;
436
437 RF_FREELIST_GET(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *));
438 memset((char *) p, 0, sizeof(RF_AccessStripeMap_t));
439
440 return (p);
441 }
442 /* this is essentially identical to AllocPDAList. I should combine the two.
443 * when we have to call calloc, we do it one component at a time to simplify
444 * the process of freeing the list at program shutdown. This should not be
445 * much of a performance hit, because it should be very infrequently executed.
446 */
447 RF_AccessStripeMap_t *
448 rf_AllocASMList(count)
449 int count;
450 {
451 RF_AccessStripeMap_t *p = NULL;
452
453 RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count);
454 return (p);
455 }
456
457 void
458 rf_FreeAccessStripeMapComponent(p)
459 RF_AccessStripeMap_t *p;
460 {
461 RF_FREELIST_FREE(rf_asm_freelist, p, next);
462 }
463
464 static void
465 rf_FreeASMList(l_start, l_end, count)
466 RF_AccessStripeMap_t *l_start, *l_end;
467 int count;
468 {
469 RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count);
470 }
471
472 void
473 rf_FreeAccessStripeMap(hdr)
474 RF_AccessStripeMapHeader_t *hdr;
475 {
476 RF_AccessStripeMap_t *p, *pt = NULL;
477 RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
478 int count = 0, t, asm_count = 0;
479
480 for (p = hdr->stripeMap; p; p = p->next) {
481
482 /* link the 3 pda lists into the accumulating pda list */
483
484 if (!pdaList)
485 pdaList = p->qInfo;
486 else
487 pdaEnd->next = p->qInfo;
488 for (trailer = NULL, pdp = p->qInfo; pdp;) {
489 trailer = pdp;
490 pdp = pdp->next;
491 count++;
492 }
493 if (trailer)
494 pdaEnd = trailer;
495
496 if (!pdaList)
497 pdaList = p->parityInfo;
498 else
499 pdaEnd->next = p->parityInfo;
500 for (trailer = NULL, pdp = p->parityInfo; pdp;) {
501 trailer = pdp;
502 pdp = pdp->next;
503 count++;
504 }
505 if (trailer)
506 pdaEnd = trailer;
507
508 if (!pdaList)
509 pdaList = p->physInfo;
510 else
511 pdaEnd->next = p->physInfo;
512 for (trailer = NULL, pdp = p->physInfo; pdp;) {
513 trailer = pdp;
514 pdp = pdp->next;
515 count++;
516 }
517 if (trailer)
518 pdaEnd = trailer;
519
520 pt = p;
521 asm_count++;
522 }
523
524 /* debug only */
525 for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
526 t++;
527 RF_ASSERT(t == count);
528
529 if (pdaList)
530 rf_FreePDAList(pdaList, pdaEnd, count);
531 rf_FreeASMList(hdr->stripeMap, pt, asm_count);
532 rf_FreeAccessStripeMapHeader(hdr);
533 }
534 /* We can't use the large write optimization if there are any failures in the stripe.
535 * In the declustered layout, there is no way to immediately determine what disks
536 * constitute a stripe, so we actually have to hunt through the stripe looking for failures.
537 * The reason we map the parity instead of just using asm->parityInfo->col is because
538 * the latter may have been already redirected to a spare drive, which would
539 * mess up the computation of the stripe offset.
540 *
541 * ASSUMES AT MOST ONE FAILURE IN THE STRIPE.
542 */
543 int
544 rf_CheckStripeForFailures(raidPtr, asmap)
545 RF_Raid_t *raidPtr;
546 RF_AccessStripeMap_t *asmap;
547 {
548 RF_RowCol_t trow, tcol, prow, pcol, *diskids, row, i;
549 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
550 RF_StripeCount_t stripeOffset;
551 int numFailures;
552 RF_RaidAddr_t sosAddr;
553 RF_SectorNum_t diskOffset, poffset;
554 RF_RowCol_t testrow;
555
556 /* quick out in the fault-free case. */
557 RF_LOCK_MUTEX(raidPtr->mutex);
558 numFailures = raidPtr->numFailures;
559 RF_UNLOCK_MUTEX(raidPtr->mutex);
560 if (numFailures == 0)
561 return (0);
562
563 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
564 row = asmap->physInfo->row;
565 (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow);
566 (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0); /* get pcol */
567
568 /* this need not be true if we've redirected the access to a spare in
569 * another row RF_ASSERT(row == testrow); */
570 stripeOffset = 0;
571 for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
572 if (diskids[i] != pcol) {
573 if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) {
574 if (raidPtr->status[testrow] != rf_rs_reconstructing)
575 return (1);
576 RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]);
577 layoutPtr->map->MapSector(raidPtr,
578 sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
579 &trow, &tcol, &diskOffset, 0);
580 RF_ASSERT((trow == testrow) && (tcol == diskids[i]));
581 if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset))
582 return (1);
583 asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
584 return (0);
585 }
586 stripeOffset++;
587 }
588 }
589 return (0);
590 }
591 /*
592 return the number of failed data units in the stripe.
593 */
594
595 int
596 rf_NumFailedDataUnitsInStripe(raidPtr, asmap)
597 RF_Raid_t *raidPtr;
598 RF_AccessStripeMap_t *asmap;
599 {
600 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
601 RF_RowCol_t trow, tcol, row, i;
602 RF_SectorNum_t diskOffset;
603 RF_RaidAddr_t sosAddr;
604 int numFailures;
605
606 /* quick out in the fault-free case. */
607 RF_LOCK_MUTEX(raidPtr->mutex);
608 numFailures = raidPtr->numFailures;
609 RF_UNLOCK_MUTEX(raidPtr->mutex);
610 if (numFailures == 0)
611 return (0);
612 numFailures = 0;
613
614 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
615 row = asmap->physInfo->row;
616 for (i = 0; i < layoutPtr->numDataCol; i++) {
617 (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
618 &trow, &tcol, &diskOffset, 0);
619 if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status))
620 numFailures++;
621 }
622
623 return numFailures;
624 }
625
626
627 /*****************************************************************************************
628 *
629 * debug routines
630 *
631 ****************************************************************************************/
632
633 void
634 rf_PrintAccessStripeMap(asm_h)
635 RF_AccessStripeMapHeader_t *asm_h;
636 {
637 rf_PrintFullAccessStripeMap(asm_h, 0);
638 }
639
640 void
641 rf_PrintFullAccessStripeMap(asm_h, prbuf)
642 RF_AccessStripeMapHeader_t *asm_h;
643 int prbuf; /* flag to print buffer pointers */
644 {
645 int i;
646 RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
647 RF_PhysDiskAddr_t *p;
648 printf("%d stripes total\n", (int) asm_h->numStripes);
649 for (; asmap; asmap = asmap->next) {
650 /* printf("Num failures: %d\n",asmap->numDataFailed); */
651 /* printf("Num sectors:
652 * %d\n",(int)asmap->totalSectorsAccessed); */
653 printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
654 (int) asmap->stripeID,
655 (int) asmap->totalSectorsAccessed,
656 (int) asmap->numDataFailed,
657 (int) asmap->numParityFailed);
658 if (asmap->parityInfo) {
659 printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col,
660 (int) asmap->parityInfo->startSector,
661 (int) (asmap->parityInfo->startSector +
662 asmap->parityInfo->numSector - 1));
663 if (prbuf)
664 printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
665 if (asmap->parityInfo->next) {
666 printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row,
667 asmap->parityInfo->next->col,
668 (int) asmap->parityInfo->next->startSector,
669 (int) (asmap->parityInfo->next->startSector +
670 asmap->parityInfo->next->numSector - 1));
671 if (prbuf)
672 printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
673 RF_ASSERT(asmap->parityInfo->next->next == NULL);
674 }
675 printf("]\n\t");
676 }
677 for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
678 printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector,
679 (int) (p->startSector + p->numSector - 1));
680 if (prbuf)
681 printf("b0x%lx ", (unsigned long) p->bufPtr);
682 if (i && !(i & 1))
683 printf("\n\t");
684 }
685 printf("\n");
686 p = asm_h->stripeMap->failedPDAs[0];
687 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
688 printf("[multiple failures]\n");
689 else
690 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
691 printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col,
692 (int) p->startSector, (int) (p->startSector + p->numSector - 1));
693 }
694 }
695
696 void
697 rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks)
698 RF_Raid_t *raidPtr;
699 RF_RaidAddr_t raidAddr;
700 RF_SectorCount_t numBlocks;
701 {
702 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
703 RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
704
705 printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
706 for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
707 printf("%d (0x%x), ", (int) ra, (int) ra);
708 }
709 printf("\n");
710 printf("Offset into stripe unit: %d (0x%x)\n",
711 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
712 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
713 }
714 /*
715 given a parity descriptor and the starting address within a stripe,
716 range restrict the parity descriptor to touch only the correct stuff.
717 */
718 void
719 rf_ASMParityAdjust(
720 RF_PhysDiskAddr_t * toAdjust,
721 RF_StripeNum_t startAddrWithinStripe,
722 RF_SectorNum_t endAddress,
723 RF_RaidLayout_t * layoutPtr,
724 RF_AccessStripeMap_t * asm_p)
725 {
726 RF_PhysDiskAddr_t *new_pda;
727
728 /* when we're accessing only a portion of one stripe unit, we want the
729 * parity descriptor to identify only the chunk of parity associated
730 * with the data. When the access spans exactly one stripe unit
731 * boundary and is less than a stripe unit in size, it uses two
732 * disjoint regions of the parity unit. When an access spans more
733 * than one stripe unit boundary, it uses all of the parity unit.
734 *
735 * To better handle the case where stripe units are small, we may
736 * eventually want to change the 2nd case so that if the SU size is
737 * below some threshold, we just read/write the whole thing instead of
738 * breaking it up into two accesses. */
739 if (asm_p->numStripeUnitsAccessed == 1) {
740 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
741 toAdjust->startSector += x;
742 toAdjust->raidAddress += x;
743 toAdjust->numSector = asm_p->physInfo->numSector;
744 RF_ASSERT(toAdjust->numSector != 0);
745 } else
746 if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
747 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
748
749 /* create a second pda and copy the parity map info
750 * into it */
751 RF_ASSERT(toAdjust->next == NULL);
752 new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
753 *new_pda = *toAdjust; /* structure assignment */
754 new_pda->next = NULL;
755
756 /* adjust the start sector & number of blocks for the
757 * first parity pda */
758 toAdjust->startSector += x;
759 toAdjust->raidAddress += x;
760 toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
761 RF_ASSERT(toAdjust->numSector != 0);
762
763 /* adjust the second pda */
764 new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
765 /* new_pda->raidAddress =
766 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
767 * toAdjust->raidAddress); */
768 RF_ASSERT(new_pda->numSector != 0);
769 }
770 }
771
772 /*
773 Check if a disk has been spared or failed. If spared,
774 redirect the I/O.
775 If it has been failed, record it in the asm pointer.
776 Fourth arg is whether data or parity.
777 */
778 void
779 rf_ASMCheckStatus(
780 RF_Raid_t * raidPtr,
781 RF_PhysDiskAddr_t * pda_p,
782 RF_AccessStripeMap_t * asm_p,
783 RF_RaidDisk_t ** disks,
784 int parity)
785 {
786 RF_DiskStatus_t dstatus;
787 RF_RowCol_t frow, fcol;
788
789 dstatus = disks[pda_p->row][pda_p->col].status;
790
791 if (dstatus == rf_ds_spared) {
792 /* if the disk has been spared, redirect access to the spare */
793 frow = pda_p->row;
794 fcol = pda_p->col;
795 pda_p->row = disks[frow][fcol].spareRow;
796 pda_p->col = disks[frow][fcol].spareCol;
797 } else
798 if (dstatus == rf_ds_dist_spared) {
799 /* ditto if disk has been spared to dist spare space */
800 RF_RowCol_t or = pda_p->row, oc = pda_p->col;
801 RF_SectorNum_t oo = pda_p->startSector;
802
803 if (pda_p->type == RF_PDA_TYPE_DATA)
804 raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
805 else
806 raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
807
808 if (rf_mapDebug) {
809 printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo,
810 pda_p->row, pda_p->col, (int) pda_p->startSector);
811 }
812 } else
813 if (RF_DEAD_DISK(dstatus)) {
814 /* if the disk is inaccessible, mark the
815 * failure */
816 if (parity)
817 asm_p->numParityFailed++;
818 else {
819 asm_p->numDataFailed++;
820 }
821 asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
822 asm_p->numFailedPDAs++;
823 #if 0
824 switch (asm_p->numParityFailed + asm_p->numDataFailed) {
825 case 1:
826 asm_p->failedPDAs[0] = pda_p;
827 break;
828 case 2:
829 asm_p->failedPDAs[1] = pda_p;
830 default:
831 break;
832 }
833 #endif
834 }
835 /* the redirected access should never span a stripe unit boundary */
836 RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
837 rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
838 RF_ASSERT(pda_p->col != -1);
839 }
840